Scheduling and Dynamic Provisioning for Energy Proportional Heterogeneous Infrastructures

par Violaine Villebonnet

Thèse de doctorat en Informatique

Sous la direction de Laurent Lefèvre et de Jean-Marc Pierson.

Soutenue le 06-12-2016

à Lyon , dans le cadre de École Doctorale d'Informatique et Mathématiques (Lyon) , en partenariat avec École normale supérieure de Lyon (établissement opérateur d'inscription) , Laboratoire de l'informatique du parallélisme (Lyon) (laboratoire) , Institut de Recherche en Informatique de Toulouse (laboratoire) et de Algorithms and Software Architectures for Distributed and HPC Platforms (laboratoire) .

Le président du jury était Christine Morin.

Le jury était composé de Laurent Lefèvre, Jean-Marc Pierson, Christine Morin, Helen Karatza, Domenico Talia, Véronika Rehn-Sonigo.

Les rapporteurs étaient Helen Karatza, Domenico Talia.

  • Titre traduit

    Ordonnancement et Allocation Dynamique de Ressources pour des Infrastructures Hétérogènes à Consommation Energétique Proportionnelle


  • Résumé

    La consommation énergétique des centres de calculs et de données, aussi appelés « data centers », représentait 2% de la consommation mondiale d'électricité en 2012. Leur nombre est en augmentation et suit l'évolution croissante des objets connectés, services, applications, et des données collectées. Ces infrastructures, très consommatrices en énergie, sont souvent sur-dimensionnées et les serveurs en permanence allumés. Quand la charge de travail est faible, l'électricité consommée par les serveurs inutilisés est gaspillée, et un serveur inactif peut consommer jusqu'à la moitié de sa consommation maximale. Cette thèse s'attaque à ce problème en concevant un data center ayant une consommation énergétique proportionnelle à sa charge. Nous proposons un data center hétérogène, nommé BML pour « Big, Medium, Little », composé de plusieurs types de machines : des processeurs très basse consommation et des serveurs classiques. L'idée est de profiter de leurs différentes caractéristiques de performance, consommation, et réactivité d'allumage, pour adapter dynamiquement la composition de l'infrastructure aux évolutions de charge. Nous décrivons une méthode générique pour calculer les combinaisons de machines les plus énergétiquement efficaces à partir de données de profilage de performance et d'énergie acquis expérimentalement considérant une application cible, ayant une charge variable au cours du temps, dans notre cas un serveur web.Nous avons développé deux algorithmes prenant des décisions de reconfiguration de l'infrastructure et de placement des instances de l'application en fonction de la charge future. Les différentes temporalités des actions de reconfiguration ainsi que leur coûts énergétiques sont pris en compte dans le processus de décision. Nous montrons par simulations que nous atteignons une consommation proportionnelle à la charge, et faisons d'importantes économies d'énergie par rapport aux gestions classiques des data centers.


  • Résumé

    The increasing number of data centers raises serious concerns regarding their energy consumption. These infrastructures are often over-provisioned and contain servers that are not fully utilized. The problem is that inactive servers can consume as high as 50% of their peak power consumption.This thesis proposes a novel approach for building data centers so that their energy consumption is proportional to the actual load. We propose an original infrastructure named BML for "Big, Medium, Little", composed of heterogeneous computing resources : from low power processors to classical servers. The idea is to take advantage of their different characteristics in terms of energy consumption, performance, and switch on reactivity to adjust the composition of the infrastructure according to the load evolutions. We define a generic methodology to compute the most energy proportional combinations of machines based on hardware profiling data.We focus on web applications whose load varies over time and design a scheduler that dynamically reconfigures the infrastructure, with application migrations and machines switch on and off, to minimize the infrastructure energy consumption according to the current application requirements.We have developed two different dynamic provisioning algorithms which take into account the time and energy overheads of the different reconfiguration actions in the decision process. We demonstrate through simulations based on experimentally acquired hardware profiles that we achieve important energy savings compared to classical data center infrastructures and management.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Bibliothèque Diderot . Bibliothèque électronique (Lyon).
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.