Étude des interfaces électrode/électrolyte des batteries lithium-ion : cas de l'électrode à base de Li4Ti5O12

par Jean-Baptiste Gieu

Thèse de doctorat en Chimie Physique

Sous la direction de Hervé Martinez et de Cécile Loudet-Courrèges.

Le jury était composé de Cécile Loudet-Courrèges.


  • Résumé

    Les batteries lithium-ion (Li-ion) sont privilégiées dans de nombreuses applications comme solution de stockage de l’énergie. Le composé Li4Ti5O12 (LTO) est une alternative au graphite qui demeure majoritairement utilisé comme matériau d’électrode négative dans les batteries Li-ion. Pour de potentielles applications à haute température, il est nécessaire d’étudier les couches interfaciales qui se forment dans ces conditions en surface des électrodes LTO. En effet, la formation de telles couches est un phénomène commun aux batteries Li-ion, dont la maîtrise revêt un rôle fondamental pour l’obtention de bonnes performances électrochimiques. La surface des électrodes LTO a pour cela été principalement caractérisée par Spectroscopie Photoélectronique à rayonnement X (XPS) et des analyses complémentaires ont aussi été ponctuellement menées en microscopie Auger à balayage (Scanning Auger Microscopy : SAM) pour l’acquisition de cartographies élémentaires et en spectrométrie de masse d’ions secondaires à temps de vol (Time-of-Flight Secondary Ions Spectrometry : ToF-SIMS) pour établir des profils de concentration élémentaires et moléculaires en profondeur. Ces résultats ont été systématiquement confrontés aux données électrochimiques. L’influence de différents paramètres sur les propriétés de la couche interfaciale formée en cyclage face au lithium a été évaluée. Une comparaison des couches interfaciales formées au premier cycle à température ambiante, 60 °C et 85 °C a ainsi montré qu’une température de cyclage plus élevée favorise la formation d’une couche interfaciale plus épaisse. L’utilisation d’un électrolyte contenant l’additif VC accélère la formation d’une SEI plus épaisse dès le premier cycle, moins sujette au phénomène de dissolution au cours de la délithiation et susceptible d'améliorer la rétention de capacité en longs cyclages. La substitution du sel de lithium LiPF6 par le sel LiTFSI entraîne la formation d’une couche plus fine, ce qui est principalement dû à une quantité de LiF déposée plus faible. De manière similaire, la substitution des solvants EC:DMC par les solvants PC:EMC, induit la formation d’une couche plus fine, du fait d’une quantité moins importante de LiF déposée. Par ailleurs, plus la surface spécifique de l’additif carboné entrant dans la composition des électrodes est élevée, plus la part de LiF parmi les espèces de la couche interfaciale formée est élevée, sans que cela n’influence son épaisseur. Puis, le comportement des interfaces électrode/électrolyte dans une batterie LiMn2O4/Li4Ti5O12 a finalement été étudié. Une couche interfaciale se forme en surface des deux électrodes. Néanmoins la couche formée sur l’électrode positive est plus fine que celle formée sur l’électrode négative. Leur composition est similaire, à l’exception du composé MnF2 uniquement détecté sur l’électrode négative et provenant d’un phénomène de dissolution du matériau LiMn2O4. Un prolongement de ce travail peut être envisagé concernant des électrodes à base de particules LTO avec différents coatings. De plus, une synergie systématique entre les trois techniques utilisées dans cette thèse pourra être encouragée.

  • Titre traduit

    Study of electrode/electrolyte interfaces in lithium-ion batteries : the case of Li4Ti5O12-based electrodes


  • Résumé

    Lithium-ion (Li-ion) batteries have been considered as the solution of choice for energy storage in numerous applications. Li4Ti5O12 (LTO) compound is an alternative to the widely used graphite, as a negative electrode material. For potential high temperature applications, the study of interfacial layers formed on top of LTO electrodes in such conditions is a necessary step. The formation of such surface layers is commonly observed in lithium-ion batteries and their properties are critical for maintaining good batteries performances. Therefore, LTO electrodes surfaces were mainly analyzed by X-ray Photoelectron Spectroscopy (XPS) and complementary measurements were performed by Scanning Auger Microscopy (SAM) for the acquisition of elemental mappings and by Time-of-Flight Secondary Ions Spectrometry (ToF-SIMS) for depth profile analysis. Surface analysis results were systematically linked to electrochemical data. The influence of several parameters was investigated for LTO electrodes cycled versus lithium. The comparison of surface layers formed during the first cycle at room temperature, 60 °C and 85 °C showed that higher cycling temperatures induce the formation of a thicker layer. The use of a VC-containing electrolyte accelerates the formation of a thicker layer since the first cycle, less prone to dissolution during delithiation and susceptible to enhance the capacity retention for long cycling. Substitution of LiPF6 lithium salt by LiTFSI leads to the formation of thinner layer, which is mainly due to a lower amount of deposited LiF. Similar results are obtained for the substitution of EC:DMC solvants by PC:EMC. Furthermore, the higher the specific surface of the electrode carbonaceous additive is, the higher the share of LiF in the interfacial layer composition is, even if its thickness remains similar. Finally, the behavior of electrode/electrolyte interfaces was studied in a LiMn2O4 /Li4Ti5O12 full cell. Interfacial layers are formed on the surface of both electrodes. Nevertheless, the layer on the positive electrode is thinner than the one on the negative electrode. Their composition are similar except for MnF2 compound, coming from LiMn2O4 dissolution at the positive electrode, which is only detected on the negative electrode. This work could be continued with the study of electrodes based on coated LTO particles. Moreover, a greater synergy between three characterization techniques used in this work could be promoted.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université de Pau et des Pays de l'Adour. Service Commun de la Documentation. Pau-SCD-Bib. électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.