The reduction of G-ordinary crystalline representations with G-structure

par Macarena Peche Irissarry

Thèse de doctorat en Mathématiques

Sous la direction de Christophe Cornut et de Laurent Fargues.

Soutenue le 15-11-2016

à Paris 6 , dans le cadre de École doctorale de Sciences mathématiques de Paris Centre (Paris) , en partenariat avec Institut de Mathématiques de Jussieu - Paris Rive Gauche (laboratoire) .

Le président du jury était Yves André.

Le jury était composé de Vincent Pilloni, Ana Caraiani.

Les rapporteurs étaient Xavier Caruso.

  • Titre traduit

    La réduction des représentations cristallines G-ordinaires avec G-structure


  • Résumé

    Le foncteur D_cris de Fontaine nous permet d'obtenir des isocristaux à partir des représentations cristallines. Pour un groupe reductif G, on s'intéresse à étudier la réduction des réseaux dans une représentation cristalline avec G-structure V, vers les cristaux avec G-structure contenus dans D_cris(V). En utilisant la théorie des modules de Kisin, on donne une description de cette réduction en termes du groupe G, dans le cas où la représentation est (G-)ordinaire. Pour cela, il faut d'abord généraliser la construction de la filtration de Harder-Narasimhan des groupes p-divisibles, donnée par Fargues, aux modules de Kisin.


  • Résumé

    Fontaine’s D_cris functor allows us to associate an isocrystal to any crystalline representation. For a reductive group G, we study the reduction of lattices inside a germ of crystalline representations with G-structure V, to lattices (which are crystals) with G-structure inside D_cris(V). Using Kisin modules theory, we give a description of this reduction in terms of G, in the case when the representation V is (G-)ordinary. In order to do that, first we need to generalize Fargues’ construction of the Harder-Narasimhan filtration for p-divisible groups to Kisin modules.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Pierre et Marie Curie. Bibliothèque Universitaire Pierre et Marie Curie. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.