Arithmétrique en différentes caractéristiques

par Pierre Jalinière

Thèse de doctorat en Mathématiques

Sous la direction de Ariane Mézard.

Soutenue le 04-07-2016

à Paris 6 , dans le cadre de École doctorale de Sciences mathématiques de Paris Centre (Paris) , en partenariat avec Institut de Mathématiques de Jussieu - Paris Rive Gauche (laboratoire) .

Le jury était composé de Laurent Clozel, Mladen Dimitrov, Pierre-Vincent Koseleff, Reynald Lercier, Fabrice Rouillier, Jean-Marc Couveignes.


  • Résumé

    Cette thèse comporte trois volets indépendants en cryptographie, en théorie de Hodge p-adique et en analyse numérique.La première partie consiste en l'étude d'algorithmes performants de résolution du logarithme discret. La résolution du logarithme discret consiste à déterminer les exposants d'une famille fixée de générateurs dans la décomposition des éléments du groupe. Dans le cas des groupes multiplicatifs d'un corps fini, la complexité des calculs dépendent de la taille - dite de petite, moyenne ou grande caractéristique- de la caractéristique du corps dans lesquels on effectue les calculs.Nous présentons différents algorithmes dans chacune des caractéristiques (petite, moyenne ou grande) en précisant quel est l'algorithme le plus performant dans chacun des cas.La seconde partie s'inscrit dans le contexte du programme de Langlands p-adique. Nous présentons une généralisation de l'un des outils centraux de la théorie, les modules de Breuil-Kisin, en plusieurs variables La troisième partie est un travail effectué en collaboration avec Victor Vilaça Da Rocha, Roberta Tittarelli, Richard Sambilason Rafefimanana, Victor Michel-Dansac et Benjamin Couéraud. Il a été initié lors de la treizième SEME, Semaine d'Etudes Maths Entreprises organisée par l'Agence pour les Mathématiques en Interaction avec l'Entreprise et la Société (AMIES).L'Institut Français du Pétrole et des Energies Nouvelles nous a soumis un problème de résolution numérique d'un système d'équations modélisant la désorption d'un gaz de schiste en une dimension.Nous proposons plusieurs schémas du premier ordre recourant à un traitement implicite de l'équation de relaxation. Enfin nous présentons un schéma numérique d'ordre deux en temps.

  • Titre traduit

    Arithmetic in different characteristics


  • Résumé

    In this thesis, we present three independent works in cryptography, p-adic Hodge theory and Numerical analysis.First we present several algorithms to solve the discrete logarithm in several characteristic finite fields. We are particularly interested with the determination of classes of polynomial functions with small coefficients.The second part of the thesis deals with one of the major object of p-adic Hodge theory. We present a multi-variable version of Breuil-Kisin modules where the Lubin-Tate tower replaces the classical cyclotomic tower. He third proposes two numerical schemes for the modelisation of desorption of shale gaz.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Pierre et Marie Curie. Bibliothèque Universitaire Pierre et Marie Curie. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.