Control of synaptic transmission by astroglial connexin 30 : molecular basis, activity-dependence and physiological implication

par Grégory Ghezali

Thèse de doctorat en Neuroscience

Sous la direction de Nathalie Rouach-Holcman.

Soutenue le 30-09-2016

à Paris 6 , dans le cadre de École doctorale Cerveau, cognition, comportement (Paris) , en partenariat avec Centre interdisciplinaire de recherche en biologie / CIRB (laboratoire) .

Le président du jury était Stéphane Charpier.

Le jury était composé de Vincent Prévot, Sandrine Etienne-Manneville.

Les rapporteurs étaient Frank Pfrieger, Olivier Pascual.

  • Titre traduit

    Contrôle de la transmission synaptique par la connexin 30 astrocytaire : bases moléculaires, dépendance à l'activité et implication physiologique


  • Résumé

    Les astrocytes périsynaptiques participent activement, au côté des neurones, dans le traitement de l’information cérébrale. Une propriété essentielle des astrocytes est d’exprimer un niveau élevé de protéines appelées connexines (Cxs), et formant les sous-unités des jonctions communicantes. Étonnamment, bien qu’il ait été suggéré très tôt que la Cx30 astrocytaire soit impliquée dans des processus cognitifs, son rôle exact dans la neurophysiologie demeure cependant encore mal connu. Nous avons récemment révélé que la Cx30, via une fonction non-canal inédite, contrôle la force et la plasticité de la transmission synaptique glutamatergique de l’hippocampe en régulant les niveaux synaptiques de glutamate par le biais du transport astrocytaire du glutamate. Cependant, les mécanismes moléculaire et cellulaire impliqués dans ce contrôle, ainsi que sa régulation dynamique par l’activité neuronale et son impact in vivo dans un contexte physiologique restaient inconnus. Dans le cadre de cette problématique, j’ai démontré durant ma thèse que: 1) La Cx30 induit la maturation morphologique des astrocytes de l’hippocampe par l’intermédiaire de la modulation d’une voie de signalisation dépendante de la laminine et régulant la polarisation cellulaire ; 2) l’expression de la Cx30, sa localisation perisynaptique, ainsi que ses fonctions sont modulées par l’activité neuronale ; 3) Le contrôle de la couverture astrocytaire des synapses du noyau supraoptique de l’hypothalamus par la Cx30 fixe les niveaux plasmatiques de base de la neurohormone ocytocine et ainsi favorise la mise en place de comportements sociaux adaptés. Dans l’ensemble, ces résultats éclairent les régulations des Cxs astrocytaires par l’activité neuronale et leur rôle dans le développement postnatal des réseaux neurogliaux, ainsi que dans le contrôle des interactions structurelles astrocytes-synapses à l’origine de processus comportementaux.


  • Résumé

    Perisynaptic astrocytes are active partners of neurons in cerebral information processing. A key property of astrocytes is to express high levels of the gap junction forming proteins, the connexins (Cxs). Strikingly, astroglial Cx30 was suggested early on to be involved in cognitive processes; however, its specific role in neurophysiology has yet been unexplored. We recently reveal that Cx30, through an unconventional non-channel function, controls hippocampal glutamatergic synaptic strength and plasticity by directly setting synaptic glutamate levels through astroglial glutamate clearance. Yet the cellular and molecular mechanisms involved in such control, its dynamic regulation by activity and its impact in vivo in a physiological context were unknown. To answer these questions, I demonstrated during my PhD that: 1) Cx30 drives the morphological maturation of hippocampal astrocytes via the modulation of a laminin signaling pathway regulating cell polarization; 2) Cx30 expression, perisynaptic localization and functions are modulated by neuronal activity; 3) Cx30-mediated control of astrocyte synapse coverage in the supraoptic nucleus of the hypothalamus sets basal plasmatic level of the neurohormone oxytocin and hence promotes appropriate oxytocin-based social abilities. Taken together, these data shed new light on astroglial Cxs activity-dependent regulations and roles in the postnatal development of neuroglial networks, as well as in astrocyte-synapse structural interactions mediating behavioral processes.

Accéder en ligne

Par respect de la propriété intellectuelle des ayants droit, certains éléments de cette thèse ont été retirés.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?