Multigrid methods for 3D composite material simulation and crack propagation modelling based on a phase field method

par Hanfeng Gu

Thèse de doctorat en Génie mécanique

Sous la direction de Antonius A. Lubrecht.

Soutenue le 29-09-2016

à Lyon , dans le cadre de Ecole Doctorale Mecanique, Energetique, Genie Civil, Acoustique (MEGA) (Villeurbanne) , en partenariat avec Institut national des sciences appliquées de Lyon (Lyon) (établissement opérateur d'inscription) , LaMCoS - Laboratoire de Mécanique des Contacts et des Structures, UMR 5259 (Lyon, INSA) (laboratoire) et de Laboratoire de Mécanique des Contacts et des Structures [Villeurbanne] / LaMCoS (laboratoire) .

Le président du jury était Antoine Chateauminois.

Le jury était composé de Antonius A. Lubrecht, Antoine Chateauminois, Hélène Dumontet, Cornelis H. Venner, Marie-Christine Baietto, Daniele Dini, Julien Rethore, Philippe Sainsot.

Les rapporteurs étaient Hélène Dumontet, Cornelis H. Venner.

  • Titre traduit

    Méthode multigrille pour la simulation du comportement de matériaux et la rupture quasi-fragile


  • Résumé

    Avec le développement des techniques d’imagerie telles que la tomographie par rayons X au cours des dernières années, il est maintenant possible de prendre en compte la microstructure réelle dans les simulations des matériaux composites. Cependant, la complexité des composites tels que des fibres inclinées et brisées, les vides, exige un grand nombre des données à l’échelle microscopique pour décrire ces détails et amène ainsi des problèmes difficiles en termes de temps de calcul et de mémoire lors de l’utilisation de méthodes de simulation traditionnelles comme la méthode Eléments Finis. Ces problèmes deviennent encore plus sérieux dans la simulation de l’endommagement, comme la propagation des fissures. Par conséquent, il est nécessaire d’étudier des méthodes numériques plus efficaces pour ce genre de problèmes à grande échelle. La méthode Multigrille (MG) est une méthode qui peut être efficace parce que son coût de calcul est proportionnel au nombre d’inconnues. Dans cette thèse, un solveur de MG efficace pour ces problèmes est développé. La méthode MG est appliquée pour résoudre le problème d’élasticité statique basé sur l’équation de Lamé et aussi le problème de la propagation de fissures basé sur une méthode de champ de phase. La précision des solutions MG est validée par une solution analytique classique d’Eshelby. Ensuite, le solveur MG est développé pour étudier le processus d’homogénéisation des composites et ses solutions sont comparées avec des solutions existantes de la littérature. Après cela, le programme de calcul MG est appliqué pour simuler l’effet de bord libre dans les matériaux composites stratifiés. Une structure stratifiée réelle donnée par tomographie X est d’abord simulé. Enfin, le solveur MG est encore développé, combinant une méthode de champ de phase, pour simuler la rupture quasi-fragile. La méthode MG présente l’efficacité à la fois en temps de calcul et en mémoire pour résoudre les problèmes ci-dessus.


  • Résumé

    With the development of imaging techniques like X-Ray tomography in recent years, it is now possible to take into account the microscopic details in composite material simulations. However, the composites' complex nature such as inclined and broken fibers, voids, requires rich data to describe these details and thus brings challenging problems in terms of computational time and memory when using traditional simulation methods like the Finite Element Method. These problems become even more severe in simulating failure processes like crack propagation. Hence, it is necessary to investigate more efficient numerical methods for this kind of large scale problems. The MultiGrid (MG) method is such an efficient method, as its computational cost is proportional to the number of unknowns. In this thesis, an efficient MG solver is developed for these problems. The MG method is applied to solve the static elasticity problem based on the Lame's equation and the crack propagation problem based on a phase field method. The accuracy of the MG solutions is validated with Eshelby's classic analytic solution. Then the MG solver is developed to investigate the composite homogenization process and its solutions are compared with existing solutions in the literature. After that, the MG solver is applied to simulate the free-edge effect in laminated composites. A real laminated structure using X-Ray tomography is first simulated. At last, the MG solver is further developed, combined with a phase field method, to simulate the brittle crack propagation. The MG method demonstrates its efficiency both in time and memory dimensions for solving the above problems.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Autre version

Cette thèse a donné lieu à une publication en 2016 par SCD DocInsa à Villeurbanne

Multigrid methods for 3D composite material simulation and crack propagation modelling based on a phase field method


Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Institut national des sciences appliquées (Villeurbanne, Rhône). Service Commun de la Documentation Doc’INSA. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.

Consulter en bibliothèque

Cette thèse a donné lieu à une publication en 2016 par SCD DocInsa à Villeurbanne

Informations

  • Sous le titre : Multigrid methods for 3D composite material simulation and crack propagation modelling based on a phase field method
  • Détails : 1 vol. (xvi - 124 p.)
La version de soutenance de cette thèse existe aussi sous forme papier.

Où se trouve cette thèse\u00a0?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.