Thèse soutenue

Dérivées secondes pour l'optimisation de formes par la méthode des lignes de niveaux

FR  |  
EN
Auteur / Autrice : Jean-Léopold Vie
Direction : Eric CancèsGrégoire Allaire
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 16/12/2016
Etablissement(s) : Paris Est
Ecole(s) doctorale(s) : École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication (Champs-sur-Marne, Seine-et-Marne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Centre d'enseignement et de recherche en mathématiques et calcul scientifique (Champs-sur-Marne, Seine-et-Marne)
Jury : Président / Présidente : Antoine Henrot
Examinateurs / Examinatrices : Eric Cancès, Grégoire Allaire, Marc Albertelli, Samuel Amstutz, Virginie Ehrlacher
Rapporteurs / Rapporteuses : Marc Dambrine, Jean-Rodolphe Roche

Résumé

FR  |  
EN

Le but de cette thèse est de définir une méthode d'optimisation de formes qui conjugue l'utilisation de la dérivée seconde de forme et la méthode des lignes de niveaux pour la représentation d'une forme.On considèrera d'abord deux cas plus simples : un cas d'optimisation paramétrique et un cas d'optimisation discrète.Ce travail est divisé en quatre parties.La première contient le matériel nécessaire à la compréhension de l'ensemble de la thèse.Le premier chapitre rappelle des résultats généraux d'optimisation, et notamment le fait que les méthodes d'ordre deux ont une convergence quadratique sous certaines hypothèses.Le deuxième chapitre répertorie différentes modélisations pour l'optimisation de formes, et le troisième se concentre sur l'optimisation paramétrique puis l'optimisation géométrique.Les quatrième et cinquième chapitres introduisent respectivement la méthode des lignes de niveaux (level-set) et la méthode des éléments-finis.La deuxième partie commence par les chapitres 6 et 7 qui détaillent des calculs de dérivée seconde dans le cas de l'optimisation paramétrique puis géométrique.Ces chapitres précisent aussi la structure et certaines propriétés de la dérivée seconde de forme.Le huitième chapitre traite du cas de l'optimisation discrète.Dans le neuvième chapitre on introduit différentes méthodes pour un calcul approché de la dérivée seconde, puis on définit un algorithme de second ordre dans un cadre général.Cela donne la possibilité de faire quelques premières simulations numériques dans le cas de l'optimisation paramétrique (Chapitre 6) et dans le cas de l'optimisation discrète (Chapitre 7).La troisième partie est consacrée à l'optimisation géométrique.Le dixième chapitre définit une nouvelle notion de dérivée de forme qui prend en compte le fait que l'évolution des formes par la méthode des lignes de niveaux, grâce à la résolution d'une équation eikonale, se fait toujours selon la normale.Cela permet de définir aussi une méthode d'ordre deux pour l'optimisation.Le onzième chapitre détaille l'approximation d'intégrales de surface et le douzième chapitre est consacré à des exemples numériques.La dernière partie concerne l'analyse numérique d'algorithmes d'optimisation de formes par la méthode des lignes de niveaux.Le Chapitre 13 détaille la version discrète d'un algorithme d'optimisation de formes.Le Chapitre 14 analyse les schémas numériques relatifs à la méthodes des lignes de niveaux.Enfin le dernier chapitre fait l'analyse numérique complète d'un exemple d'optimisation de formes en dimension un, avec une étude des vitesses de convergence