Contributions à la théorie des jeux : valeur asymptotique des jeux dépendant de la fréquence et décompositions des jeux finis

par Nikolaos Pnevmatikos

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Joseph Abdou.

Soutenue le 01-07-2016

à Paris 1 , dans le cadre de École doctorale d'Économie (Paris) , en partenariat avec Centre d'économie de la Sorbonne (Paris) (équipe de recherche) et de Centre d'économie de la Sorbonne (Paris) (laboratoire) .

Le président du jury était Bernard de Meyer.

Le jury était composé de Joseph Abdou, Marco Scarsini, Hans Keiding.

Les rapporteurs étaient Tristan Tomala, Georges Zaccour.


  • Résumé

    Les problèmes abordés et les résultats obtenus dans cette thèse se divisent en deux parties. La première concerne l'étude de la valeur asymptotique de jeux dépendant de la fréquence (jeux-FD). Nous introduisons un jeu différentiel associé au jeu-FD dont la valeur se ramène à une équation de Hamilton-Jacobi-Bellman-lsaacs. En affrontant un problème d'irrégularité à l'origine, nous prouvons l’existence de la valeur du jeu différentiel sur [0.1 ] et ceci nous permet de prouver que la valeur du jeu FD converge vers la valeur du jeu continu qui débute à l'état initial 0. Dans la deuxième partie, l'objectif fondamental est la décomposition de l'espace des jeux finis en sous espaces des jeux adéquats et plus faciles à étudier vu que leurs équilibres sont distingués. Cette partie est divisée en deux chapitres. Dans le premier chapitre, nous établissons une décomposition canonique de tout jeu arbitraire fini en trois composantes et nous caractérisons les équilibres approximatifs d'un jeu donné par les équilibres uniformément mixtes et en stratégies dominantes lesquels apparaissent sur ses composantes. Dans le deuxième chapitre, nous introduisons sur l'espace des jeux finis une famille de produits scalaires et nous définissons la classe des jeux harmoniques relativement au produit scalaire choisi dans cette famille. Inspiré par la décomposition de Helmholtz-Hodge appliquée aux jeux par Candogan et al. (2011), nous établissons une décomposition orthogonale de l'espace des jeux finis, par rapport au produit scalaire choisi, en les sous espaces des jeux potentiels, des jeux harmoniques et des jeux non­stratégiques c nous généralisons les résultats de Candogan et al. (2011).

  • Titre traduit

    Contributions in game theory : asymptotic value in frequency dependant games and decompositions of finite games


  • Résumé

    The problems addressed and results obtained in this thesis are divided in two parts. The first part concerns the study of the asymptotic value of frequency-dependent games (FD-games). We introduce a differential game associated to the FD-game whose value leads to a Hamilton-Jacob-Bellman-lsaacs equation. Although an irregularity occurs at the origin, we prove existence of the value in the differential game played over [0.1 ], which allows to prove that the value of the FD-game, as the number of stages tend to infinity, converges to the value of the continuous-time game with initial state 0. ln the second part, the objective is the decomposition of the space of finite games in subspaces of suitable games which admit disguised equilibria and more tractable analysis. This part is divided in two chapters. In the first chapter, we establish a canonical decomposition of an arbitrary game into three components and we characterize the approximate equilibria of a given game in terms of the uniform equilibrium and the equilibrium in dominant strategies that appear in its components. In the second part, we introduce a family of inner products in the space of finite games and we define the class of harmonic games relatively to the chosen inner product. Inspired of the Helmholtz-Hodge decomposition applied to games by Candogan et al (2011 ), we establish an orthogonal decomposition of the space of finite games with respect to the chosen inner product, in the subspaces of potential harmonic and non-strategic games and we further generalize several results of Candogan et al (2011).


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Bibliothèque Cujas de droit et de sciences économiques (Paris).
  • Bibliothèque : Bibliothèque électronique de l'université Paris 1 Panthéon-Sorbonne.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.