Theoretical study of attosecond dynamics in atoms and molecules using high-order harmonic generation as a self-probe

par François Risoud

Thèse de doctorat en Physique de la particule à la matière condensée

Sous la direction de Richard Taïeb.

Soutenue le 21-07-2016

à Paris 6 , dans le cadre de École doctorale Physique en Île-de-France (Paris) , en partenariat avec Laboratoire de Chimie Physique - Matière et Rayonnement (laboratoire) .

Le jury était composé de Olga Smirnova, Éric Charron, Rodolphe Vuilleumier, Yann Mairesse, Paul-Antoine Hervieux.

  • Titre traduit

    Etude théorique de la dynamique attoseconde dans les atomes et les molécules en utilisant la génération d'harmoniques d'ordres élevés comme auto-sonde


  • Résumé

    Dans cette thèse, j'ai étudié théoriquement l'interaction d'atomes et de molécules avec des impulsions laser brèves, intenses et basse-fréquences. En insistant sur la phase spectrale, nous utilisons la génération d'harmoniques d'ordres élevés comme processus auto-sonde pour étudier les dynamiques attoseconde. Nous résolvons l'équation de Schrödinger avec des modèles simples, numériquement ou en utilisant une théorie semi-analytique, nous permettant ainsi d'obtenir des informations approfondies sur les processus physiques mis en jeu, à travers des explications intuitives, tout en gardant une propension prédictive. Avec des outils développés pour analyser nos résultats numériques, nous étudions d'abord la dynamique d'ionisation dans une molécule modèle telle que N2. Puis, en réexaminant les interférences à deux centres, nous mettons au jour un comportement très intéressant, lié à l'habillage de l'état fondamental par le laser, et confirmé par des développements analytiques. Nous prédisons la possibilité d'observer ce phénomène expérimentalement par l'intermédiaire des interférences de chemins quantiques. Enfin, nous étudions les effets de la vibration des noyaux dans les molécules diatomiques en couplant le mouvement des électrons avec celui des noyaux. Nous montrons que pour de telles impulsions laser, l'excitation vibrationnelle de la molécule neutre peut être induite par effet Raman. Nous invalidons alors une théorie non corrélée, nommée Lochfraß, qui base son interprétation sur la dépendance du rendement d'ionisation avec la distance internucléaire. Enfin, nous proposons de prolonger à un modèle analytique standard la notion de potentiel d'ionisation dans les molécules.


  • Résumé

    In this thesis, I studied theoretically atoms and molecules interacting with a short, low-frequency and intense laser pulse, in the typical regime of high-order harmonic generation (HHG). We use HHG as a self-probe process to examine electronic and nuclear dynamics on the attosecond scale with Ångström resolution, insisting on the spectral phase. By using simple models, we are able to solve extensively the time-dependent Schrödinger equation, either numerically or with the Strong Field Approximation (SFA). Our models give us valuable physical insights on the underlying dynamical processes and intuitive explanations while keeping a predictive propensity. With efficient tools developed to analyze our numerical results, we first investigate the ionization dynamics through a shape resonance in a model molecule such as N2. Secondly, we take another look at two-center interferences, and uncover a very interesting behavior which is linked to the dressing of the electronic ground-state by the laser field. It is indeed confirmed by additional developments of molecular SFA. We predict that this behavior can be observed experimentally using quantum path interferences. Finally, we examine the effect of nuclear vibration in diatomic molecules by coupling consistently electronic and nuclear motions. Our results show that with short pulses, nuclear motion in the neutral molecule can be triggered by Raman effect. Thus, we invalidate an uncorrelated theory, so called Lochfraß, which focuses on the dependence of the ionization yield with internuclear distance as an explanation. Lastly, we question the extension within SFA of the notion of ionization potential in molecules.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Pierre et Marie Curie. Bibliothèque Universitaire Pierre et Marie Curie. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.