Inégalités de type Trudinger-Moser et applications

par Mohamed Khalil Zghal

Thèse de doctorat en Mathématiques

Sous la direction de Hajer Bahouri et de Mohamed Majdoub.

Soutenue le 06-02-2016

à Paris Est en cotutelle avec l'Université de Tunis El Manar , dans le cadre de École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication (Champs-sur-Marne, Seine-et-Marne ; 2015-....) , en partenariat avec Laboratoire d'Analyse et de Mathématiques Appliquées (laboratoire) et de Laboratoire d'Analyse et de Mathématiques Appliquées (laboratoire) .

Le président du jury était Amel Atallah Baraket.

Le jury était composé de Hajer Bahouri, Galina Perelman.

Les rapporteurs étaient Abdellaziz Harrabi, Cristina Tarsi.


  • Résumé

    Cette thèse porte sur quelques inégalités de type Trudinger-Moser et leurs applications à l'étude des injections de Sobolev qu'elles induisent dans les espaces d'Orlicz et à l'analyse d'équations aux dérivées partielles non linéaires à croissance exponentielle.Le travail qu'on présente ici se compose de trois parties. La première partie est consacrée à la description du défaut de compacité de l'injection de Sobolev 4D dans l'espace d'Orlicz dansle cadre radial.L'objectif de la deuxième partie est double. D'abord, on caractérise le défaut de compacité de l'injection de Sobolev 2D dans les différentes classes d'espaces d'Orlicz. Ensuite, on étudiel'équation de Klein-Gordon semi-linéaire avec non linéarité exponentielle, où la norme d'Orlicz joue un rôle crucial. En particulier, on aborde les questions d'existence globale, de complétude asymptotique et d'étude qualitative.Dans la troisième partie, on établit des inégalités optimales de type Adams, en étroite relation avec les inégalités de Hardy, puis on fournit une description du défaut de compacité des injections de Sobolev qu'elles induisent

  • Titre traduit

    Trudinger-Moser type inequalities and applications


  • Résumé

    This thesis focuses on some Trudinger-Moser type inequalities and their applications to the study of Sobolev embeddings they induce into the Orlicz spaces, and the investigation of nonlinear partial differential equations with exponential growth.The work presented here includes three parts. The first part is devoted to the description of the lack of compactness of the 4D Sobolev embedding into the Orlicz space in the radialframework.The aim of the second part is twofold. Firstly, we characterize the lack of compactness of the 2D Sobolev embedding into the different classes of Orlicz spaces. Secondly, we undertakethe study of the nonlinear Klein-Gordon equation with exponential growth, where the Orlicz norm plays a crucial role. In particular, issues of global existence, scattering and qualitativestudy are investigated.In the third part, we establish sharp Adams-type inequalities invoking Hardy inequalities, then we give a description of the lack of compactness of the Sobolev embeddings they induce


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Communautés d’Universités et d'Etablissements Université Paris-Est. Bibliothèque universitaire.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.