Biocompatible nanostructured multilayer systems

par Angelica Yuliana Jara Olivares

Thèse de doctorat en Chimie et physico-chimie des matériaux

Sous la direction de Nicole Frety et de Gema Gonzalez.

Soutenue le 12-12-2016

à Montpellier en cotutelle avec l'Universidad central de Venezuela , dans le cadre de Sciences Chimiques Balard , en partenariat avec Institut Charles Gerhardt (Montpellier) (laboratoire) .

Le président du jury était Carlos Rojas.

Le jury était composé de Nicole Frety, Gema Gonzalez, Carlos Rojas, Christophe Tromas, Joaquin Lira, Pascale Gall-Borrut, Eric Plaza, Sonia Camero.

Les rapporteurs étaient Christophe Tromas, Joaquin Lira.

  • Titre traduit

    Systèmes multicouches nanostructurés biocompatibles


  • Résumé

    Le domaine des couches minces fait l’objet d’un grand nombre d’études en raison du vaste champ d’applications. La modification de surfaces par des revêtements sous forme de couches minces a ainsi été étudiée dans le domaine biomédical afin d’améliorer les propriétés de bioactivité et biocompatibilité des matériaux. Des couches minces monocouches, Ta et TaN, ainsi que bi-couches, TaN/Ta, ont été déposées sur des substrats de verre, d’acier, SS316LVM, et de titane par pulvérisation cathodique. La caractérisation des couches par diffraction des rayons X (XRD and GIXRD) a montré que la nature du substrat a une forte influence sur la nature de la phase, Ta, formée. La formation de la phase ordonnée, Ta-a, est obtenue sur le substrat acier alors que la phase désordonnée métastable, Ta-b, se forme sur le substrat titane. Quant à la phase TaN, elle cristallise sous la forme cubique de type NaCl (Fm3m) sur les différents substrats mais présente une orientation préférentielle selon le plan (200) dans le cas du substrat verre. L’étude de la composition chimique par XPS a montré que les couches sont également constituées de phases oxydes, telles que TaxOy et TaOxNy, en raison de la forte affinité du tantale avec l’oxygène. Les observations en microscopie électronique à balayage ont mis en évidence une croissance colonnaire des couches avec une microstructure de surface dite de type « chou-fleur ». Cette microstructure est caractéristique du procédé de pulvérisation cathodique et correspond à la microstructure dite de zone I prédite par le modèle de Thornton, dérivé du modèle de Movchan and Demchishin. Des méthodes biomimétiques ont été utilisées afin d’évaluer la bioactivité des couches minces étudiées. Dans ce but, les échantillons ont été immergés dans un fluide biologique (SBF, Simulated Body Fluid) afin de promouvoir le dépôt de phosphate de calcium. Après étude de fluides de compositions différentes, le fluide SBF 1.5, enrichi en ions Ca2 + and PO43-, a été choisi. Les analyses par XRD, FTIR et XPS ont mis en évidence la formation en surface d’une couche cristalline d’hydroxyapatite quelle que soit la nature des sous-couches, Ta, TaN ou TaN/Ta, après immersion de trois semaines. Le mécanisme de dépôt d’hydroxyapatite implique la formation de liaisons Ta-OH par hydratation de la couche passive d’oxyde de tantale présente en surface.Pour étudier les propriétés de biocompatibilité, les échantillons ont été placés en milieux de culture contenant des ostéoblastes. Tous les matériaux observés présentent une adhésion des cellules en surface avec la formation de filipodia. L’un des principaux problèmes des implants osseux est la formation en surface d’un biofilm du à la colonisation de bactéries. Des essais en milieu bactériologique ont donc été réalisés avec des bactéries de type Pseudomonas Aeruginosa, agents pathogènes très fréquemment observés lors d’opérations chirurgicales. Ces essais expérimentaux ont permis de déterminer la réaction des différents matériaux étudiés au contact de ces bactéries. Il s’est avéré que l’adjonction de couches de tantale permet de réduire fortement la formation de bio-films en comparaison avec des couches de titane, qui présentent une croissance importante de bio-films à base de P. aeruginosa.Des films minces de silice ont également été étudiés en tant qu’agents bactéricides. Ces études ont montré l’absence de colonies microbiennes et l’absence de la formation de bio-films en surface.


  • Résumé

    Thin films have been the subject of intense study in materials because they offer multiple applications of great interest. Various surfaces have been modified with thin films or coatings to study how to improve their bioactivity and biocompatibility properties to form a biomaterial. Thin films of Ta, TaN and Ta/TaN were deposited on glass substrates, metallic substrates, SS316LVM and Ti, by RF Sputtering technique. By High angle XRD and GIXRD it was found that the nature of the substrate has a strong influence on the Ta phase formed. Formation of ordered α-Ta phase was obtained on SS316LVM, but the disordered metastable β-Ta phase was formed on Ti and on TaN substrates. While TaN crystallizes in the cubic phase (Fm3m) NaCl type on metallic substrates but shows a preferential orientation in the (200) plane on the glass substrate. The chemical analysis of the surfaces by XPS reveals that in the surfaces of the deposited layers are several oxidized chemical species such as Ta2O5, TaOxNy TaxOy due to Ta is a very reactive metal and is readily oxidized even at low partial pressures as for our synthesis conditions. Characterization by Scanning Electron Microscopy reveals that the microstructure of the films was homogeneous with small clusters size and a cauliflower type, also the films exhibit the typical columnar growth for films deposited by PVD techniques, following the growth of zone I described by the model developed by Movchan and Demchisin and Thornton. Biomimetic method was used to evaluate the bioactivity in all surfaces which involves immersing the thin films in simulated body fluid (SBF) to promote the deposition of calcium phosphates, two concentrations were used to assess qualitatively which could deposit the stoichiometric calcium phosphate hydroxyapatite and make it more efficiently. The SBF 1.5 enriched in Ca2 + and PO43- ions was chosen. A new layer was deposited upon the surfaces and it was determined by XRD, FTIR and XPS that crystalline Hydroxyapatite phase was formed, so that all our surfaces have the ability to form apatite spontaneously after an immersion period of three weeks. The mechanism of deposition of HAp involves the formation of small amounts of Ta-OH groups by a hydration of the tantalum oxide passive layer on its surface. To study biocompatibility properties, films were placed in cell culture containing osteoblasts, all surfaces exhibit cell adhesion and formation of filipodia. Whereas one of the main problems of bone implants is biofilm formation caused by bacterial colonization, tests were made with the bacterium Pseudomonas Aeruginosa, which is a major human opportunistic pathogens in surgical procedures, causing infections in soft tissue, bones, among others. This assay allowed us to know how the different surfaces react when exposed to this bacteria, Titanium had greater growth of P. aeruginosa and biofilm formation in all periods of study, while Ta surfaces showed the lowest activity of biofilm formation. Mesoporous silica thin films where used as bactericidal agents, and it was found by MEB that no microbial colonization or biofilm formation occur on these surfaces.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Bibliothèque interuniversitaire. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.