Binary tomography reconstruction of bone microstructures from a limited number of projections

par Lin Wang

Thèse de doctorat en Traitement de l'image

Sous la direction de Bruno Sixou.

Soutenue le 08-06-2016

à Lyon , dans le cadre de École Doctorale Electronique, Electrotechnique, Automatique (Lyon) , en partenariat avec CREATIS - Centre de Recherche et d'Application en Traitement de l'Image pour la Santé, UMR5220 (Lyon, Rhône) (laboratoire) , Institut national des sciences appliquées de Lyon (Lyon) (établissement opérateur d'inscription) et de Centre de recherche en applications et traitement de l'image pour la santé (laboratoire) .

Le président du jury était Ali Djafari.

Le jury était composé de Bruno Sixou, Ali Djafari, Thomas Rodet, Jan Sijbers, Françoise Peyrin.

Les rapporteurs étaient Thomas Rodet, Jan Sijbers.

  • Titre traduit

    Reconstruction tomographique binaire de microstructures de l'os à partir d'un nombre limité de projections


  • Résumé

    La reconstruction en tomographie discrète de la microstructure de l’os joue un role très important pour le diagnostic de l’ostéoporse, une maladie des os très fréquente. Le diagnostic clinique est basé sur l’absortiométrie duale de rayons X. Avec la tomographie de rayons X, une résolution spatiale élevée avec des images reconstruites in vivo requiert une dose d’irradiation élevée et un temps de balayage long, ce qui est dangereux pour le patient. Une des méthodes pour résoudre ce problème est de limiter le nombre de projections. Cependant, avec cette méthode le problème de reconstruction devient mal posé. Deux types de régularisation par Variation Totale minimisées avec la méthode Alternate Direction of Minimization Method (ADMM) et deux schémas basés sur les méthodes de régularisation Level-set sont appliquées à deux images d’os expérimentales acquises avec un synchrotron (pixel size: 15 μm). Des images de tailles variées et avec différents niveaux de bruit Gaussien additifs ajoutés aux projections sont utlisées pour étudier l’efficacité des méthodes de régularisation. Des minima locaux sont obtenus avec ces méthodes déterministes. Une approche globale d’optimisation est nécessaire pour améliorer les résultats. Des perturbations stochastiques peuvent être un moyen très utile pour échapper aux minima locaux. Dans une première approche, une équation différentielle stochastique basée sur la régularisation level-set est étudiée. Cette méthode améliore les résultats de reconstruction mais ne modifie que les frontières entre les régions 0 et 1. Ensuite une équation aux dérivées partielles stochastique est obtenue avec la régularisation TV pour améliorer la méthode stochastique level-set. A la fin de notre travail, nous avons étendu la méthode de régularisation à des images 3D avec des données réelles. Cette algorithme a été implémenté avec RTK. Nous avons aussi étendu l’approche level-set utilisée pour la tomographie binaire au cas multi-level.


  • Résumé

    Discrete tomography reconstruction of bone microstructure is important in diagnosis of osteoporosis. One way to reduce the radiation dose and scanning time in CT imaging is to limit the number of projections. This method makes the reconstruction problem highly ill-posed. A common solution is to reconstruct only a finite number of intensity levels. In this work, we investigate only binary tomography reconstruction problem. First, we consider variational regularization methods. Two types of Total Variation (TV) regularization approaches minimized with the Alternate Direction of Minimization Method (ADMM) and two schemes based on Level-set (LS) regularization methods are applied to two experimental bone cross-section images acquired with synchrotron micro-CT. The numerical experiments have shown that good reconstruction results were obtained with TV regularization methods and that level-set regularization outperforms the TV regularization for large bone image with complex structures. Yet, for both methods, some reconstruction errors are still located on the boundaries and some regions are lost when the projection number is low. Local minima were obtained with these deterministic methods. Stochastic perturbations is a useful way to escape the local minima. As a first approach, a stochastic differential equation based on level-set regularization was studied. This method improves the reconstruction results but only modifies the boundaries between the 0 and 1 regions. Then partial stochastic differential equation obtained with the TV regularization semi-norm were studied to improve the stochastic level-set method. The random change of the boundary are performed in a new way with the gradient or wavelet decomposition of the reconstructed image. Random topological changes are included to find the lost regions in the reconstructed images. At the end of our work, we extended the TV regularization method to 3D images with real data on RTK (Reconstruction Toolkit). And we also extended the level-set to the multi-level cases.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Institut national des sciences appliquées (Villeurbanne, Rhône). Service Commun de la Documentation Doc’INSA. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.