Identification de fractures dans un milieu poreux

par Fatma Cheikh

Thèse de doctorat en Mathématiques Appliquées

Sous la direction de Hend Ben Ameur, Jean E. Roberts et de Vincent Martin.

Soutenue le 12-10-2016

à Paris 6 en cotutelle avec École nationale d'ingénieurs de Tunis (Tunisie) , dans le cadre de École doctorale de Sciences mathématiques de Paris Centre (Paris) , en partenariat avec Inria Paris-Rocquencourt (laboratoire) .

Le jury était composé de Philippe Ackerer, Mohamed Abdelwahed, Maher Moakher, Moez Kalel.


  • Résumé

    Cette thèse est consacrée à l'étude mathématique d'un problème inverse en hydrogéologie : le but est d'identifier des fractures en milieu poreux, connaissant des mesures de l'écoulement dans le sous-sol. Le nombre, la localisation et les paramètres physiques des fractures sont recherchés. Ce problème est formulé comme la minimisation au sens des moindres carrés d'une fonctionnelle évaluant l'écart entre les mesures et les résultats du modèle direct. L'écoulement est celui d'un fluide monophasique incompressible (loi de Darcy). Un modèle traitant les fractures comme des interfaces est utilisé. Le problème direct est le modèle de fracture discrétisé par la méthode des éléments finis mixtes hybrides.Pour résoudre ce problème inverse, un nouvel algorithme itératif a été développé, basé sur l’utilisation d’indicateurs de fractures mis au point pendant la thèse. Ces indicateurs donnent une information au premier ordre concernant l'effet de l'ajout d'une nouvelle fracture. Comme ces indicateurs sont peu coûteux, un grand nombre de configurations de fractures sont testées à chaque itération. L’algorithme a été programmé, validé puis testé numériquement dans des situations variées, en utilisant des mesures synthétiques. Il donne des résultats très satisfaisants, bien que ce problème soit réputé difficile.Enfin, l’étude de l’identifiabilité du problème inverse a été amorcée. Pour un modèle simplifié de fractures (failles très perméables, cas le plus courant dans le sous-sol), on a montré que le problème.

  • Titre traduit

    Identification of fractures in porous medium


  • Résumé

    This PhD is dedicated to the mathematical study of an inverse problem in hydrogeology: the goal is to identify fractures in porous medium, knowing measurements of the underground flow. The number, the location and the physical parameters of the fracture are looked for. This problem is formulated as the least squares minimization of a function evaluating the misfit between measurements and the result of the direct model. We used a model describing the flow of a monophasic incompressible fluid (Darcy's law), in a porous medium containing some fractures represented by interfaces. The direct problem is the fracture model discretized by the mixed hybrid finite element method. To solve this inverse problem, we developed an iterative algorithm, which is based on the use of fracture indicators that have been developed durig the thesis. These indicators give a first order information concerning the effect of the addition of a new fracture. As these indicators are inexpensive, a large number of configurations of new fractures is tested at each iteration. The algorithm was programmed, validated and tested numerically in various situations, using synthetic measurements. It gives very satisfactory results, although this problem is considered difficult. Finally, an early study of identifiability of the inverse problem of fractures in porous medium has been achieved. It allowed to prove the identifiability for a simplified model (very permeable faults, which is common in the underground). The question of identifiability for the full fracture model remains open.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Pierre et Marie Curie. Bibliothèque Universitaire Pierre et Marie Curie. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.