Un nouvel horizon pour la recommandation : intégration de la dimension spatiale dans l'aide à la décision

par Rajani Chulyadyo

Thèse de doctorat en Informatique et applications

Sous la direction de Philippe Leray.

Le président du jury était Colin De La Higuera.

Le jury était composé de Armelle Brun.

Les rapporteurs étaient Christophe Gonzalez, Nicolas Lachiche.


  • Résumé

    De nos jours, il est très fréquent de représenter un système en termes de relations entre objets. Parmi les applications les plus courantes de telles données relationnelles, se situent les systèmes de recommandation (RS), qui traitent généralement des relations entre utilisateurs et items à recommander. Les modèles relationnels probabilistes (PRM) sont un bon choix pour la modélisation des dépendances probabilistes entre ces objets. Une tendance croissante dans les systèmes de recommandation est de rajouter une dimension spatiale à ces objets, que ce soient les utilisateurs, ou les items. Cette thèse porte sur l’intersection peu explorée de trois domaines connexes - modèles probabilistes relationnels (et comment apprendre les dépendances probabilistes entre attributs d’une base de données relationnelles), les données spatiales et les systèmes de recommandation. La première contribution de cette thèse porte sur le chevauchement des PRM et des systèmes de recommandation. Nous avons proposé un modèle de recommandation à base de PRM capable de faire des recommandations à partir des requêtes des utilisateurs, mais sans profils d’utilisateurs, traitant ainsi le problème du démarrage à froid. Notre deuxième contribution aborde le problème de l’intégration de l’information spatiale dans un PRM.

  • Titre traduit

    A new horizon for the recommendation : integration of spatial dimensions to aid decision making


  • Résumé

    Nowadays it is very common to represent a system in terms of relationships between objects. One of the common applications of such relational data is Recommender System (RS), which usually deals with the relationships between users and items. Probabilistic Relational Models (PRMs) can be a good choice for modeling probabilistic dependencies between such objects. A growing trend in recommender systems is to add spatial dimensions to these objects, and make recommendations considering the location of users and/or items. This thesis deals with the (not much explored) intersection of three related fields – Probabilistic Relational Models (a method to learn probabilistic models from relational data), spatial data (often used in relational settings), and recommender systems (which deal with relational data). The first contribution of this thesis deals with the overlapping of PRM and recommender systems. We have proposed a PRM-based personalized recommender system that is capable of making recommendations from user queries in cold-start systems without user profiles. Our second contribution addresses the problem of integrating spatial information into a PRM.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université de Nantes. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.