Combining 2D facial texture and 3D face morphology for estimating people's soft biometrics and recognizing facial expressions

par Huaxiong Ding

Thèse de doctorat en Informatique

Sous la direction de Jean-Marie Morvan et de Liming Chen.

Soutenue le 16-12-2016

à Lyon , dans le cadre de École doctorale en Informatique et Mathématiques de Lyon , en partenariat avec École centrale de Lyon (établissement opérateur d'inscription) et de Extraction de Caractéristiques et Identification (laboratoire) .

Le président du jury était Jean-Luc Dugelay.

Le jury était composé de Jean-Marie Morvan, Liming Chen, Frédéric Cazals.

Les rapporteurs étaient Alice Caplier, Boulbaba Ben Amor.

  • Titre traduit

    La connaissance des biométries douces et la reconnaissance des expressions faciales


  • Résumé

    Puisque les traits de biométrie douce peuvent fournir des preuves supplémentaires pour aider à déterminer précisément l’identité de l’homme, il y a eu une attention croissante sur la reconnaissance faciale basée sur les biométrie douce ces dernières années. Parmi tous les biométries douces, le sexe et l’ethnicité sont les deux caractéristiques démographiques importantes pour les êtres humains et ils jouent un rôle très fondamental dans l’analyse de visage automatique. En attendant, la reconnaissance des expressions faciales est un autre challenge dans le domaine de l’analyse de visage en raison de la diversité et de l’hybridité des expressions humaines dans différentes cultures, genres et contextes. Ce thèse est dédié à combiner la texture du visage 2D et la morphologie du visage 3D pour estimer les biométries douces: le sexe, l’ethnicité, etc., et reconnaître les expressions faciales. Pour la reconnaissance du sexe et de l’ethnicité, nous présentons une approche efficace en combinant à la fois des textures locales et des caractéristiques de forme extraites à partir des modèles de visage 3D, contrairement aux méthodes existantes qui ne dépendent que des textures ou des caractéristiques de forme. Afin de souligne exhaustivement la différence entre les groupes sexuels et ethniques, nous proposons un nouveau descripteur, à savoir local circular patterns (LCP). Ce descripteur améliore Les motifs binaires locaux (LBP) et ses variantes en remplaçant la quantification binaire par une quantification basée sur le regroupement, entraînant d’une puissance plus discriminative et une meilleure résistance au bruit. En même temps, l’algorithme Adaboost est engagé à sélectionner les caractéristiques discriminatives fortement liés au sexe et à l’ethnicité. Les résultats expérimentaux obtenus sur les bases de données FRGC v2.0 et BU-3DFE démontrent clairement les avantages de la méthode proposée. Pour la reconnaissance des expressions faciales, nous présentons une méthode automatique basée sur les multi-modalité 2D + 3D et démontrons sa performance sur la base des données BU-3DFE. Notre méthode combine des textures locales et des descripteurs de formes pour atteindre l’efficacité et la robustesse. Tout d’abord, un grand ensemble des points des caractéristiques d’images 2D et de modèles 3D sont localisés à l’aide d’un nouvel algorithme, à savoir la cascade parallèle incrémentielle de régression linéaire (iPar-CLR). Ensuite, on utilise un nouveau descripteur basé sur les histogrammes des gradients d’ordre secondaire (HSOG) en conjonction avec le descripteur SIFT pour décrire la texture locale autour de chaque point de caractéristique 2D. De même, la géométrie locale autour de chaque point de caractéristique 3D est décrite par deux nouveaux descripteurs de forme construits à l’aide des quantités différentielle de géométries de la surface au premier ordre et au second ordre, à savoir meshHOG et meshHOS. Enfin, les résultats de reconnaissance des descripteurs 2D et 3D fournis par le classifier SVM sont fusionnés à la fois au niveau de fonctionnalité et de score pour améliorer la précision. Les expérimentaux résultats démontrent clairement qu’il existe des caractéristiques complémentaires entre les descripteurs 2D et 3D. Notre approche basée sur les multi-modalités surpasse les autres méthodes de l’état de l’art en obtenant une précision de reconnaissance 86,32%. De plus, une bonne capacité de généralisation est aussi présentée sur la base de données Bosphorus.


  • Résumé

    Since soft biometrics traits can provide sufficient evidence to precisely determine the identity of human, there has been increasing attention for face based soft biometrics identification in recent years. Among those face based soft biometrics, gender and ethnicity are both key demographic attributes of human beings and they play a very fundamental and important role in automatic machine based face analysis. Meanwhile, facial expression recognition is another challenge problem in face analysis because of the diversity and hybridity of human expressions among different subjects in different cultures, genders and contexts. This Ph.D thesis work is dedicated to combine 2D facial Texture and 3D face morphology for estimating people’s soft biometrics: gender, ethnicity, etc., and recognizing facial expression. For the gender and ethnicity recognition, we present an effective and efficient approach on this issue by combining both boosted local texture and shape features extracted from 3D face models, in contrast to the existing ones that only depend on either 2D texture or 3D shape of faces. In order to comprehensively represent the difference between different genders or ethnics groups, we propose a novel local descriptor, namely local circular patterns (LCP). LCP improves the widely utilized local binary patterns (LBP) and its variants by replacing the binary quantization with a clustering based one, resulting in higher discriminative power as well as better robustness to noise. Meanwhile, the following Adaboost based feature selection finds the most discriminative gender- and ethnic-related features and assigns them with different weights to highlight their importance in classification, which not only further raises the performance but reduces the time and memory cost as well. Experimental results achieved on the FRGC v2.0 and BU-3DFE data sets clearly demonstrate the advantages of the proposed method. For facial expression recognition, we present a fully automatic multi-modal 2D + 3D feature-based facial expression recognition approach and demonstrate its performance on the BU–3DFE database. Our approach combines multi-order gradientbased local texture and shape descriptors in order to achieve efficiency a nd robustness. First, a large set of fiducial facial landmarks of 2D face images along with their 3D face scans are localized using a novel algorithm namely incremental Parallel Cascade of Linear Regression (iPar–CLR). Then, a novel Histogram of Second Order Gradients (HSOG) based local image descriptor in conjunction with the widely used first-order gradient based SIFT descriptor are employed to describe the local texture around each 2D landmark. Similarly, the local geometry around each 3D landmark is described by two novel local shape descriptors constructed using the first-order and the second-order surface differential geometry quantities, i.e., Histogram of mesh Gradients (meshHOG) and Histogram of mesh Shape index (curvature quantization, meshHOS). Finally, the Support Vector Machine (SVM) based recognition results of all 2D and 3D descriptors are fused at both featurelevel and score-level to further improve the accuracy. Comprehensive experimental results demonstrate that there exist impressive complementary characteristics between the 2D and 3D descriptors. We use the BU–3DFE benchmark to compare our approach to the state-of-the-art ones. Our multi-modal feature-based approach outperforms the others by achieving an average recognition accuracy of 86,32%. Moreover, a good generalization ability is shown on the Bosphorus database.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Autre version

Combining 2D facial texture and 3D face morphology for estimating people's soft biometrics and recognizing facial expressions


Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Ecole centrale de Lyon. Bibliothèque Michel Serres.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.

Consulter en bibliothèque

à

Informations

  • Sous le titre : Combining 2D facial texture and 3D face morphology for estimating people's soft biometrics and recognizing facial expressions
  • Détails : 1 vol. (xiv-147 p.)
  • Annexes : Bibliogr. p. [119]-146
La version de soutenance de cette thèse existe aussi sous forme papier.

Où se trouve cette thèse\u00a0?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.