Classification par réseaux de neurones dans le cadre de la scattérométrie ellipsométrique

par Sabit Fawzi Philippe Zaki

Thèse de doctorat en Optique, Photonique, Hyperfréquences

Sous la direction de Bernard Bayard.

Soutenue le 12-12-2016

à Lyon , dans le cadre de École doctorale Sciences Ingénierie Santé (Saint-Etienne) , en partenariat avec Université Jean Monnet (Saint-Étienne) (Etablissement opérateur d'inscription) et de Laboratoire Hubert Curien (Saint-Etienne) (laboratoire) .

Le président du jury était Cécile Gourgon.

Le jury était composé de Bernard Bayard, Gérard Granet, Stéphane Robert, Amir Moungache.

Les rapporteurs étaient Cécile Gourgon, Gérard Granet.


  • Résumé

    La miniaturisation des composants impose à l’industrie de la micro-électronique de trouver des techniques de caractérisation fiables rapides et si possible à moindre coût. Les méthodes optiques telles que la scattérométrie se présentent aujourd’hui comme des alternatives prometteuses répondant à cette problématique de caractérisation. Toutefois, l’ensemble des méthodes scattérométriques nécessitent un certain nombre d’hypothèses pour assurer la résolution d’un problème inverse et notamment la connaissance de la forme géométrique de la structure à tester. Le modèle de structure supposé conditionne la qualité même de la caractérisation. Dans cette thèse, nous proposons l’utilisation des réseaux de neurones comme outils d’aide à la décision en amont de toute méthode de caractérisation. Nous avons validé l’utilisation des réseaux de neurones dans le cadre de la reconnaissance des formes géométriques de l’échantillon à tester par la signature optique utilisée dans toute étape de caractérisation scattérométrique. Tout d’abord, le cas d’un défaut lithographique particulier lié à la présence d’une couche résiduelle de résine au fond des sillons est étudié. Ensuite, nous effectuons une analyse de détection de défaut de modèle utilisé dans la résolution du problème inverse. Enfin nous relatons les résultats obtenus dans le cadre de la sélection de modèles géométriques par réseaux de neurones en amont d’un processus classique de caractérisation scattérométrique. Ce travail de thèse a montré que les réseaux de neurones peuvent bien répondre à la problématique de classification en scattérométrie ellipsométrique et que l’utilisation de ces derniers peut améliorer cette technique optique de caractérisation

  • Titre traduit

    Neural classification in ellipsometric scatterometry


  • Résumé

    The miniaturization of components in the micro-electronics industry involves the need of fast reliable technique of characterization with lower cost. Optical methods such as scatterometry are today promising alternative to this technological need. However, scatterometric method requires a certain number of hypothesis to ensure the resolution of an inverse problem, in particular the knowledge of the geometrical shape of the structure under test. The assumed model of the structure determines the quality of the characterization. In this thesis, we propose the use of neural networks as decision-making tools upstream of any characterization method. We validated the use of neural networks in the context of recognition of the geometrical shapes of the sample under testing by the use of optical signature in any scatterometric characterization process. First, the case of lithographic defect due to the presence of a resist residual layer at the bottom of the grooves is studied. Then, we carry out an analysis of model defect in the inverse problem resolution. Finally, we report results in the context of selection of geometric models by neural networks upstream of a classical scatterometric characterization process. This thesis has demonstrated that neural networks can well answer the problem of classification in ellipsometric scatterometry and their use can improve this optical characterization technique


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Jean Monnet. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.