Dynamique électronique femtoseconde et sub-femtoseconde d’édifices moléculaires complexes super-excités

par Alexandre Marciniak

Thèse de doctorat en Physique

Sous la direction de Michel Christian Bordas et de Franck Lépine.

Soutenue le 07-10-2016

à Lyon , dans le cadre de École doctorale de Physique et d’Astrophysique (Lyon) , en partenariat avec Université Claude Bernard (Lyon) (établissement opérateur d'inscription) et de Institut Lumière Matière (laboratoire) .

Le président du jury était Christophe Dujardin.

Le jury était composé de Stefan Haacke, Sophie Canton.

Les rapporteurs étaient Danielle Dowek, Bruno Lavorel.


  • Résumé

    La corrélation électronique dans une molécule est une des difficultés principales du problème à N corps. Un moyen d'exalter des effets multiélectroniques est l'utilisation de rayonnements de l'extrême ultra-violet (UVX) pour photo-ioniser des électrons de valences internes de systèmes poly-atomiques complexes. Les états cationiques ainsi créés résultent d'excitations d'ordre supérieur (de type « 2-hole 1-particle ») et leur dynamiques subséquentes mènent à des considérations en dehors du cadre de l'approximation de Born-Oppenheimer. Les développements récents en matière de sources d'impulsions UVX ultracourtes, notamment produites par génération d'harmoniques d'ordres élevés (HHG), permettent d'étudier ces mécanismes sur des échelles de temps de temps allant de quelques centaines de femtoseconde (1 fs = 10-15 s) jusqu'à l'attoseconde (1 as = 10-18 s).Lors de cette thèse, j'ai premièrement étudié la réponse statique de molécules carbonées ou biologiques à une excitation femtoseconde infrarouge (IR) multi-photonique à l'aide d'un spectromètre imageant les vecteurs vitesses des photoélectrons (VMIS). Ensuite, à travers une approche multi-échelle, j'ai exploré, dans ces systèmes complexes, les dynamiques induites par impulsions femtosecondes et attosecondes UVX. En particulier, j'ai étudié, dans les Hydrocarbures Aromatiques Polycycliques (HAPs), l'évolution des états cationiques hautement excités ainsi que l'effet du potentiel moléculaire lors du processus de photo-ionisation, grâce à un schéma de spectroscopie UVX-pompe IR-sonde couplé à un VMIS. Enfin, j'ai examiné le rôle de la dynamique ultrarapide des charges induites par une photo-ionisation UVX en rapport avec la fragmentation de la biomolécule de caféine.Les processus observés s'intègrent à une approche multi-échelle de la physique moléculaire ultra-rapide et permettent de mieux saisir l'implication des effets multiélectroniques et des couplages non-adiabatiques dans les systèmes polyatomiques complexes

  • Titre traduit

    Femtosecond and sub-femtosecond electron dynamics in super-excited complex molecular systems


  • Résumé

    Electron correlation in a molecule is one of the main difficulties of the N-bodies problem. One mean to enhance multielectronic effects is to use extreme ultraviolet light (XUV) in order to ionize inner-valence electrons of complex polyatomic systems. Thus, the produced cationic states result from a higher order photo-excitation processes (such as “2-hole, 1particle”) and their dynamics lead to considerations out of the frame of the Born-Oppenheimer approximation. Recent developments in ultrafast science concerning the XUV ultrashort pulses sources, produced by high harmonic generation (HHG), allow studying these mechanisms from the hundreds of femtoseconds (1 fs = 10-15 s) timescale up to the attosecond (1 as = 10-18 s) timescale.During this thesis I have firstly studied the static response of carboneous and biological molecules to a multi-photonic infrared (IR) femtosecond excitation thanks to a velocity map imaging spectrometer (VMIS). Then, through a multi-scale approach, I have investigated, in these complex systems, the dynamics induced by XUV femtosecond and attosecond pulses. I have especially studied, in Polycyclic Aromatic Hydrocarbons (PAHs), the evolution of highly excited cationic states and the effect of the molecular potential during the photoionization process, thanks to a XUV-pump IR-probe spectroscopy scheme coupled to a VMIS. Finally, I have examined the role of the ultrafast charge dynamics induced by XUV photo-ionization on fragmentation mechanisms in the caffeine biomolecule. The observed processes are entire part of a multi-scale approach of the ultrafast molecular physics and allow a better understanding of the implication of multielectronic effects and non-adiabatic couplings in complex polyatomic systems


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.