Ultra-high carrier modulation in two dimensions through space charge doping : graphene and zinc oxide

par Andrea Paradisi

Thèse de doctorat en Physique

Sous la direction de Abhay Shukla.

Soutenue le 03-11-2016

à Paris 6 , dans le cadre de École doctorale Physique et chimie des matériaux (Paris) , en partenariat avec Institut de minéralogie- de physique des matériaux et de cosmochimie / IMPMC (laboratoire) .

Le jury était composé de Sophie Gueron, Javier Villegas, Massimiliano Marangolo, Luca Perfetti.

  • Titre traduit

    Modulation ultra-haute de charge en deux dimensions à travers le dopage par charge d'espace : graphène et oxide de zinc


  • Résumé

    La modulation de la densité de charge est un aspect important de l'étude de les transitions de phase électroniques ainsi que des propriétés électroniques des matériaux et il est à la base de plusieurs applications dans la micro-électronique. L'ajustement de la densité des porteurs de charge (dopage) peut être fait par voie chimique, en ajoutant des atomes étrangers au réseau cristallin du matériau ou électrostatiquement, en créant un accumulation de charge comme dans un Transistor é Effet de Champ. Cette dernier m ethode est réversible et particuliérement appropriée pour les matériaux bidimensionnels (2D) ou pour des couches ultra-minces. Le Dopage par Charge d'Espace est une nouvelle technique inventée et développée au cours de ce travail de thèse pour le dopage electrostatique de matériaux déposés sur la surface du verre. Une charge d'espace est créée à la surface en provoquant le mouvement des ions sodium présents dans le verre sous l'effet de la chaleur et d'un champ électrique extérieur. Cette espace de charge induit une accumulation de charge dans le matériau déposé sur la surface du verre, ce qui peut être supérieure à 10^14/cm^2. Une caractérisation détaillée faite avec mesures de transport, effet Hall, mesures Raman et mesures de Microscopie a Force Atomique (AFM) montrent que le dopage est réversible, bipolaire et il ne provoque pas des modifications chimiques. Cette technique peut être appliquée a des grandes surfaces, comme il est montré pour le cas du graph ene CVD. Dans une deuxiéme partie le dopage par espace de charge est appliqué à des couches ultra-minces (< 40 nm) de ZnO_(1-x). Le résultat est un abaissement de la résistance par carré de 5 ordres de grandeur. Les mesures de magnéto-transport faites à basse température montrent que les électrons dop es sont confinés en deux dimensions. Une transition remarquable de la localisation faible à l'anti-localisation est observée en fonction du dopage et de la température et des conclusions sont tirées à propos des phénoménes de diffusion qui gouverne le transport électronique dans des diff erentes conditions dans ce matériau.


  • Résumé

    Carrier modulation is an important parameter in the study of the electronic phase transitions and the electronic properties of materials and at the basis for many applications in microelectronics. The tuning of charge carrier density (doping) can be achieved chemically, by adding foreign atoms to the crystal structure of the material or electrostatically, by inducing a charge accumulation like in a Field Eect Transistor device. The latter method is reversible and particularly indicated for use in two dimensional (2D) materials or ultra-thin films. Space Charge Doping is a new technique invented and developed during this thesis for the electrostatic doping of such materials deposited on a glass surface. A space charge is created at the surface by causing sodium ions contained in glass to drift under the Eect of heat and an external electric field. This space charge in turn induces a charge accumulation in the material deposited on the glass surface which can be higher than 10^14/cm^2. Detailed characterization using transport, Hall effect, Raman and AFM measurements shows that the doping is reversible, ambipolar and does not induce chemical changes. It can be applied to large areas as shown with CVD graphene. In a second phase the space charge doping method is applied to polycrystalline ultra-thin films (< 40 nm) of ZnO_(1-x). A lowering of sheet resistance over 5 orders of magnitude is obtained. Low temperature magneto-transport measurements reveal that doped electrons are confined in two dimensions. A remarkable transition between weak localization and anti-localization isobserved as a function of doping and temperature and conclusions are drawn concerning the scattering phenomena governing electronic transport under different conditions in this material.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.