PA12/PBT reactive blending with hydropolysiloxane by carbonyl hydrosilylation reaction : towards new polymer materials

par Jingping Li

Thèse de doctorat en Matériaux innovants

Sous la direction de Philippe Cassagnau et de Véronique Bounor.

Soutenue le 15-12-2016

à Lyon , dans le cadre de Ecole Doctorale Matériaux de Lyon (Villeurbanne) , en partenariat avec Université Claude Bernard (Lyon) (établissement opérateur d'inscription) et de IMP - Ingénierie des Matériaux Polymères UMR 5223 ( Rhône-Alpes) (laboratoire) .

Le président du jury était Éliane Espuche.

Le jury était composé de Jean-Laurent Pradel.

Les rapporteurs étaient Michel Bouquey, Jean-Paul Chapel.

  • Titre traduit

    Mélange réactif entre PA12 / PBT et hydropolysiloxane par réaction d'hydrosilylation carbonyle : vers de nouveaux matériaux polymères


  • Résumé

    Les thermoplastiques contenant du PDMS ont attiré beaucoup d’attention à cause de leur potentiel dans un large spectre d’applications. Lors du mélange du PDMS avec des thermoplastiques, le problème de la compatibilité ne peut être ignoré. Cette dernière engendre de faibles propriétés mécaniques ainsi qu’une surface rugueuse. Par conséquent, le défi principal des mélanges PDMS/thermoplastique est de trouver un moyen efficace et adapté, comme le mélange réactif in situ, pour compatibiliser les différentes phases. Récemment, nous avons trouvé une réaction intéressante entre l’hydrosilane (SiH) et les groupes carbonyles catalysés par le triruthénium dodecacarbonyle [Ru3(CO)12]. Il a le potentiel pour réaliser cette compatibilisation réactive. Dans un premier temps, nous avons étudié le mécanisme de la réaction d’hydrosilylation catalysée par le ruthénium dans le cas du N-méthylpropionamide. Les composés N-silicatés formés qui peuvent jouer par la suite le rôle de compatibilisant lors du mélange réactif. Dans un deuxième temps, cette réaction d’hydrosilylation a été étendue au mélange réactif de PA12 avec du PDMS terminé hydride en conditions de mélange fondu. La réaction a été réalisée rapidement (en 1 minute) en présence de Ru3 (CO) 12 (1wt%). Ensuite, nous avons étudié la microstructure des deux mélanges. En comparaison avec le mélange non réactif, la dispersion du PDMS dans celui réactif était clairement améliorée puisque la taille des domaines. En outre, dans de telles conditions réactives et en présence du catalyste de ruthénium, une réaction d’oxydation du PDMS-SiH est partiellement observée. Ceci inclue par exemple les propriétés de stabilité thermique, de comportement cristallin, d’énergie de surface et de perméabilité et séparation des gaz. Dans un troisième temps, nous nous sommes intéressés à l’application de la réaction d’hydrosilylation catalysée par le ruthénium aux composites PBT/polyméthylhydrosiloxane (PMHS). Cependant, à cause des températures élevées nécessaires à la mise en forme du PBT (220°C), une réaction de réticulation entre le PBT et le PMHS apparait mais également et une auto-réticulation du PMHS. Enfin, ces résultats montrent une application potentielle et initial de ruthénium hydrosilylation catalysées à compatibilisation réactive entre l'hydropolysiloxane et un polyamide ou un polyester


  • Résumé

    Polydimethylsiloxane (PDMS) containing thermoplastics have attracted much attention due to their potential in wide range of applications. However, when blending PDMS with thermoplastics, the incompatible problem cannot be ignored. It may results in weak mechanical properties and a rough surface. Therefore, the main challenge of PDMS and thermoplastic blend is to find an efficient and convenient way like in situ reactive blending to realize the compatibilization between tthem. Recently, we found an interesting reaction between hydrosilane (SiH) and carbonyl group catalyzed by triruthenium dodecacarbonyl [Ru3(CO)12]. It has potential to realize such reactive compatibilization. Firstly, we investigated the mechanism of ruthenium catalyzed hydrosilylation reaction of N-methylpropionamide, and found that the formed N-silylated compounds which can work as compatibilizers in later reactive blending. Then this hydrosilylation reaction was extended to the reactive blending of PA12 with hydride terminated PDMS under molten processing conditions. The reaction was carried out quickly (in 1 minute) in the presence of Ru3(CO)12 (1wt%). Compared to the unreacted one, the dispersion of PDMS after reaction was obviously improved. Besides, in such reactive conditions, PDMS-SiH oxidation reaction was partially observed. This phenomenon leads to a second PDMS gel based phase. Properties like thermal stability, crystalline behavior, surface energy and gas permeability and separation of such blends were also studied. Secondly, ruthenium catalyzed hydrosilylation was also applied to PBT and polymethylhydrosiloxane (PMHS) which was processed at higher temperature (220°C). The final material includes the crosslinking network formed between PBT and PMHS and a part of PMHS self-crosslinking forming PMHS gel-like phase due to the higher processing temperature of PBT and high reactivity of PMHS. Finally, these results show a potential and initial application of ruthenium catalyzed hydrosilylation to reactive compatibilization between hydride polysiloxane and polyamide or polyester


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.