Modulation of premotor circuits controlling locomotor activity by spinal GABAergic sensory neurons in zebrafish : connectivity mapping of an intraspinal sensory feedback circuit

par Kevin Fidelin

Thèse de doctorat en Neurosciences

Sous la direction de Claire Wyart.

Soutenue le 30-09-2016

à Paris 6 , dans le cadre de École doctorale Cerveau, cognition, comportement (Paris) , en partenariat avec Institut du Cerveau et de la Moëlle Epinière (laboratoire) .

Le jury était composé de Abdel El Manira, Alessandra Pierani, Daniel Zytnicki, Philippe Faure, Elena Dreosti.

  • Titre traduit

    Modulation des circuits spinaux pré-moteurs contrôlant l'activité locomotrice par des neurones sensoriels GABAergiques chez le poisson zèbre


  • Résumé

    Comprendre les mécanismes mis en place au sein du système nerveux pour générer des répertoires locomoteurs complexes reste l'un des grands défis des neurosciences systémiques. Le travail présenté dans ce manuscrit vise à comprendre comment les neurones de la moelle épinière contribuent à la production et à la modulation de l'activité locomotrice. Pour répondre à ce problème, nous utilisons le poisson-zèbre comme organisme modèle et avons développé de nouvelles approches génétiques et optiques afin de disséquer l'architecture du circuit formé par une classe de neurones sensoriels de la moelle et qui est conservée chez tous les vertébrés. Ces neurones sont appelés les neurones au contact du liquide céphalo-rachidien (Nc-LCR) et nous proposons de sonder leur(s) fonction(s) in vivo. Ces neurones sensoriels forment une interface unique entre le liquide céphalo-rachidien et le réseau de neurones impliqué dans le contrôle du mouvement dans la moelle épinière. Cependant, leur diagramme de connectivité demeure complètement inconnu. Afin de comprendre comment ces " Nc-LCR ou CSF-cNs " modulent la locomotion chez les vertébrés, nous avons développé un projet combinant des approches génétiques, électrophysiologiques, d'imagerie, et d'analyse du comportement, afin de cartographier le circuit qu'elles forment avec les neurones de la moelle épinière. Nos résultats montrent que les CSF-cNs projettent sur de nombreux éléments du centre générateur de rythme de la moelle. Notre approche révèle également la capacité des CSF-cNs à moduler la locomotion selon l'état dans lequel se trouve l'animal, une propriété caractéristique des circuits proprioceptifs dans la moelle épinière.


  • Résumé

    Understanding how the central nervous system generates motor sequences, coordinates limbs and body orientation in an ever-changing environment, while adapting to sensory cues remains a central question in the field of systems neuroscience. The work presented here aims to understand how local sensory neurons in the spinal cord contribute to the production and/ or the modulation of locomotor activity. We focused our work on a conserved class of spinal sensory neurons termed cerebrospinal fluid contacting neurons (CSF-cNs). These neurons lie at the interface between the CSF and spinal interneurons controlling motor output and represent an interesting yet poorly understood sensorimotor loop in the vertebrate spinal cord. However, the connectivity of CSF-cNs remains completely uncharacterized. To understand how CSF-cNs modulate locomotion in vertebrates, we combined genetics, imaging, optogenetics, electrophysiology, and behavior analysis to map the functional connectivity of these sensory neurons and test their function in the zebrafish larva. Our results demonstrate that CSF-cNs target several elements thought to be part of the locomotor central pattern generator in zebrafish, including glutamatergic spinal neurons involved in slow and fast swimming. We show that CSF-cNs can modulate the duration and occurrence of spontaneous locomotor events in a state dependent manner and tune the frequency of evoked fast escape responses. Altogether our work dissecting sensorimotor integration in the spinal cord bridged single cell function in vivo to behavior in zebrafish and should contribute to a better understanding of the role of sensory feedback during locomotion in vertebrates.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Pierre et Marie Curie. Bibliothèque Universitaire Pierre et Marie Curie. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.