Extraction hybride et description structurelle de caractères pour une reconnaissance efficace de texte dans les documents hétérogènes scannés : Méthodes et Algorithmes parallèles

par Mahmoud Soua

Thèse de doctorat en Informatique

Sous la direction de Mohamed Akil.

Soutenue le 08-11-2016

à Paris Est , dans le cadre de École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication (Champs-sur-Marne, Seine-et-Marne ; 2015-....) , en partenariat avec Laboratoire d'informatique de l'Institut Gaspard Monge (laboratoire) et de Laboratoire d'Informatique Gaspard-Monge / LIGM (laboratoire) .

Le président du jury était Mohamed Hédi Bedoui.

Le jury était composé de Mohamed Akil, Nicolas Gac, Rostom Kachouri.

Les rapporteurs étaient Thierry Géraud, Antoine Manzanera.


  • Résumé

    La Reconnaissance Optique de Caractères (OCR) est un processus qui convertit les images textuelles en documents textes éditables. De nos jours, ces systèmes sont largement utilisés dans les applications de dématérialisation tels que le tri de courriers, la gestion de factures, etc. Dans ce cadre, l'objectif de cette thèse est de proposer un système OCR qui assure un meilleur compromis entre le taux de reconnaissance et la vitesse de traitement ce qui permet de faire une dématérialisation de documents fiable et temps réel. Pour assurer sa reconnaissance, le texte est d'abord extrait à partir de l'arrière-plan. Ensuite, il est segmenté en caractères disjoints qui seront décrits ultérieurement en se basant sur leurs caractéristiques structurelles. Finalement, les caractères sont reconnus suite à la mise en correspondance de leurs descripteurs avec ceux d'une base prédéfinie. L'extraction du texte, reste difficile dans les documents hétérogènes scannés avec un arrière-plan complexe et bruité où le texte risque d'être confondu avec un fond texturé/varié en couleurs ou distordu à cause du bruit de la numérisation. D'autre part, la description des caractères, extraits et segmentés, se montre souvent complexe (calcul de transformations géométriques, utilisation d'un grand nombre de caractéristiques) ou peu discriminante si les caractéristiques des caractères choisies sont sensibles à la variation de l'échelle, de la fonte, de style, etc. Pour ceci, nous adaptons la binarisation au type de documents hétérogènes scannés. Nous assurons également une description hautement discriminante entre les caractères se basant sur l'étude de la structure des caractères selon leurs projections horizontale et verticale dans l'espace. Pour assurer un traitement temps réel, nous parallélisons les algorithmes développés sur la plateforme du processeur graphique (GPU). Nos principales contributions dans notre système OCR proposé sont comme suit :Une nouvelle méthode d'extraction de texte à partir des documents hétérogènes scannés incluant des régions de texte avec un fond complexe ou homogène. Dans cette méthode, un processus d'analyse d’image est employé suivi d’une classification des régions du document en régions d’images (texte avec un fond complexe) et de textes (texte avec un fond homogène). Pour les régions de texte on extrait l'information textuelle en utilisant une méthode de classification hybride basée sur l'algorithme Kmeans (CHK) que nous avons développé. Les régions d'images sont améliorées avec une Correction Gamma (CG) avant d'appliquer CHK. Les résultats obtenus d'expérimentations, montrent que notre méthode d'extraction de texte permet d'attendre un taux de reconnaissance de caractères de 98,5% sur des documents hétérogènes scannés.Un Descripteur de Caractère Unifié basé sur l'étude de la structure des caractères. Il emploie un nombre suffisant de caractéristiques issues de l'unification des descripteurs de la projection horizontale et verticale des caractères réalisantune discrimination plus efficace. L'avantage de ce descripteur est à la fois sa haute performance et sa simplicité en termes de calcul. Il supporte la reconnaissance des reconnaissance de caractère de 100% pour une fonte et une taille données.Une parallélisation du système de reconnaissance de caractères. Le processeur graphique GPU a été employé comme une plateforme de parallélisation. Flexible et puissante, cette architecture offre une solution efficace pour l'accélération des algorithmesde traitement intensif d'images. Notre mise en oeuvre, combine les stratégies de parallélisation à fins et gros grains pour accélérer les étapes de la chaine OCR. En outre, les coûts de communication CPU-GPU sont évités et une bonne gestion mémoire est assurée. L'efficacité de notre mise en oeuvre est validée par une expérimentation approfondie

  • Titre traduit

    Hybrid extraction and structural description of characters for effective text recognition in heterogeneous scanned documents : Methods and Parallel Algorithms


  • Résumé

    The Optical Character Recognition (OCR) is a process that converts text images into editable text documents. Today, these systems are widely used in the dematerialization applications such as mail sorting, bill management, etc. In this context, the aim of this thesis is to propose an OCR system that provides a better compromise between recognition rate and processing speed which allows to give a reliable and a real time documents dematerialization. To ensure its recognition, the text is firstly extracted from the background. Then, it is segmented into disjoint characters that are described based on their structural characteristics. Finally, the characters are recognized when comparing their descriptors with a predefined ones.The text extraction, based on binarization methods remains difficult in heterogeneous and scanned documents with a complex and noisy background where the text may be confused with a textured background or because of the noise. On the other hand, the description of characters, and the extraction of segments, are often complex using calculation of geometricaltransformations, polygon, including a large number of characteristics or gives low discrimination if the characteristics of the selected type are sensitive to variation of scale, style, etc. For this, we adapt our algorithms to the type of heterogeneous and scanned documents. We also provide a high discriminatiobn between characters that descriptionis based on the study of the structure of the characters according to their horizontal and vertical projections. To ensure real-time processing, we parallelise algorithms developed on the graphics processor (GPU). Our main contributions in our proposed OCR system are as follows:A new binarisation method for heterogeneous and scanned documents including text regions with complex or homogeneous background. In this method, an image analysis process is used followed by a classification of the document areas into images (text with a complex background) and text (text with a homogeneous background). For text regions is performed text extraction using a hybrid method based on classification algorithm Kmeans (CHK) that we have developed for this aim. This method combines local and global approaches. It improves the quality of separation text/background, while minimizing the amount of distortion for text extraction from the scanned document and noisy because of the process of digitization. The image areas are improved with Gamma Correction (CG) before applying HBK. According to our experiment, our text extraction method gives 98% of character recognition rate on heterogeneous scanned documents.A Unified Character Descriptor based on the study of the character structure. It employs a sufficient number of characteristics resulting from the unification of the descriptors of the horizontal and vertical projection of the characters for efficient discrimination. The advantage of this descriptor is both on its high performance and its simple computation. It supports the recognition of alphanumeric and multiscale characters. The proposed descriptor provides a character recognition 100% for a given Face-type and Font-size.Parallelization of the proposed character recognition system. The GPU graphics processor has been used as a platform of parallelization. Flexible and powerful, this architecture provides an effective solution for accelerating intensive image processing algorithms. Our implementation, combines coarse/fine-grained parallelization strategies to speed up the steps of the OCR chain. In addition, the CPU-GPU communication overheads are avoided and a good memory management is assured. The effectiveness of our implementation is validated through extensive experiments


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.