Modélisation du comportement des bétons fibrés à ultra-hautes performances par la micromécanique : effet de l'orientation des fibres à l'échelle de la structure

par Thomas Guenet

Thèse de doctorat en Génie Civil

Sous la direction de François Toutlemonde.

Le président du jury était Eugen Brühwiler.

Le jury était composé de François Toutlemonde, Luca Sorelli, Sébastien Bernardi, David Conciatori, Florent Baby.

Les rapporteurs étaient Farid Benboudjema, Marco Di Prisco.


  • Résumé

    Cette thèse s’inscrit dans le contexte d’une optimisation industrielle et économique des éléments de structure en BFUP permettant d’en garantir la ductilité au niveau structural, tout en ajustant la quantité de fibres et en optimisant le mode de fabrication. Le modèle développé décrit explicitement la participation du renfort fibré en traction au niveau local, en enchaînant une phase de comportement écrouissante suivie d'une phase adoucissante. La loi de comportement est fonction de la densité, de l'orientation des fibres vis-à-vis des directions principales de traction, de leur élancement et d'autres paramètres matériaux usuels liés aux fibres, à la matrice cimentaire et à leur interaction. L'orientation des fibres est prise en compte à partir d'une loi de probabilité normale à une ou deux variables permettant de reproduire n'importe quelle orientation obtenue à partir d’un calcul représentatif de la mise en œuvre du BFUP frais ou renseignée par analyse expérimentale sur prototype. Enfin, le modèle reproduit la fissuration des BFUP sur le principe des modèles de fissures diffuses et tournantes. La loi de comportement est intégrée au sein d'un logiciel de calcul de structure par éléments finis, permettant de l'utiliser comme un outil prédictif de la fiabilité et de la ductilité globale d’éléments en BFUP. Deux campagnes expérimentales ont été effectuées, une à l'Université Laval de Québec et l'autre à l'Ifsttar, Marne-la-Vallée. La première permet de valider la capacité du modèle à reproduire le comportement global sous des sollicitations typiques de traction et de flexion dans des éléments structurels simples pour lesquels l’orientation préférentielle des fibres a été renseignée par tomographie. La seconde campagne expérimentale démontre les capacités du modèle dans une démarche d’optimisation, pour la fabrication de plaques nervurées relativement complexes et présentant un intérêt industriel potentiel pour lesquels différentes modalités de fabrication et des BFUP plus ou moins fibrés ont été envisagés. Le contrôle de la répartition et de l’orientation des fibres a été réalisé à partir d'essais mécaniques sur prélèvements. Les prévisions du modèle ont été confrontées au comportement structurel global et à la ductilité mis en évidence expérimentalement. Le modèle a ainsi pu être qualifié vis-à-vis des méthodes analytiques usuelles de l'ingénierie, en prenant en compte la variabilité statistique. Des pistes d'amélioration et de complément de développement ont été identifiées

  • Titre traduit

    Micromechanics-based modelling of the UHPFRC behaviour : fibres orientation effects at the structural scale


  • Résumé

    This Ph.D. project has been prepared within the context of an industrial and economic optimisation of UHPFRC structural elements to ensure ductility at the structural level, while adjusting the amount of fibre and optimising the manufacturing process. The model developed explicitly describes the participation of local fibre reinforcement in tension, thanks to a hardening behaviour followed by a softening one. The constitutive law is a function of the local fibre content, of the fibre orientation with respect to tensile principal directions, of the fibre slenderness and other usual material parameters related to the fibres, the cementitious matrix and their interaction. The fibre orientation is taken into account using a normal probability distribution with one or two variables to reproduce any orientation either obtained from a representative simulation of casting fresh UHPFRC or informed by experimental analysis on prototypes. Lastly, the model reproduces the cracking of UHPFRC based on the principle of smeared rotating crack models. The constitutive law is implemented in a structural finite element software as a predictive tool of reliability and overall ductility of UHPFRC elements. Two experimental campaigns were carried out, one at Laval University in Quebec and one at Ifsttar, Marne-la-Vallée. The first one is used to confirm the model ability to reproduce the overall behaviour under typical tensile and bending loads in simple structural elements for which the preferential fibre orientation was measured by microtomography. The second experimental campaign demonstrates the capabilities of the model, in an optimisation process, to help manufacture relatively complex ribbed triangular plates of industrial interest in which different manufacturing process and fibre volume have been considered. The identification of fibre distribution and orientation has been performed using mechanical tests on sawn samples. The model predictions have been compared to the global structural behaviour, and to the ductility demonstrated experimentally. The model could be qualified through comparison with conventional analytical engineering methods, taking into account the statistical variability. Improvement and additional developments have been identified


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Communautés d’Universités et d'Etablissements Université Paris-Est. Bibliothèque universitaire.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.