Approche EM pour modèles multi-blocs à facteurs à une équation structurelle

par Myriam Tami

Thèse de doctorat en Biostatistique

Sous la direction de Christian Lavergne et de Xavier Bry.

Soutenue le 12-07-2016

à Montpellier , dans le cadre de I2S - Information, Structures, Systèmes , en partenariat avec Institut Montpelliérain Alexander Grothendieck (Montpellier) (laboratoire) .

Le président du jury était Benoîte, de Saporta.

Le jury était composé de Christian Lavergne, Xavier Bry, Benoîte, de Saporta, Gilbert Saporta, Jérôme Saracco, Laura Trinchera.

Les rapporteurs étaient Gilbert Saporta, Jérôme Saracco.


  • Résumé

    Les modèles d'équations structurelles à variables latentes permettent de modéliser des relations entre des variables observables et non observables. Les deux paradigmes actuels d'estimation de ces modèles sont les méthodes de moindres carrés partiels sur composantes et l'analyse de la structure de covariance. Dans ce travail, après avoir décrit les deux principales méthodes d'estimation que sont PLS et LISREL, nous proposons une approche d'estimation fondée sur la maximisation par algorithme EM de la vraisemblance globale d'un modèle à facteurs latents et à une équation structurelle. Nous en étudions les performances sur des données simulées et nous montrons, via une application sur des données réelles environnementales, comment construire pratiquement un modèle et en évaluer la qualité. Enfin, nous appliquons l'approche développée dans le contexte d'un essai clinique en cancérologie pour l'étude de données longitudinales de qualité de vie. Nous montrons que par la réduction efficace de la dimension des données, l'approche EM simplifie l'analyse longitudinale de la qualité de vie en évitant les tests multiples. Ainsi, elle contribue à faciliter l'évaluation du bénéfice clinique d'un traitement.

  • Titre traduit

    EM estimation of a structural equation model


  • Résumé

    Structural equation models enable the modeling of interactions between observed variables and latent ones. The two leading estimation methods are partial least squares on components and covariance-structure analysis. In this work, we first describe the PLS and LISREL methods and, then, we propose an estimation method using the EM algorithm in order to maximize the likelihood of a structural equation model with latent factors. Through a simulation study, we investigate how fast and accurate the method is, and thanks to an application to real environmental data, we show how one can handly construct a model or evaluate its quality. Finally, in the context of oncology, we apply the EM approach on health-related quality-of-life data. We show that it simplifies the longitudinal analysis of quality-of-life and helps evaluating the clinical benefit of a treatment.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Bibliothèque interuniversitaire. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.