Inférence pour les modèles statistiques mal spécifiés, application à une étude sur les facteurs pronostiques dans le cancer du sein

par Roxane Duroux

Thèse de doctorat en Statistiques

Sous la direction de John O'Quigley.

Soutenue le 21-09-2016

à Paris 6 , dans le cadre de École doctorale de Sciences mathématiques de Paris Centre (Paris) , en partenariat avec Laboratoire de Statistique Théorique et Appliquée (laboratoire) .

Le jury était composé de Jacques Bénichou, Michel Broniatowski, Philippe Flandre.


  • Résumé

    Cette thèse est consacrée à l'inférence de certains modèles statistiques mal spécifiés. Chaque résultat obtenu trouve son application dans une étude sur les facteurs pronostiques dans le cancer du sein, grâce à des données collectées par l'Institut Curie. Dans un premier temps, nous nous intéressons au modèle à risques non proportionnels, et exploitons la connaissance de la survie marginale du temps de décès. Ce modèle autorise la variation dans le temps du coefficient de régression, généralisant ainsi le modèle à hasards proportionnels. Dans un deuxième temps, nous étudions un modèle à hasards non proportionnels ayant un coefficient de régression constant par morceaux. Nous proposons une méthode d'inférence pour un modèle à un unique point de rupture, et une méthode d'estimation pour un modèle à plusieurs points de rupture. Dans un troisième temps, nous étudions l'influence du sous-échantillonnage sur la performance des forêts médianes et essayons de généraliser les résultats obtenus aux forêts aléatoires de survie à travers une application. Enfin, nous présentons un travail indépendant où nous développons une nouvelle méthode de recherche de doses, dans le cadre des essais cliniques de phase I à ordre partiel.

  • Titre traduit

    Inference for statistical misspecified models, application to a prognostic factors study for breast cancer


  • Résumé

    The thesis focuses on inference of statistical misspecified models. Every result finds its application in a prognostic factors study for breast cancer, thanks to the data collection of Institut Curie. We consider first non-proportional hazards models, and make use of the marginal survival of the failure time. This model allows a time-varying regression coefficient, and therefore generalizes the proportional hazards model. On a second time, we study step regression models. We propose an inference method for the changepoint of a two-step regression model, and an estimation method for a multiple-step regression model. Then, we study the influence of the subsampling rate on the performance of median forests and try to extend the results to random survival forests through an application. Finally, we present a new dose-finding method for phase I clinical trials, in case of partial ordering.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Pierre et Marie Curie. Bibliothèque Universitaire Pierre et Marie Curie. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.