The carbon isotope composition of the fossil conifer Frenelopsis as a proxy for reconstructing Cretaceous atmospheric CO2

par Abel Barral Cuesta

Thèse de doctorat en Sciences de la Terre

Sous la direction de Bernard Gomez et de Christophe Lecuyer.

Soutenue le 10-10-2016

à Lyon , dans le cadre de École Doctorale Evolution Ecosystèmes Microbiologie Modélisation , en partenariat avec Université Claude Bernard (Lyon) (établissement opérateur d'inscription) et de Laboratoire de géologie de Lyon : Terre, planètes et environnement (laboratoire) .

Le président du jury était Anne-Marie Lézine.

Le jury était composé de J. C. McElwain, Thanh Thuy Nguyen Tu.

Les rapporteurs étaient Valérie Daux, Brigitte Meyer-Berthaud.

  • Titre traduit

    La composition isotopique du carbone de la conifère fossile Frenelopsis comme proxy pour reconstituer le CO2 atmospherique durant le Crétacé


  • Résumé

    Le Crétacé a été une période d'instabilité climatique et du cycle du carbone, dont le CO2 atmosphérique a été désigné comme le driver majeur. Cependant, les reconstitutions du CO2 atmosphérique ne reflètent ni les dynamiques climatiques ni les grands évènements de perturbation du cycle du carbone décrits pour cette période. J'ai utilisé la composition isotopique de carbone de la plante fossile Frenelopsis (d13Cleaf) comme un nouvel proxy pour reconstituer le CO2 atmosphérique du Crétacé en termes de composition isotopique de carbone (d13CCO2) et de concentration (pCO2). La première courbe de d13CCO2 pour toute la durée du Crétacé a été construite à partir du d13C des carbonates marins. Sa comparaison avec des estimations de d13CCO2 à partir du d13Cleaf a révélé que les modèles développés jusqu'à maintenant ont une tendance à exagérer les valeurs de d13CCO2. Des estimations du fractionnement isotopique du carbone issu par des plantes (13Cleaf) obtenues à partir des nouvelles données d e d13Cleaf et d13CCO2 ont permis de reconstituer l'évolution à grande échelle de la pCO2. Ces résultats indiquent que le CO2 a probablement été une conséquence à long terme du changement climatique durant le Crétacé. Des cycles de d13CCO2 de ~1.2, ~2.1, ~5.4 et ~10.2 Ma ont été détectés, synchrones à ceux du niveau de la mer et à la cyclicité des paramètres de l'orbite terrestre décrits pour le Mésozoïque. Mes résultats fournissent une nouvelle perspective du système climatique et du cycle du carbone du Crétacé, dominés principalement par les paramètres orbitaux de la Terre et secondairement par des évènements catastrophiques de libération de CO2 d'origine volcanique dans l'atmosphère


  • Résumé

    The Cretaceous was a period characterized by strongly marked climate change and major carbon cycle instability. Atmospheric CO2 has repeatedly been pointed out as a major agent involved in these changing conditions during the period. However, long-term trends in CO2 described for the Cretaceous are not consistent with those of temperature and the large disturbance events of the carbon cycle described for the period. This raises a double question of whether descriptions of the long-term evolution of atmospheric CO2 made so far are accurate or, if so, atmospheric CO2 was actually a major driver of carbon cycle and climate dynamics as usually stated. In this thesis the close relationship between the carbon isotope composition of plants and atmospheric CO2 is used to address this question. Based on its ecological significance, distribution, morphological features and its excellent preservation, the fossil conifer genus Frenelopsis is proposed as a new plant proxy for climate reconstructions during the Cretaceous. The capacity of carbon isotope compositions of Frenelopsis leaves (d13Cleaf) to reconstruct past atmospheric CO2, with regards to both carbon isotope composition (d13CCO2) and concentration (pCO2), is tested based on materials coming from twelve Cretaceous episodes. To provide a framework to test the capacity of d13Cleaf to reconstruct d13CCO2 and allowing for climate estimates from carbon isotope discrimination by plants (?13Cleaf), a new d13CCO2 curve for the Cretaceous based on carbon isotope compositions of marine carbonates has been constructed. Comparison with d13Cleaf-based d13CCO2 estimates reveals that although d13CCO2 and d13Cleaf values follow consistent trends, models developed so far to estimate d13CCO2 from d13Cleaf tend to exaggerate d13CCO2 trends because of assuming a linear relationship between both values. However, given the hyperbolic relationship between ?13Cleaf and pCO2, by considering an independently-estimated correction factor for pCO2 for a given episode, d13Cleaf values may be a valuable proxy for d13CCO2 reconstructions. ?13Cleaf estimates obtained from d13CCO2 and d13Cleaf values were used to reconstruct the long-term evolution of pCO2. The magnitude of estimated pCO2 values is in accordance with that of the most recent and relevant model- and proxy-based pCO2 reconstructions. However, these new results evidence long-term drawdowns of pCO2 for Cretaceous time intervals in which temperature maxima have been described

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.