Modélisation, détection et classification d'objets urbains à partir d’images photographiques aériennes

par Jérôme Pasquet

Thèse de doctorat en Informatique

Sous la direction de Marc Chaumont.

Le président du jury était Pascal Poncelet.

Le jury était composé de Marc Chaumont, Vincent Charvillat, Christophe Garcia, Gérard Subsol, Matthieu Cord.

Les rapporteurs étaient Vincent Charvillat, Christophe Garcia.


  • Résumé

    Cette thèse aborde des problèmes liés à la localisation et reconnaissance d'objets urbains dans des images aériennes de très haute définition. Les objets urbains se caractérisent par une représentation très variable en terme de forme, texture et couleur. De plus, ils sont présents de multiples fois sur les images à analyser et peuvent être collés les uns aux autres. Pour effectuer la localisation et reconnaissance automatiquement des différents objets nous proposons d'utiliser des approches d'apprentissage supervisé. De part leurs caractéristiques, les objets urbains sont difficilement détectables et les approches classiques de détections n'offrent pas de performances satisfaisantes. Nous avons proposé l'utilisation d'un réseau de séparateurs à vaste marge (SVM) afin de mieux fusionner les informations issues des différentes résolutions et donc d'améliorer la représentativité de l'objet urbain. L'utilisation de réseau de SVM permet d'améliorer les performances mais à un coût calculatoire important. Nous avons alors proposé d'utiliser un chemin d'activation permettant de réduire la complexité sans perdre en efficacité. Ce chemin va activer le réseau de manière séquentielle et stoppera l'exploration lorsque la probabilité de détection d'un objet est importante. Dans le cas d'une localisation basée sur l'extraction de caractéristiques puis la classification, la réduction calculatoire est d'un facteur cinq. Par la suite, nous avons montré que nous pouvons combiner le réseau de SVM avec les cartes de caractéristiques issues de réseaux de neurones convolutifs. Cette architecture combinée avec le chemin d'activation permet une réduction théorique du coût d'activation pouvant aller jusqu'à 97% avec un gain de performances d'environ 8% sur les données utilisées. Les méthodes développées ont pour objectif d'être intégrées dans un logiciel de la société Berger-Levrault afin de faciliter et d'améliorer la gestion de cadastre dans les collectivités locales.

  • Titre traduit

    Modeling, detection and classification of urban objects from aerial images


  • Résumé

    This thesis deals with the problems of automatic localization and recognition of urban objects in high-definition aerial images. Urban object detection is a challenging problem because they vary in appearance, color and size. Moreover, there are many urban objects which can be very close to each other in an image. The localization and the automatic recognition of different urban objects, considering these characteristics, are very difficult to detect and classical image processing algorithms do not lead to good performances. We propose then to use the supervised learning approach. In a first time, we have built a Support Vector Machine (SVM) network to merge different resolutions in an efficient way. However, this method highly increases the computational cost. We then proposed to use an “activation path” which reduces the complexity without any loss of efficiency. This path activates sequentially the network and stops the exploration when an urban object has a high probability of detection. In the case of localizations based on a feature extraction step followed by a classification step, this may reduce by a factor 5 the computational cost. Thereafter, we show that we can combine an SVM network with feature maps which have been extracted by a Convolutional Neural Network. Such an architecture associated with the activation path increased the performance by 8% on our database while giving a theoretical reduction of the computational costs up to 97%. We implemented all these new methods in order to be integrated in the software framework of Berger-Levrault company, to improve land registry for local communities.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Bibliothèque interuniversitaire. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.