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Summary

The work outlines the results of numerical simulation, within the density functional
theory (DFT), of equilibrium crystal structures and electronic characteristics of several
binary or (pseudo)ternary semiconductors based on Cu, In, Ga and Se. The com-
pounds under study share similar short-range order features (tetrahedral environment
of both cations and anions), differently assembled on a long-range scale. The binary
compounds (Ga/In)Se, (Ga/In)2Se3 mark important end points at the phase diagrams
of the (Cu,In,Se) and (Cu,Ga,Se) systems that cover a number of phases relevant, e.g.,
for applications in photovoltaics. The work comprises two chapters of introduction and
three outlining novel results.

Chapter 1 places the present work in the context of earlier studies, explaining notably
the level of theory applied and its main approximations. A brief overview of the DFT
is followed by a concise introduction into the calculation methods used (WIEN2k and
VASP) and concluded by explaining the choice and testing of the calculations’ essential
parameters. An attention is given to the calculation “features” essential for the present
work: the PBEsol version of the generalized gradient approximation (GGA) within
the DFT, the modified Becke-Johnson (mBJ) prescription for the exchange-correlation
(XC) potential, the phenomenological inclusion of dispersive interactions.

Chapter 2 explains the problematics concerning the systems under study, their crys-
tal structures and the results of previous works, notably those in theory. The diversity of
structures is set into a general frame, passing from Cu(In,Ga)Se2 with chalcopyrite-type
structure to layered InSe and GaSe to ordered-vacancies phases In2Se3 and Ga2Se3. The
construction of unit cells for different phases and the relations between the Brillouin
zones are explained.

Chapter 3 deals with CuInSe2 and CuGaSe2 compounds of the chalcopyrite struc-
ture, already studied before. In the present work, the mixed Cu(In,Ga)Se2 systems at
1:3, 1:1 and 3:1 concentrations of In:Ga have been simulated, represented by model
supercells that presume an ordered distribution of In and Ga atoms. This allowed to
probe the variation of lattice parameters and of the bond length with concentration.
The band structures calculated with the mBJ approximation for the XC potential yield
the optical gap gradually increasing from 0.46 eV in CuInSe2 to 1.08 eV in CuGaSe2,
that underestimates the experimental values by ∼0.8 eV but presents a big “improve-
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Summary

ment” (in this sense) over “conventional” versions of GGA, remaining at the same time
computationally affordable.

Chapter 4 addresses the binary InSe and GaSe semiconductors with hexagonal crys-
tal structure, whose essential element is the anion-cation-cation-anion double layer.
Different stacking of such layers gives rise to polytypes of very close total energies.
Calculations done with WIEN2k and VASP methods, using identical exchange-correlation
functionals (PBEsol), yield almost identical energy/volume curves. An issue of special
attention of the work was the discrimination of polytypes according to their relative
stability. The differences of total energies over different polytypes are very small, of
the order of 0.5 meV per formula unit; the utmost effort was applied to acquire such
differences reliably, by enforcing the necessary accuracy of calculation methods by in-
creasing the corresponding cutoffs. The use of mBJ XC potential results in opening of
band gaps, with only slight underestimation of experimental values.

Chapter 5 outlines the calculation results for Ga2Se3 and In2Se3. For each com-
pound, three models of the (hexagonal) structure models were considered: one with
cation vacancies ordered in screw form and two with missing cation layer. The im-
pact of the particular type of vacancies ordering onto the type of relaxation and the
electronic band structure are discussed.
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Résumé

Ce travail expose les résultats de simulations numériques, réalisées dans le cadre de la
théorie de la fonctionnelle de la densité (DFT), pour les structures cristallines d’équilibre
et pour les propriétés électroniques de quelques semi-conducteurs binaires ou (pseudo)-
ternaires à base de Cu, In, Ga et Se. Les systèmes étudiés possèdent la même structure
à courte portée (environnement tétraédrique des cations et anions) mais diffèrent à
longue portée. Les composés binaires (Ga/In)Se, (Ga/In)2Se3 constituent des références
importantes dans les diagrammes de phases des systèmes à base de (Cu, In, Se) et (Cu,
Ga, Se), au sein desquels figurent les phases potentiellement utiles dans le domaine du
photovoltäıque. Le travail comprend deux chapitres d’introduction et trois chapitres
exposant des résultats nouveaux.

Le chapitre 1 explique le niveau d’approximation retenu pour la mise en oeuvre de
la théorie. Un bref aperçu de la DFT est suivi d’une introduction des méthodes de
calcul utilisées (WIEN2k et VASP) et permet d’identifier les paramètres importants du
calcul. Une attention particulière est accordée à certains aspects techniques importants
pour ce travail : la version PBEsol d’approximation du gradient généralisé (GGA) dans
le cadre de la DFT, la variante de Becke-Johnson modifiée (mBJ) pour le potentiel
d’échange-corrélation (XC), l’inclusion phénoménologique des interactions dispersives.

Le chapitre 2 expose les problématiques abordées, en liaison avec les structures
cristallines des systèmes étudiés, à la lumière des résultats antérieurs, notamment ceux
issus de la théorie. La diversité des structures est considérée dans le cadre d’une ap-
proche unitaire, couvrant aussi bien Cu(In,Ga)Se2, de structure chalcopyrite, que les
systèmes lamellaires InSe et GaSe, et enfin les systèmes de lacunes ordonnées, In2Se3
et Ga2Se3. La construction des supermailles pour les différentes phases ainsi que les
relations entre leurs zones de Brillouin sont expliquées.

Le chapitre 3 porte sur les composés Cu(In/Ga)Se2 de structure chalcopyrite, déjà
étudiés par le passé dans la littérature. Dans ce travail, l’attention se porte sur les
systèmes Cu(In,Ga)Se2 mixtes de concentrations In:Ga 1:3, 1:1 et 3:1, étudiés sous
forme de structures ordonnées en In et Ga. Les paramètres de maille et longueurs de li-
aison ont été optimisés pour chaque concentration. D’après les structures de bandes cal-
culées dans l’approximation mBJ, le gap optique augmente progressivement de 0,46 eV
dans CuInSe2 à 1,08 eV dans CuGaSe2. Cela reste en deçà des valeurs expérimentales
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correspondantes, de l’ordre de 0,8 eV, mais cependant constitue une amélioration par
rapport aux estimations basées sur la GGA.

Le chapitre 4 porte sur les semi-conducteurs binaires InSe et GaSe de structure
cristalline hexagonale, dont la caractéristique essentielle est la couche double anion-
cation-cation-anion. Les variétés d’empilement de cette bicouche donnent lieu à des
polytypes dont les énergies sont très proches. Les courbes énergie/volume calculées
avec les méthodes WIEN2k et VASP, à partir de la même fonctionnelle XC (PBEsol),
sont presque identiques. A particulier, nous nous sommes attachés à distinguer les
polytypes en fonction de leur stabilité relative. Les différences d’énergies totales entre
les polytypes sont très faibles, de l’ordre de 0,5 meV par unité de formule chimique.
Les valeurs de bande optique obtenues par l’approximation mBJ ne sont que légèrement
sous-estimées par rapport aux valeurs expérimentales.

Le chapitre 5 discute les résultats de calcul pour Ga2Se3 et In2Se3. Pour chaque
composé, trois variantes de structure hexagonale ont été testées : l’une contenant des
lacunes cationiques ordonnées en forme de vis et dans les deux autres une couche cation-
ique fait défaut. L’effet de l’ordre particulier des lacunes sur la relaxation atomique et
sur la structure de bandes électroniques a été discuté.
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Introduction

Numerical (computer) simulations of materials have long and glorious history. The
simulations done at the microscopic level, i.e. those that “care” about individual
atoms and electrons rather than about continuous or effective medium, have proven
successful in explaining electron-related properties like magnetism, cyclotron orbits, or
X-ray spectra. The calculations done on the basis of very general considerations (i.e.,
just quantum-mechanical equations), rather than being parametrized for this or other
group of materials, are known as “first-principles” calculations. In the last decades,
first-principles calculations have seen big success in, for one thing, optimisation of the
known crystal structures and even in the prediction of new ones; for the other thing,
in the analysis of electron (e.g., optical) excitations. This allowed a broad opening of
first-principles calculation techniques towards the problems which arise in the search
of new materials and characterizing them under the angle of possible applications for
electronics or optics.

The present project started from a general interest in semiconductor-based pho-
tovoltaics, and from an ambition, fed by preliminary discussions with my director’s
colleagues, notably Michael Yakushev (Strathclyde University, Glasgow, Scotland) and
Tatiana Kuznetsova (Institute of Metal Physics, Ekaterinburg, Russia), to guess / sim-
ulate / characterize, on the basis of first-principles calculations, the phases within the
Cu-(In,Ga)-Se system which come about, mostly unintentionally, in the process of syn-
thesis of good materials for photovoltaics. “Good” materials were, and still are, the pro-
totypes like CuInSe2 and CuGaSe2 of the chalcopyrite structure, whose “neighboring”
phases (in the sense of practical sample preparation), sometimes intentionally added
and sometimes annoying yet unavoidable, are copper and indium/gallium selenides. In
the course of work, the study of properties of these selenides absorbed more and more
effort and eventually led to a reshaping the original plan of work. Namely, the “simple”
binary selenides revealed the variety of phases and difficulties in characterizing them
by means of calculation, that was recognized as an independent interesting challenge.
The focus of the work then shifted onto exploring how the modification of structure
brought with itself the modification of the electronic properties. Whereas the short-
range order motives, the tetrahedral environment of cations as well as anions, remained
the same in all structures concerned, the ordering on a longer scale was different. For
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chalcopyrite-type materials, it resulted in the crystal lattice resembling the zincblende
one, only with a variety of cation species distributed over sites. The 1:1 binaries (InSe,
GaSe) arranged themselves into layered structures with cation-cation covalent bonds
inside and non-saturated (having only three neighbours) outer Se surface. It seemed
fascinating that among the many polytypes described in the literature, one particular
structure seem to definitely “win” for InSe and a different one – for GaSe. The 2:3
binaries (In2Se3, Ga2Se3) offered a further variety of structures, since they might pre-
sumably incarnate either a regular wurtzite, albeit with ordered cation vanancies, or a
layered structure with thicker layers. These since long suggested structure models re-
mained rather hypothetical, so their verification by means of first-principles calculations
seemed necessary.

Even as the corresponding crystal structures are not very complex, the genera-
tion and assessment of meaningful results required accuracy and patience. I wanted to
present a study that would result in reliable conclusion; therefore the calculation method
initially used was one that is considered as state-of-art of DFT calculations, namely, an
all-electron full-potential augmented plane waves method, realized in the WIEN2k code.
The requirements for the calculation method, in view of the initial problematics, was
the following: (i) to provide an ultimately accurate description of equilibrium struc-
tures, at least to overcome the usual underestimation of lattice parameters within the
LDA and their frequent overestimation within the GGA; (ii) to get the band struc-
tures at least so good as to correctly identify the band gap whenever the material is a
semiconductor (and, in the ideal case, to get the gap value about correctly). The tools
“routinely” available since certain time to face these challenges are, respectively, the
PBEsol flavour of the exchange-correlation (a prescription for the XC functional, that
yields the energies and forces and everything that is needed for structure relaxations),
and the modified Bethe-Johnson prescription for the XC potential, that provides just
the band energies but, consequently, the band gaps. Both are implemented within the
WIEN2k. However, the preliminary work done on GaSe and InSe compounds, along
with the analysis of information available from previous calculations, revealed that the
bonding across the so-called van der Waals gap may come out underestimated in “con-
ventional” DFT calculations, that may result is slight overestimation of the c lattice
parameter. It seemed important to include the dispersion interactions into the calcu-
lation, that is nowadays possible in a number of computer codes, usually not really
from first principles, but on a phenomenological basis. A convenient solution was to
use the VASP code which provides this particular option, and has otherwise a reputation
of being quite accurate, even if, a priori, not such accurate as the all-electron WIEN2k.
As it happened, the larger part of results, namely all those concerning binary systems,
was obtained using the both methods, WIEN2k and VASP, in comparison, that helped to
reinforce the “consistent” message and get an idea of the “noise”. The invaluable assis-
tance of Dr. Michael Badawi in my getting acquaintance with the VASP code, including
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numerous discussions concerning details of calculations, was essential for bringing this
part of the work to conclusion.

As the work is now done, one can regret that the spin-orbit interaction was com-
pletely omitted from the study. Based on the experience of early calculations for some
of related systems, one could recognize its relative unimportance in the band structures.
However, in view of the differences of total energies between the competing polytypes,
which turned to be really tiny, the effect of the spin-orbit on the hierarchy of total
energies among the polytypes might have turn out not negligible. The second omission
concerns the effect of lattice vibrations on comparing the stability of polytypes. Even
as relatively demanding, such calculations could have been in principle done with the
VASP code, but was left out because of technical problems and lack of time.

The work consists of two introductory chapters, followed by three chapters that
contain the original results.

Chapter 1 defines the place of the present work in the context of previous studies,
explaining notably the level of theory applied and its main approximations. A brief
overview of the density functional theory (DFT) is followed by a concise introduction
into the calculation methods used (WIEN2k and VASP) and is concluded by explaining
the essential technical parameters of the calculations and the criteria / routines of their
necessary testing. An attention is given to the calculation “features” important for
the present work: the PBEsol version of the (meta-)generalized gradient aproximation
(GGA), the modified Becke-Johnson (mBJ) approximation for the exchange-correlation
(XC) potential within the DFT, the phenomenological inclusion of dispersion interac-
tions.

Chapter 2 explains the problematics concerning the systems under study, their crys-
tal structures and the results of previous works, notably those in theory. The diversity of
structures is set into a general frame, passing from Cu(In,Ga)Se2 with chalcopyrite-type
structure to layered InSe and GaSe to ordered-vacancies phases In2Se3 and Ga2Se3. The
construction of unit cells for different phases and the relations between the Brillouin
zones are explained, in order to keep the following chapters clear from such technical
details.

Chapter 3 deals with CuInSe2 and CuGaSe2 compounds of the chalcopyrite struc-
ture, which have been already subject to many studies because of their importance for
photovoltaic applications. In the present work, the mixed Cu(In,Ga)Se2 systems at 1:3,
1:1 and 3:1 concentrations of In:Ga have been studied, represented by model supercells
that presume an ordered distribution of In and Ga atoms. This allowed to probe the
variation of lattice parameters and of the bond length with concentration. The band
structures calculated with the mBJ approximation for the XC potential yield the op-
tical gap that underestimates the experimental values by ∼0.8 eV but presents a big
“improvement” (in this sense) over “conventional” versions of GGA, remaining at the
same time computationally affordable.

9



Introduction

Chapter 4 addresses the binary InSe and GaSe semiconductors with hexagonal crys-
tal structure, the essential element of which is the anion-cation-cation-anion double
layer. An issue of special attention of the work was the discrimination of polytypes
according to their expected stability. The energy/volume curves for these systems have
been explored on the base of calculations done with WIEN2k and VASP methods. The
utmost effort was applied to acquire such differences reliably, by enforcing the necessary
accuracy of calculation methods by increasing the corresponding cutoffs. The use of
mBJ XC potential results in opening of band gaps, with only slight underestimation of
experimental values.

Chapter 5 outlines the calculation results for Ga2Se3 and In2Se3, comparing, for
each of these compounds, three earlier proposed structure models (within the hexagonal
setting): that of cation vacancies ordered in screw form and two models with missing
cation layer. The impact of the type of vacancies ordering onto the type of relaxation
and the electronic band structure are discussed.

The work is terminated by the general conclusion.
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Chapter 1

First-principles calculations:
overview of the research method

1.1 Explaining the level of theory

This work is dedicated to analysis of electronic structure, stability and phase equilib-
rium of several binary, ternary and mixed semiconductor compounds. The importance
of these systems and the related problematics will be discussed in Chapter 2. Here,
we briefly discuss the methods by which the systems are studied. The electronic struc-
ture implies quantum-mechanical approach, the calculation of energy bands and thence
derived total energies. At earlier stages of studies on semiconductors, band structures
were derived from model Hamiltonians, the parameters of which were extracted from
some crucial comparisons with experiments. Gradually, electronic structure calcula-
tions referred to as “first-principles”, or ab initio ones, became feasible and gained in
accuracy. “First principles” means that these calculations do not depend on parame-
ters tuned specifically for a particular system, but are performed on the basis of quite
general foundations of quantum mechanics. In the ideal case, the ab initio perspective
implies that it suffices to pick the constituent atoms in a given relation, and then their
interactions, resulting energy levels, potential energies, forces acting on atoms, and,
consequently, the equilibrium structures can be predicted fully within the framework of
theory, driven by the equations of the quantum mechanics.

On the way of practical realisation, there are different possible levels of accuracy
that need to be explained here, and the level used in the work specified.

Speaking of quantum mechanics, we recall the Schrödinger equation and its wave
function, dependent on the coordinates of all intearcting particles, that are, from the
point of view of condensed matter problematics, all electrons and nuclei of the system.
The analytical solution is probably limited by the case of (one-electron) H+

2 molecule
[see, e.g., Grivet, 2002] whereas already the (two-electron) helium atom can only be
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treated numerically [Tanner et al., 2000]. The first level of broadly acceptable ap-
proximation is that of Born and Oppenheimer [1927], or the adiabatic one, that allows
to separate the movements of electrons and nuclei on the grounds of big difference
in their masses.1 For all practical purposes, the use of the Born – Oppenheimer
approximation amounts to the solution of Schrödinger equation for electrons in the
electrostatic field of fixed nuclei. Further on, the forces induced on nuclei by other nuclei
and by electrons can be evaluated and used to correct the nuclei positions, eventually
leading to structure optimisation.

Speaking henceforth of electronic problem only, one faces the difficulty that a search
for the many-particle wave function, even by numerical means and already for a very lim-
ited number of electrons, becomes a tremendously complicated problem. Historically, a
milestone was set by the Hartree – Fock (HF) method, or formalism [see, e.g., Echenique
and Alonso, 2007, for a review], that suggested an ansatz for the many-particle wave
function constructed as a Slater determinant of one-electron wave functions. By
itself, the HF is a mean-field method and hence not particularly accurate one, albeit
still largely in use for practical calculations. However, the HF method is important
because it sets a stage for gradual improvement of aproximations for many-electron
wave function, taken as combinations of Slater determinants. Such developments make
a basis for different advances in quantum chemistry; they reached big sophistication
and became very accurate in relation to molecules. On the contrary, the generalisation
of such methods to extended systems, e.g., crystals, faces serious problems.

A different way to numerically construct a many-electron wave function is offered
by Quantum Monte Carlo (QMC) methods – see, e.g., Foulkes et al. [2001] for a
review.

It turns out that the knowledge of the wave function is not necessary for a number
of practical applications. Notably, the total energy, the central property in performing
structure optimisations and thermodynamic analysis, can (in principle) be unambigu-
ously expressed, as it is a functional, of electron density, itself an important observable
property. This is true if applies to ground state of system, hence a priori excludes exci-
tations, but remains useful for a great number of practical applications, including search
for equilibrium structures, study of phase diagrams, lattice dynamics. The link total
energy – density is the core of the density functional theory (DFT) as it took shape
since the pioneering works of Walter Kohn, Pierre Hohenberg and Lu Sham [Hohenberg
and Kohn, 1964; Kohn and Sham, 1965].

1There are known cases where the adiabatic approximation cannot be reasonably used, such as
dynamics of light atoms, or aspects of photochemistry.
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1.2 Elements of the Density Functional Theory

1.2.1 General context

The DFT being the essential theory base of the calculation methods employed in the
present work, it deserves a more detailed introduction although a vast literature pool
exist in the subject, offering different levels of immersion [see, e.g., Burke and friends,
2007; Capelle, 2006; Martin, 2004]. The historical roots of the DFT are the Thomas
– Fermi theory [see Spruch, 1991, for a review] where the charge density for the
first time enters as an esential parameter in the quantum-mechanical description of
the electron gas, and the HF theory, starting from which the extensions have been
undertaken, by means of perturbation theory, towards microscopic description of many-
particle systems.

In a nutshell, the work by Kohn and Sham [1965] suggests a practical scheme how
the total energy and the density can be calculated. Namely, the density sought for,
ρ(r), is cast as that due to non-interacting quasiparticles, and hence constructed from
their single-particle wave functions,

ρ(r) =
N∑

i (occ.)

|φi(r)|2 , (1.1)

where the summation is done over the lowest N (= number of electrons) states, namely
the occupied ones according to the aufbau principle, in the spectrum of the system.
The (fictituous) functions φi(r) and their corresponding eigenvalues ǫi, needed to sort
out the solutions and to apply the aufbau principle in Eq. (1.1), are given by the Kohn
– Sham (KS) equations (in atomic units, ~ = electron mass = elementary charge = 1):

[

−1

2
∇2 −

∑

nuclei µ

Zµ

|Rµ − r| +
∫

ρ(r′)

|r− r′|dr
′ + vxc(r)

]

φi(r) = ǫiφi(r) . (1.2)

These equations are very similar to the HF ones, only that the (nonlocal) exchange
term in HF is replaced by (local) exchange-correlation (XC) potential vxc(r) acting at
each orbital φi(r). Being local (i.e., the same for any orbital at which it acts), the XC
potential makes the solution of KS equations technically less demanding than that of
non-local HF equations. However, the vxc(r) is in fact a functional of density and may
thus depend on r in a quite complicated way. Even worse, the shape of vxc(r) is not
exactly known, even if a number of its special and asymptotic cases have been studied.
Essentially, vxc(r) incorporates all effects due to “multiparticularity” which enter on top
of kinetic energy, the first term on the left of Eq. (1.2), and the mean-field electrostatic
interaction with the whole electron density, the third term in the left. vxc(r), a priori
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much smaller than each of two mentioned terms, corrects for self-interaction (the ab-
sence of the electron concerned in the charge density with which it interacts) and takes
into account how do the electrons participating in the charge density avoid each other,
due to the Pauli principle (that is, exchange, already present in the HF formalism), and
due to particle-particle (beyond the mean-field) electrostatic repulsion (that is correla-
tion, absent in the HF). In fact, all the complexity of interactions described by vxc(r)
can be understood as a pure electrostatic interaction between the charge density and
the exchange-correlation hole, the residual density expelled from the vicinity of each
individual electron. Some important conclusions concerning the spatial extension and
the shape of the XC hole can be done on the basis of electron gas models, whereas more
specific calculations for reference cases beyond simple limiting cases can be obtained
from numerical QMC calculations. Such, Ceperley and Alder [1980] scanned the phase
diagram of electron liquid throughout a broad range of densities and phases (ferromag-
netic of antiferromagnetic gas, Wigner crystal, etc.) This simulation laid foundation
for a number of practically useful fitting of the XC potential. In fact, a given model de-
scribing the XC hole depending on electron density can be straightforwardly transferred
onto the resulting vxc(r).

1.2.2 Practical recipes for the XC potential: LDA and GGA

The XC potential often appears in discussions as something mysterious, that is known
to exist but whose exact shape escapes a precise specification. Certain cornerstones
can be indicated to facilitate the orientation on this terrain. First, it is convenient to
perform a separation between the exchange vx and the correlation vc parts, the first
being fully grasped by the HF approximation, and the second remaining fully beyond
it. The exchange part can be, in principle, exactly calculated for a system of electrons
whose one-particle functions φi(r) are known. The exact result for the homogeneous
electron gas of a uniform density ρ, following from the integration of the HF exchange
over all occupied free-electron states, is

vx = − 1

π
[3π2ρ]1/3 . (1.3)

– see Eq. (2.19) of Kohn and Sham [1965]. This result is a starting point of generalisation
over the case of slowly varying density, where the constant prefactor was subject to ad
hoc adjustment, as in theXα method [Schwarz and Connolly, 1971], and eventually gave
place to more “universal” prescriptions containing some smooth function of ρ(r) in the
prefactor, that would allow a reasonable interpolation between different reference cases
(e.g., those of fully spin-polarized and spin-compensated electron gas). The correlation
part is more difficult to extract; the corresponding benchmark results for construction of
working formulas were initially gained from many-body perturbation theory expansions,
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and then, starting from the seminal work by Ceperley and Alder [1980], – from QMC
simulations. The generic name local density approximation (LDA) covers all realisations
in which the quite general form for the XC energy as some functional of density

Exc[ρ] =

∫

dr ǫxc(r) ρ(r) ; vxc(r) =
δExc

δρ(r)
(1.4)

(without loss of generality, the XC energy density ǫxc, itself a functional of density, is
weighted over space according to the distribution of ρ) is replaced by the simplified
form

ELDA
xc =

∫

dr ǫxc
(
ρ(r)

)
ρ(r) , (1.5)

in which the XC energy density ǫxc(r) is presumed to be just a function of ρ in the r
point only. More precisely, an explicit dependence on two spin-resolved components of
charge density, ρ↑(r) and ρ↓(r), may be allowed, that is referred to as local spin density
approximation (LSDA). The practical parametrisations are often expressed in terms of
the Seitz radius rS = [3/(4πρ)]1/3 i.e., the radius of sphere containing one electron at
the given density ρ = ρ↑+ρ↓ (a standard measure of “electron dilution” in DFT works),
and the relative spin polarisation ζ = (ρ↑−ρ↓)/ρ, that varies, in each given r, between
0 and 1:

ELSD
xc [ρ↑, ρ↓] =

∫

dr ǫxc(rS, ζ) ρ(r) . (1.6)

Historically important examples of the LDA parametrizations are those of Hedin-
Lundqvist [Hedin and Lundqvist, 1971], Perdew-Wang 92 [Perdew and Wang, 1992]
and a number of others in between. In practical terms, calculation packages usually
offer certain variety of these options; however, the results of calculations with differ-
ent LDA parametrisations come out quite similar. Under “results”, we mean here the
Kohn-Sham band structures ǫ(k) calculated for a given arrangement of atoms, or ge-
ometric structure (unit cell shape, bond lengths) obtained from the minimisation of
the total energy if the calculation code allows this. The reasons of unexpectedly good
performance of LDA, in spite of its quite drastic nature, are discussed in many works
on DFT, e.g., Jones and Gunnarsson [1989]. A notorious drawback of LDA is its known
“overbinding”, that is, a too short (typically by just few per cent) prediction of equi-
librium lattice parameters and interatomic distances, and a bit too large estimations of
bonding energies.

An improvement can be achieved by taking into account not just density at the point
r at which ǫxc(r) must be defined, but also the gradient of density, i.e., ǫxc(r) is casted as
ǫxc

(
ρ(r),∇ρ(r)

)
. Such an extension is usually referred to as nonlocal corrections, to make

a distinction from a genuine non-local functional form ǫxc[ρ(r)] that would depend on
the shape of charge density over some extended spatial region. The practical realisation
is more sophisticated than just formally adding a term of the Taylor expansion. In fact
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the additional parametrisation permits to satisfy at least some features of the correct
formal behavior expected from the XC potential in certain limiting cases, that was not
granted within the LDA. For instance, the correct asymptotic of vxc(r) on removal an
electron from the rest of system must be Coulombic, vxc ∼− 1/r for r→∞, dominated
by the attraction towards the net charge of the system left behind, whereas the LDA
XC-potential falls down as ∼ − [ρ(r)]1/3 and hence exponentially, i.e., an electron is
too weakly bound. This wrong asymptotic is the origin of some deficiencies of LDA; an
enlightening discussion was offered, e.g., by van Leeuwen and Baerends [1994]. A variety
of forms that specify the functional dependence of the XC energy density in terms of
exactly four arguments, i.e., the spin-split densities and gradients, subject to certain
“physical” constraints, fall into the category of generalized gradient approximation
(GGA), discussed at length by Perdew et al. [1992]:

EGGA
xc =

∫

drf(ρ↑, ρ↓,∇ρ↑,∇ρ↓) , (1.7)

Here again as with the LDA, a number of convenient parametrisations has been pro-
posed and tested. We single out, for the following reference, the Perdew-Burke-Ernzerhof
(PBE) scheme [Perdew et al., 1996] which became a de facto standard of GGA calcula-
tions, being cited in over 42400 articles. The explicit form of the XC energy according
to the PBE-GGA is

EPBE
xc [ρ↑, ρ↓] =

∫

drρ(r) ǫunifx (ρ(r))Fxc(rS, ζ, s) , (1.8)

where Fxc(rS, ζ, s) is the enhancement factor of (non-local) exchange-correlation over
the (local) exchange density of the uniform density distribution (that for which the
LDA is exactly valid):

ǫunifx = −3

4

(
3

π

)1/3

ρ4/3 , (1.9)

the functional derivative of which over ρ returns (1.3). The enhancement factor F
depends, along with earlier defined Seitz radius rS and spin polarisation ζ, also on the
“non-locality” s that a dimensionless measure of the density gradient at given point r:

s =
|∇ρ|
2kFρ

, with the local Fermi radius kF = (3π2ρ)1/3 = 1.91916/rS . (1.10)

The “non-locality” may vary from s = 0 (hence passing into the LDA limit) to s. 3
“for real systems”, citing Perdew et al. [1996]. The parametrisation of Fxc(rS, ζ, s) is
discussed by Perdew et al. [1996], and the shape of this function in dependence of all
three its arguments is depicted in Fig. 1 therein. To be specific in what particularly
concerns the effect of “non-locality”, it was argued by Perdew et al. [1992] and Perdew
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et al. [1996] that the small-s limit of the enhancement function for exchange must be
Fx(s→0) = 1 + µs2 for all GGA schemes, so that technical discussions concentrate on
the value of the coefficient µ and on the possible choices to conveniently specify Fx(s)
throughout the broad s range, e.g., Perdew et al. [1996] suggested

Fx(s) = 1 + κ− κ

1 + µs2/κ
, (1.11)

with the constants µ = 0.21951 and κ = 0.804. In fact some of parameters are defined
by inequalities rather than by exact fit, that leaves a certain freedom in parametrization,
that was used to enforce possibly best agreement of the calculation results for a large
number of chosen benchmark systems.

A modified parametrisation of Fxc(s) has been proposed by Perdew et al. [2008b],
who aimed at obtaining more accurate results (equilibrium latice constants; atomization
energies) for bulk solids and surfaces, raher than for isolated atoms to which the PBE
case was tuned. Their formula became largely used under the name PBEsol. As is
stated in this work, “PBEsol should improve most surface energies over LSDA, whereas
PBE worsens them”, and further on “The nonlocality or s dependence of GGA exchange
is diminished from PBE to PBEsol, making the latter somewhat closer to LSDA”. On
the web site of the Kieron Burke’s group, one can find documented Fortran codes
of the subroutines to calculate the XC potentials and energies for the PBE (http://
dft.uci.edu/pubs/PBE.asc) and PBEsol (http://dft.uci.edu/pubs/PBEsol.html)
algorithms. The following fragment refers to the definitions covered by the formulae
(1.9), (1.8) and (1.11) above. The difference between PBE and PBEsol is only in the
parameter values applied in one or the other case....

c----------------------------------------------------------------------

c Formulas:

c e_x[unif]=ax*rho^(4/3) [LDA]

c ax = -0.75*(3/pi)^(1/3)

c e_x[PBE]=e_x[unif]*FxPBE(s)

c FxPBE(s)=1+uk-uk/(1+ul*s*s) [a](13)

c uk, ul defined after [a](13)

c----------------------------------------------------------------------

...
An excellent discussion on the backgrounds and implementation details of the GGA

can be found in the Chapter 18 of Burke and friends [2007].

1.2.3 Kohn – Sham eigenvalues and band gaps

The results of DFT calculation are not just total energy or charge density, but also the
KS eigenvalues. If the system under study is dielectric or semiconductor, its important
characteristic is the band gap (and also the characterisation of the band gap as either
direct or indirect one). The latter is related to energy dispersion, see section 1.3.3. In
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experiment, the band gap can be extracted from optical measurements, and the band
structure recovered from angle-resolved spectroscopy. In the community that deals with
DFT calculations, there is a tendency to compare the “experimental” (spectroscopic)
band structures with the dispersion of KS eigenvalues, and to compare the optical band
gap with the energy difference between the highest occupied and the lowest unoccupied
KS orbitals. This tendency can be explained by a certain similarity between the KS and
HF context and the shape of resulting equations. In the HF formalism, the Koopmans’
theorem holds that relates the energy of a given HF orbital to the difference of total
energies of the system in two cases, with the orbital in question being occupied or
vacant. In the KS formalism, the eigenvalues do not have this meaning. In principle,
one should take into account that the DFT was largely derived keeping in mind the
ground-state properties, whereas the optical band gap is something characterising the
electron excitation. However, the relation between the two exist and was elucidated in a
number of works, e.g., quite nicely in a review by Capelle [2006]. The physical meaning
of KS eigenvalues is given by the Janak’s theorem [Janak, 1978] as the derivative of the
total DFT energy, E, with respect to the occupation of a given orbital ni:

ǫi =
∂E

∂ni

(1.12)

In DFT, the total energy E can be generalized over non-integer number of electrons N .
Perdew et al. [1982] have shown that E(N) is a piecewise linear function and hence not
analytical, having kinks (slope discontinuities) at integer N values. This discontinuity
at the factual number of electrons N enters the theoretical expression for the optical
gap ∆,

∆ =
δE[ρ]

δρ(r)

∣
∣
∣
∣
N+δ

− δE[ρ]

δρ(r)

∣
∣
∣
∣
N−δ

(1.13)

that in its turn can be attributed to two contributions to the total energy from the
kinetic energy T [ρ] and the XC energy:

∆ =
δT [ρ]

δρ(r)

∣
∣
∣
∣
N+δ

− δT [ρ]

δρ(r)

∣
∣
∣
∣
N−δ

︸ ︷︷ ︸

∆KS = ǫN+1 − ǫN

+
δExc[ρ]

δρ(r)

∣
∣
∣
∣
N+δ

− δExc[ρ]

δρ(r)

∣
∣
∣
∣
N−δ

︸ ︷︷ ︸

∆xc = v+xc(r)− v−xc(r)

. (1.14)

The “Kohn-Sham gap” ∆KS immediately follows from a solution of the KS equations;
it is “underestimated” in the sense that the second term, ∆xc, that should be provided
by the “exact” XC potential, is not a priori included in the practical realisations used
(as those discussed in the previous section). Any XC potential designed to “correct”
the band gap on the physical basis and not just empirically should somehow imitate
the above mentioned slope discontinuity of Exc(N).
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The version of vxc implemented to this end in the WIEN2k code (used in this work
to calculate band structures and to discuss the band gaps) was suggested by Tran
and Blaha [2009] under the name “modified Becke – Johnson” (mBJ), because this
prescription is based on the paper by Becke and Johnson [2006]. The overview of the
performance and the accuracy of the mBJ potential based on early examples of its use
was given by Koller et al. [2011].

The kinked stepwise behaviour of E(N) indirectly manifests itself in the shell struc-
ture of atoms; Figs. 1,2 of Becke and Johnson [2006] show the “waves” in the radial
profile of “accurate” exchange potentials which get very much damped in the LDA.
It is technically difficult to re-construct such oscillations having at one’s disposal just
the charge density, which is quite smooth in space yet varies over orders of magnitude
(although, in the spirit of the DFT basics, the change density must somehow contain
all the necessary information). The idea of Becke and Johnson was to use the kinetic
energy density as a robust and efficient tool to inspect where the undulations of the
exchange potential need to be added in order to reconstruct the desired atomic-shell
related structure. The working formula must be quite general and not related to par-
ticular atoms of electron shells. Becke and Johnson [2006] suggest to use the (spin σ
-resolved) kinetic energy density τσ,

τσ(r) =
1

2

Nσ∑

i(occ.)

|∇φiσ(r)|2 , (1.15)

normalise to the density itself, and add it, with a prefactor chosen to satisfy the uniform
electron gas limit, to the “conventional” reference exchange potential vref.x (that of
Slater, in their paper):

vBJ
xσ (r) = vref.xσ (r) +

1

π

√

5

12

√

2τσ(r)

ρσ(r)
. (1.16)

The modification of this scheme due to Tran and Blaha [2009] was that they suggested
to use, as a reference exchange potential, that of Becke and Roussel [1989], expressible
via a solution of a non-linear equation depending on the kinetic energy density, charge
(spin) density, the density gradient and Laplacian. Moreover they introduced a variable
prefactor (depending on the average value of |∇ρ|/ρ) that affects the relative weights
of two terms in the right-hand side of Eq. (1.16). The remaining freedom in fixing
this prefactor was used to optimise, on the average, the calculated values of optical
gaps over large number of insulators and semiconductors as compared to corresponding
experimental values. Like in the case of practical schemes for LDA or GGA, such
“fixing” is done once for all systems and “works” reasonably for very different systems
with different band gaps.
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The generic name for XC potentials which make use, along with (local) density and
its gradient, also the kinetic energy density, is meta-GGA [Tao et al., 2003]. The mBJ
scheme addresses only the exchange potential; the effect of correlations can be added
within the LDA but, according to Tran and Blaha [2009], has only small effect. It should
be noted that the use of mBJ functional primarily makes sense to get the “improved”
band structures, in view of their comparison with experiment. As F. Tran put it in
one of his comments to the users’ mail archive related to the WIEN2k code:1 The mBJ

potential should be used only for the calculation of the electronic and magnetic properties,

but not for quantities which involve the total energy like the elastic properties. MBJ is only

a potential and there is no associated functional (LDA was arbitrarily chosen as the energy

funtional for MBJ, option 28).

1.2.4 Semiempirical inclusion of van der Waals interaction

The III-VI semiconductors addressed in the present work have double-layer structure;
among the interactions between adjacent double layers that keeps the crystal together,
an important contribution comes from the van der Waals (vdW) interactions. More
precisely, these are London dispersion forces, “...arising from quantum-induced instan-
taneous polarization multipoles in molecules. They can therefore act between molecules
without permanent multipole moments” (Wikipedia). Indeed, the double layers are
electrically neutral, do not possess dipole moments, and there is hardly a covalent
bonding across the gap between the layers (the so-called vdW gap), because the bonds
are saturated within the double layer. The vdW interactions exist between all atoms,
but remain negligible against covalent or ionic bonds if the latter are present. However,
the omission of vdW interactions may result in an appreciable error in estimating the
equilibrium distances between neutral atoms or molecular fragments.

A “conventional” DFT calculation (of the level of LDA or GGA) a priori does not
contain the physical mechanisms that would account for the dispersion interaction. The
latter was added in the VASP code (discussed below) semiempirically, as described by
Bučko et al. [2010]. The formalism realises the “DFT-D2” approach by Grimme [2006],
where the dispersion interaction is added to the “conventional DFT” part

EDFT+disp = EDFT − s6
∑

i,j

C ij
6 f(|ri − rj|)
|ri − rj|6

, (1.17)

with its r−6 dependence on the distance between the atoms at ri and rj is explicitly
inserted, the distance-dependent analogue of the Fermi function

f(rij) =
1

1 + exp[−d(
rij
Rij

− 1)]
(1.18)

1http://www.mail-archive.com/wien%40zeus.theochem.tuwien.ac.at/msg08020.html
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1.3. Practical solution of Kohn – Sham equations

effectively cuts off the interaction beyond the distance Rij that is taken as a sum of

vdW radii for atoms i and j (tabulated); the atom-dependent pre-factor C ij
6 =

√

C i
6 C

j
6

also comes together from tabulated values; the general prefactor s6 and the smoothness
parameter in the Fermi function d are taken as suggested by Grimme [2006]. We note
that the Grimme correction only affects the total energies (and forces, in the process of
performing the structure optimisation). There is no band structure or density of states
associated with the vdW interaction.

1.3 Practical solution of Kohn – Sham equations

1.3.1 All-electron treatment vs exclusion of core states

Equations (1.2), taken together with the definition of density Eq. (1.1) and taking into
account a specific expression for vex(r) as a functional of ρ(r), make a coupled integro-
differential system; their “straightforward” numerical solution by “standard” methods
developped for differential equations would be quite cumbersome. At this stage, further
approximations need to be taken, for the sake of practical feasibility. The first important
“bifurcation” affects the number of states to be taken into account in the course of
solving the KS system. The alternatives are, either taking all possible electronic states
into account, including those stemming from the most bound ones on each constituent
atom, from the 1s electrons upwards, or restricting oneself to some higher, “chemically
relevant” electronic states only. There are arguments in favour of each choice, and
the decision taken would largely depend on the context and the objective of study.
The electron band structure, optical transitions and spectroscopy, magnetic moments,
chemical bonding and the distribution of electron density in the interatomic space are
all properties which are dominated by valence electrons from higher (valence) shells of
constituent atoms, which enter in some interaction. To be specific, for the elements
studied in the present work, these states are 4s, 3d and 4p for gallium (13 electrons,
distributed over 1×s + 5×d + 3×p → 9 states in an isolated atom), the same amount
for its homologue indium, 16 electrons (three 4p electrons more than for Ga) in case
of selenium, 11 valence electrons stemming from five 3d and one 4s valence states for
copper atom. In comparison, including all electrons would imply 31 per gallium atom,
34 per selenium, 29 per copper and 49 per indium, and the number of electronic states
(i.e., the Kohn – Sham orbitals) over which these electrons need to be accommodated,
would increase considerably, with the corresponding impact onto the total size of the
Kohn – Sham system. The “neglection” of deeper, core electrons presumes that these
latter are indeed present in the atoms, localize themselves in the inner 1s, 2s etc. shells,
but their effect amounts to just screening the nuclear charge felt by the valence electrons
which only do enter into the interaction described by the KS equations. The arguments
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in favour of considering the deeper core states along with the outer valence ones is that
the shape of the core states, their exact energy position and hence ionisation energy
are somehow, even if slightly, affected by the exact distribution of the valence states,
so it will affect the analysis of such core states -related experimental properties as X-
ray spectroscopy, or the hyperfine interactions (of the 1s electrons with the nuclear
spin). Moreover, an important in many practical applications, the correct inclusion
of core states into the calculation has an effect on the total energy of system, that is
often important to make correct predictions concerning competition (relative stability)
of different crystallographic or magnetic phases. Therefore the choice between all-
electron and “valence-states-only” methods is a matter of compromise between the
affordable calculation complexity and the ultimate precision required.

In the present work, two methods are used, in many cases applied to the same sys-
tem, that allows to draw some conclusions about their comparison. The first method, re-
alized in the WIEN2k package [Blaha et al., 2001, see also http://www.wien2k.at], falls
into the category of all-electron ones; we’ll come to discuss the details of its realisation
in a minute. The second method, realized in the VASP package (http://www.vasp.at),
effectively neglects the core states and treats the valence electrons only. Now, the ways
to get rid of the core states are different, and not trivial. Usually, it is done within the
frame of pseudopotential approach, that re-formulates the potential felt by an elec-
tronic state in question, introducing (into a Schrödinger equation, or a Kohn – Sham
equation) a term that is orbital-specific and hence non-local. The construction and
testing of pseudopotentials is a vast area that is fully beyond the scope of the present
work. A database of professionally prepared and tested pseudopotentials is provided
along with the VASP code. It should be mentioned that the pseudopotential method
does generally provide, for a given atom, a solution (one-electron wavefunction) without
radial nodes, that is, yielding a wrong node structure. For example, the radial 4p-like
solution for Ga would depart from zero at the origin (nuclei) and fall down beyond
passing a single maximum, whereas the genuine 4p function in an atom would have
2 nodes (change sign two times before asymptotically falling down at large distance).
This deficiency is, from one hand, physical (since there are no “previous” states of the
same orbital quantum number to which the valence state in question needs to be or-
thogonal); from the other hand, it is intentionally “build in”, driven by the desire to
avoid valence functions to be strongly fluctuating around the atom cores, that would
permit to decompose them into a plane-wave basis with “not-too-high” cutoff (see be-
low). In fact, one of principal objectives in the historical context of developping the
pseudopotential methods (from the model pseudopotentials in the textbooks all the
way to modern ab initio pseudopotentials) was to get rid of these annoying fluctua-
tions and to advance, as far as possible, within the convenient plane-wave picture. An
obvious deficiency of having a wrong node structure is tolerated under understanding
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1.3. Practical solution of Kohn – Sham equations

that this deficiency is confined to some region relatively close to the nucleus,1 whereas
the chemical bonding, band structure etc. are essentially mostly shaped by overlaps
of outer “tails” of atom-centered wave functions, which are fairly enough represented
by a pseudopotential calculation. Important conclusions to be drawn from these very
general considerations concerning the use of pseudopotentials are that

(i) the electron energy bands stemming from the states in atoms more deep than
those explicitly treated as “valence states” are not present whatsoever, nor do
they contribute to the total energies;

(ii) the charge density plots created in a pseudopotential calculation may be reason-
able and accurate in the interatomic region, but do not reflect the node structure
of genuine wave functions in the vicinity of nuclei, and hence are completely wrong
in these areas.

The pseudopotential paradigm is not the only way to get rid of core states mixing
up with the valence ones in the calculation. If fierce spatial fluctuations of valence
electron states do not pose a problem by themselves (say if these functions do not
need to be numerically represented by plane waves), they can be left as they are,
with correct nodal structure and resulting in a “correct” charge density (see above).
Simultaneously, the deeper states identified as core ones can be simply excluded from
the coupled Kohn – Sham equations and solved separately, as for a single electron in a
given potential well (as for an isolated atom, or – better – in a resuting (overlapped)
potential at the given site in crystal. Such treatment of core states, done “once and for
all”, is typically referred to as frozen core approach. Yet another – and more modern
– technique, effectively combining the advantages of pseudopotential and frozen core
ones, is the projector augmented wave (PAW) method elaborated by Blöchl [1994].
In a nutshell, in place of straightforward pseudofunctions, smooth around the core and
“knowing nothing” about their would-be-correct nodal structure, the method employs
the functions “flattened” by a special linear transformation, taking into account the
shape of deeper orbitals to which these valence ones have to be orthogonal. In this
way, a back and forth transformation between “genuine” (fluctuating) and softened /
nodeless (projected) functions is defined, that uses the information about the core states
as a transformation / projection “key”. In this sense, the PAW method is comparable
with, but more sophisticated and flexible than, the frozen core technique. The PAW is
implemented in VASP and covered by the documentation to the code; moreover a fair
Wikipedia entry exists2 that indicates a number of useful references. No optimisation

1the size of this confinement is controlled by a “cutoff radius” which however cannot be set very
small, because this will deteriorate other crucial properties of the pseudopotential. In practice, the
markedly “wrong behaviour” of the pseudo-wavefunction may start within ∼10-15% of the interatomic
distance.

2https://en.wikipedia.org/wiki/Projector_augmented_wave_method
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or tuning in this sense was undertaken in the present work and default VASP settings
were used, therefore this subject won’t be specifically covered further on.

To conclude with the issue of separation into the valence and core states, it can
be noted that sometimes this discrimination is not easy, if the states in question are
localized, but not quite so strongly as the yet deeper lying states. In this case one
speaks of semicore states. Among the elements appearing in the present work, the
Se3d or Cu3p states can be given as examples. In a solid, such states form a split-off
band that does not mix up with other electronic states; yet the related wavefunctions
centered at different such sites in crystal do a bit overlap, so that a tiny dispersion
(hence bandwidth) of the corresponding energy band can be noted. The inclusion
of such states as the valence ones, always possible in all-electron methods, is usually
important for obtaining more accurate results for the total energy; this way it was done
in the present WIEN2k calculations. In pseudopotential calculations, as indicated above,
it is usually possible to include only one state of the given orbital moment (l value)
in the valence band, hence a choice must be done whether it should be, e.g. rather
Se3d (essentially occupied) or Se4d (essentially empty). This choice can be done ad
hoc, driven by the priorities of calculation and the availability / quality (accuracy) of
corresponding pseudopotentials. In the VASP calculations done in the present work,
the following valence configurations of elements were used (the states, and electron
numbers from each atom, that contribute to the solution of the Kohn – Sham equations):
Ga3d104s24p1, In4d105s25p1, Se4s24p4.

1.3.2 Basis functions; calculations with WIEN2k and VASP

As was already mentioned at the beginning of the previous subsection, the straightfor-
ward solution of the KS system (1.2) by methods applicable for differential equations
is hardly practical. The alternatives could be, (i) a discretization of all functions on
a regular, or adaptive [see, e.g., Gygi, 1993] spatial mesh throughout the periodic unit
cell in case of a crystal, or throughout the “volume” (e.g., a “simulation box”) in case
of an isolated molecule, or cluster; (ii) the decomposition of KS functions searched for
over a system of either fixed, or adjustable, basis functions, and the reduction of the
initial integro-differential system to a system of algebraic equations, solvable by means
of diagonalization. To specify the approach, we cast the Kohn – Sham system in a
compact form incorporating all the terms in the brackets at the left of Eq. (1.2) into

the Kohn – Sham Hamiltionian Ĥ, whatever the specific form of the XC term, resulting
in Ĥφi = ǫφi. Further on, the searched for KS functions are expanded over the basis
system |χα〉 with coefficients Ciα. With this, Eq. (1.2) takes the shape

∑

α

Ciα Ĥ|χα〉 = ǫi
∑

α

Ciα|χα〉 (1.19)
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that, multiplying each term on the left by 〈χβ|, yields

∀β,
∑

α

〈χβ|Ĥ|χα〉
︸ ︷︷ ︸

≡Hβα

Ciα = ǫi
∑

α

〈χβ|χα〉
︸ ︷︷ ︸

≡Sβα

Ciα , or HC = ǫSC , (1.20)

that is, a generalized diagonalisation problem with right-side matrix S, eigenvalues ǫ and
eigenvectors C. Knowing the latter permits to recover the KS functions in the original
(spatial) representation, taking the basis functions with the now specified coefficients.

With respect to the above decomposition, several remarks can be done.

• There is no basic difference between the discretization on the grid, i.e., the option
(i) above, and the decomposition into basis functions, i.e., option (ii), because the basis,
as a valid choice, may consist of “primitives” equal to 1 at a given grid point and 0
elsewhere. Then the expansion φi =

∑

α Ciαχα is simply a piecewise (linear, or more
sophisticated, depending on “primitives”) interpolation of φi on the grid, and the whole
machinery of Eq. (1.20) applies.

• The basis does not need to be orthogonal (that might be anyway difficult to
impose, apart from special cases, like plane waves); the presence of the overlap matrix
Sβα takes this into account.

• The size of the basis ought to be at least as large as the number of occupied
states φi need to be calculated, but in reality (unless the basis is “perfect”) it must
be much larger, in order to provide the necessary flexibility in adjusting the solutions
φi. As the KS equations are variational, the “improvement” (in practical terms – a
systematic increase) of the basis system allows to “improve” (i.e., to obtain lower total
energy, otherwise enhance the precision of) the solutions and all related properties –
band energies, charge density, etc.

• The charge density follows from Eq. (1.1); expressed with the help of the basis
functions χα, it takes the form:

ρ(r) =
N∑

i (occ.)

|φi|2 =
∑

α,β

〈χβ|
N∑

i (occ.)

CiβCiα

︸ ︷︷ ︸

≡ ρβα

|χα〉 , (1.21)

which defines the density matrix ραβ in the representation by the basis system |χ〉.
Quite common choices of basis functions for practical electronic structure calcula-

tions are:

(1) plane waves (predominantly in combination with pseudopotentials or PAW tech-
nique, when the functions φi do not exhibit strong spatial fluctuations);

(2) atom-centered more or less localized functions that possess either “reasonable”
physical shape (Slater-type orbitals, numerical solutions of some reference systems,
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etc.), or “convenient” mathematical properties (Gaussian-type orbitals that permit an
analytical evaluation of multicenter integrals, e.g., Hβα and Sβα in Eq. (1.20) ).

In the VASP code, the planewave basis is used. It should be noted that the use
of planewaves as basis implies the exact periodicity of the system under study. In the
present work, this was naturally given, since all systems are crystalline and characterised
by compact enough translation vectors. To apply a planewave code for the treatment of
a molecule, it is necessary to place the latter into an artificial “simulation box”, imposing
a spurious periodicity (and hence “contaminating” the results by spurious interaction
of translated replicas of the system under study). The periodicity of the basis functions
at the lengths of the simulation cell (or, the primitive cell in a crystal) is automatically
guaranteed if the plane waves are numbered by the vectors of reciprocal lattice G, since,
for any lattice translation R, holds eiG(R+r) = eiGr. The planewave basis functions
can be systematically generated and enhanced by the largest G magnitude taken into
account, that is, the wavevector of the fastest fluctuating plane wave. In practice, a
cutoff is set as the radius of sphere in the reciprocal space, Gmax, within which all the
vectors G are used for the construction of the basis. Such cutoff is usually expressed in
units of reciprocal length, or, using the relation

Ecut =
~G2

max

2m
, (1.22)

– in units of energy. The actual number of the planewaves used scales with the volume
of the periodic cell, Ω, as NPW ∼ ΩE

3/2
cut .

An important element of the WIEN2k code is the muffin-tin geometry, a remnant
of the historically used muffin-tin approximation (the potential being spherically sym-
metric within atom-centered non-overlapping spheres and flat in the interstitial region).
The muffin-tin (MT) geometry preserves this division of space, although nowadays the
intra-sphere potential includes non-spherical terms (it is expanded over spherical har-
monics around each atom), and the potential in the interstitial region retains a general
form, typically being expanded over plane waves. The method of solving the KS equa-
tions adopted in WIEN2k is a successor of augmented plane waves method by Slater
[1953], where a composite form of one-electron wavefunctions was applied: numerical
radial functions inside the muffin-tin spheres, matched onto plane waves in the intersti-
tial. Following a sequence of modifications, explained in the Introduction to the WIEN2k
User’s guide (that cites, in its turn, the essential sources), nowadays a combined basis
set is applied in the WIEN2k method. It includes numerically tabulated radial functions
(centered at each participating atom, for different orbital moment values l) that are
matched onto the plane waves at the spheres, plus a number of “local orbitals” which
are “relieved” of matching conditions.1 The number of basis fuctions amounts to “large”

1Correspondingly, the “self-designation” of the WIEN2k method is “An Augmented Plane Wave
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(∼thousands; numbered by planewaves with their corresponding cutoff, see the above
discussion on VASP) plus “small” (just a few “local orbitals” per atom) hence, generally,
“large” as in planewave methods (see the details of the present calculations below in
Subsec. 1.3.4). It should be noted, however, that these basis functions are (i) more
sophisticated than just plane waves and able to describe strongly fluctuating shape of
electron wavefunctions within the atoms, an important improvement over “just plane
waves” methods; (ii) adjustable (via their internal numerical part) from one iteration
to the other and hence more efficient than “fixed basis” methods. De facto, WIEN2k is
able to provide an ultimate numerical precision in practical solving of KS equations,
within given approximations adopted at the level of DFT. Therefore this method is
often served as an ultimate benchmark for other computational codes; it is used in this
quality also in the present work.

1.3.3 Specifics of calculations on periodic systems

It was already briefly mentioned above that the use of planewave basis (or, that of
augmented plane waves) implies a periodicity of the system under study: the plane
waves are numbered by the vectors of reciprocal lattice G; this presumes that the
direct lattice exists, hence the simulation cell must be periodic. However, at this step
yet no distinction is done of whether the simulation cell contains an isolated piece of
matter (a molecule), or is a part of crystal. The difference between the two cases is the
dispersion (of energies, or corresponding wavefunctions) which is non-existent in the
first case, but important in the second.

It can be reminded here that dispersion follows from an imposition of the Born –
von Kármán periodic boundary conditions onto the whole crystal. As the consequence,
the properties entering the KS equations (1.2) and numbered there by i, a hitherto non
specified cumulate index, acquire a more specific numbering in terms of k, the vector
within the Brillouin zone (BZ) of the crystal, and the band index ν that runs (upwards)
throughout the energy bands, at each k point:

ǫi → ǫνk ; φi(r) → φνk(r) . (1.23)

As the crystal is assumed infinite, the distribution of k values throughout the BZ is
quasi continuous. The summations over electronic states – e.g., the recovering of the
electron density according to Eq. (1.1), but also the evaluation of the total energy etc.
– then involve the summation over bands ν and the volume integration over k. For
practical purposes, however, only a (more or less) sparse grid of k can be generated,
and some kind of interpolation performed.

The technics of k-space integration do not depend on the basis set nor the solution

Plus Local Orbitals Program”, see http://www.wien2k.at/reg_user/textbooks/usersguide.pdf.
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method of KS equations; the most used are the following two approaches, applied
with some variations: (i) sampling [Monkhorst and Pack, 1976], whereby a continuous
integral of some k-dependent function f is replaced by a weighted sum over its values
in Nk representative points ki chosen with their corresponding weights wi from within
the volume of the BZ, ΩBZ:

∫

BZ

f(k)dk → ΩBZ

Nk

Nk∑

i

f(ki)wi , (1.24)

(ii) the tetrahedron integration, whereby the energy k-dependent properties (energies,
matrix elements) are supposed to vary linearly within each tetrahedron delimited by
four closely situated k points [Blöchl et al., 1994; Jepsen and Andersen, 1971]. The
resulting formulae then depend on the integrand in question, i.e., whether the presum-
ably linear function of k stands in the numerator n(k), in the denominator d(k), or in
both, of f(k) = n(k)/d(k), or includes more complex constructions – see, e.g. Molenaar
et al. [1982].

The both techniques allow to make use of the symmetry relations concerning the
integrand f(k) under operations of the space group in question. As a result, the sum
(or integration) in (1.24) over the full BZ can be replaced by operations with a reduced
set of non-equivalent k points, or over the irredicible part of the BZ. In particular,
the weights wi in (1.24) will be affected by taking into account the degeneracies of the
(irreducible) k points over which the summation is retained. Whatever the details of
implementation, the ultimate accuracy of k-space integration scheme depends on the
fineness of the k-grid, that is, essentially (as the homogeneous grids are typically used)
on the number of divisions N1, N2, N3 along the edges of the reciprocal unit cell. It
usually makes sense to choose a “balanced” division according to actual lengths of the
reciprocal vectors in question, so that the accuracy of the k-mesh would be governed by
a single easily controllable parameter, e.g., the density of k points as discussed in the
main text. It is important to make sure that the fineness of the k mesh is sufficient to
guarantee the convergence of results to the accuracy relevant for the project in question;
such tests are discussed in the following section.

A related but different issue than that of integration over the BZ is that of studying
energy dispersions, in view of discussing the placement and composition of valence
and conduction bands, etc. For such analysis, band structure plots are usually
constructed, by following a quasi continuous k path along the Brillouin zone. Since
this serves purely illustrative purposes, a choice of such path is, in principle, arbitrary;
however, in order to better emphasize the diversity of the band structure, commonly
the path is chosen that connects points of high symmetry of the BZ, including Γ and
some points at the BZ edges. The reason for such choice is that the extrema of different
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bands do usually occur at k points that possess certain symmetry. The established
attribution and notation of symmetry points for different types of crystal lattices can
be found, e.g., in Chapter 3 “Space Groups” of the book by Bradley and Cracknell
[1972]. This information is moreover scattered over internet ressources (e.g., http://
lamp.tu-graz.ac.at/~hadley/ss2/appendix/symmetrypoints.pdf at the web page
of Peter Hadley at the TU Graz), and is organized into tables (without figures, for each
given space group) at the Bilbao Crystallographic Server, section “The k-vector types
and Brillouin zones of Space Groups”: http://www.cryst.ehu.es/cryst/get_kvec.
html. A more specific discussion concerning the structures of the present study will be
given in Chapter 2. Along with the band energies, other features can be shown at band
structure plots, for instance, the selected orbital contributions at a given band and k
point. These latter amount to the decomposition of φνk(r) from (1.23), projecting them
onto atom- and orbital character (s, p, d) -related reference functions.

1.3.4 Practical calculation: important files and parameters

In probably any ab initio calculation method, the description of the crystal structure
(translation vectors and coordinates of atoms in the unit cell) needs to be explicitly
given, accompanied by switches and parameter values typical for the method in ques-
tion, and according to a particular calculation task: calculating or not the forces on
atoms, displacing or not the atoms etc. One should distinguish between the electronic
relaxation, that is, finding a self-consistent solution of the KS equations (1.2) for a given
fixed geometry, and the ionic relaxation, that consists in finding the equilibrium crystal
structure. The latter is achieved by minimizing the total energy (at zero temperature),
whereby the lattice vectors and the atom positions in the cell are so modified so as to
minimize the forces acting on atoms and the components of the stress tensor.1 The
simplest isolated calculation task is to converge the electronic-structure problem, i.e.,
to perform the electronic relaxation, for a given (fixed) crystal structure. The self-
consistency of the KS equations implies that the eigenvectors of the KS equations (1.2)
give rise, via Eq. (1.1), to exactly the charge density that enters the Coulomb and XC
potential of the KS equations. Such convergence is (hopefully) achieved in a sequence
of iterations. A usually applied criterion of convergence is such that the charge density
deviation from its values at the previous iteration(s), somehow estimated throughout
the unit cell, becomes less than some preset value. Setting such a tolerance parameter
is reasonably done in both WIEN2k and VASP by default and does not need any special
attention. The speed and the stability of the convergence are controlled by the choice
of the mixing scheme and mixing parameters. Some technical details will be discussed
below.

1A scenario of molecular dynamics, in which the atoms follow the forces acting on them but never
come to equilibrium, was not applied in the present work.
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WIEN2K

The documentation to the current version of the code can be found at the projet’s web
site, http://www.wien2k.at/reg_user/textbooks/usersguide.pdf. In a nutshell,
the crystal structure of the system under study is defined by the “master input file”
〈case〉.struct, whereby 〈case〉 stands for the generic name of the calculation task,
that must also be the name of the work directory in which numerous working files will
reside, and .struct is the fixed extension. A valid example of such file (with large parts
omitted and indicated by points) is shown in Fig. 1.1. In the fixed format accepted
for this structure file, the line with lattice parameters (a= b=7.0934 Bohr≈3.7537 Å,
c = 30.458 Bohr≈16.1177 Å; α = β = 90◦, γ=120◦) is followed by lines with relative
coordinates of constituent atoms: z = ±0.57567 for Ga and ±0.14851 for Se; other-
wise (x, y) = ±(1

3
, 2
3
); further Wyckoff positions of this structure are omitted in the

example shown. The space group identification (here: Nr 187, P 6̄m2), local rotation
matrices following each nonequivalent species and the symmetry operations (rotation
+ translation matrices; 12 in the present case) do not need to be correctly indicated

GaSe-epsilon

H LATTICE,NONEQUIV.ATOMS: 4187_P-6m2

MODE OF CALC=RELA unit=bohr

7.093400 7.093400 30.458000 90.000000 90.000000120.000000

ATOM -1: X=0.33333333 Y=0.66666667 Z=0.57567000

MULT= 2 ISPLIT= 4

-1: X=0.33333333 Y=0.66666667 Z=0.42433000

Ga NPT= 781 R0=0.00001000 RMT= 2.0800 Z: 31.0

LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000

0.0000000 1.0000000 0.0000000

0.0000000 0.0000000 1.0000000

ATOM -2: X=0.66666667 Y=0.33333333 Z=0.14851000

MULT= 2 ISPLIT= 4

-2: X=0.66666666 Y=0.33333333 Z=0.85149000

Se NPT= 781 R0=0.00005000 RMT= 2.1800 Z: 34.0

( ... )

12 NUMBER OF SYMMETRY OPERATIONS

-1 1 0 0.00000000

-1 0 0 0.00000000

0 0-1 0.00000000

1

( ... )

12

Figure 1.1: A fragment of the .struct file for WIEN2k calculation of the ε phase of GaSe.
Omitted fragments are indicated by dots in brackets. See text for details.
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1.3. Practical solution of Kohn – Sham equations

from the beginning since they can be created / verified / updated by corresponding
parts of the WIEN2k code. A rather sensitive element of this input file is the muffin-tin
(MT) radius, RMT, to be specified for every non-equivalent species (here: 2.08 Bohr
for Ga and 2.18 Bohr for Se). Its choice is, at the same time, not critical in the sense
that the physically relevant results are not supposed to significantly depend on it (if
chosen within some reasonable limits); at the same time its choice is crucial, because
once chosen the MT radii cannot be smoothly modified in the calculation. The point
is, RMT defines the matching point of the numerically tabulated atom-centered basis
function near the atom core with its plane-wave augmentation in the inerstitial region.
A large RMT allows to grasp a larger part of the wave functions / charge density, as
spatially fluctuating as they may be, by a more accurate numerics, controlled by a
relatively unproblematic and not expensive expansion over spherical harmonics around
a given center. A smaller RMT shifts the “load” of accurate numerical description of
spatial functions more into the interstitial, demanding a higher planewave cutoff and
hence larger matrix sizes to diagonalize. The essential limitation is that the MT radii
may not overlap in the course of calculations involving ionic relaxation, displacements
of atoms and distortions of the unit cell. Therefore for a calculation project intended
to incorporate a dynamical part, the RMT are usually chosen small enough to allow
some free space around, to move the atoms. The choice of slightly different set of RMT

radii may result in markedly different absolute values (in the program’s internal scale)
of band energies ǫνk and the total energy. This is typically not a problem, because
the physically relevant properties (e.g., band energies relative to the Fermi level; the
defect formation energies or cohesion energies) represent a difference of two “absolute”
values which are hardly of interest by themselves. Such absolute energy values, when-
ever shown in the present work, are only given for reference properties; it is more their
variation as function of some parameter (k-mesh density; volume, etc.) that is brought
into the corresponding discussion.

After some preliminary tests, the RMT radii consistently accepted in the present
work are the following: 2.08 Bohr for Ga, 2.27 Bohr for In, 2.18 Bohr for Se, 2.07 Bohr
for Cu. They are not advised to be chosen very different for atoms whose sizes do
not markedly differ; otherwise the RMT are the user’s choice and not subject to any
optimisation.

A typical calculation by the WIEN2k code is controlled by a shell script that invokes in
a sequence the executable files, created by compilation of (mostly) Fortran95 program
files. A single step of electronic relaxation is realized by a sequence of calls to (in
principle, stand-alone) programs entitled lapw0 (that constructs the Coulomb and XC
potential from the available charge density), lapw1 (diagonalizing of KS matrices),
lapw2 (that recovers the valence-electrons charge density from the eigenvectors), lcore
(recalculating the core states in each atom), and mixer (that admixes the just obtained
charge density to the “old” one, to prepare the input for the following iteration. The
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exchange of data between the codes is organized via a system of files which are created
or read at corresponding steps. Special shell scripts are provided for preparing necessary
files to start a new project, to extract “useful” information (band structures, density of
states, charge densities etc.) for inspection. Such organization of calculation is robust,
because each step can be separately inspected and, in case of problem, the concerned
data files repaired. On the other hand, the organisation of involved calculation tasks
might appear cumbersome.

For instance, the full structure optimisation of a given compound in WIEN2k is
not easy. A shell script min lapw exists which, for fixed lattice parameters, displaces
(retaining the crystal symmetry) the atoms according to forces acting on them. That
means that the coordinates in the “active” .struct file are modified (overwritten), till
all the forces get smaller than the certain tolerance value. However, the modification
of the lattice parameters is not so automatised and demands scanning more or less by
hand. In practice, a sequence of trial .struct files can be automatically generated for a
given structure, corresponding to a scan through a certain number of lattice parameter
values, combinations of the latter – for instance, the c/a and unit cell volume ∼a2c
for tetragonal or hexagonal structures (as those concerned by the present work). The
calculated total energy values through the set of trial structures can be then fitted to a
polynomial, and the equilibrium lattice parameters estimated. If these modified lattice
parameters happen to be far from those previously assumed, another minimisation of the
forces on atoms might be due. The equilibrium structure thus emerges from a sequence
of consecutive [lattice parameters optimisation] – [atom coordinates adjustment] steps.

Among the parameters controlling a WIEN2k calculation, major part of which are
“safe” in the sense of numerical accuracy at their provided default settings, there are
some whose effect on the accuracy of results (and hence on quantitative and qualitative
conclusions thereof) might be considerable. The RKMAX parameter is a (unitless) product
of the plane-wave cutoff Kmax by the smallest MT sphere radius in the system under
study; its default value of 7.0 is quite acceptable for producing accurate band dispersions
of densities of states; however, a good convergence of total-energy results demands a
much higher cutoff. We used the value RKMAX=9.0 in all WIEN2k calculations discussed.
Another sensitive parameter is the density of the k-mesh for integrations over the
Brillouin zone. The mesh practically used (i.e., the number of divisions along the three
vectors of the reciprocal cell) is generated after prompting the user for a rough estimate
of the desired number of k-points during the initialisation of a WIEN2k calculation. The
initialisation sequence, run by the shell script init lapw, invokes the code kgen that
takes care of setting up the mesh. In sensitive cases, the convergence of physically
relevant total energy differences (e.g., between different crystallographic phases, like
e.g. for the case of binary GaSe / InSe structures discussed in the present work) may
be very slow. Since this analysis equally concerns the utilisation of the VASP code, the
corresponding discussion is postponed till after the brief discussion of the both codes.
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1.3. Practical solution of Kohn – Sham equations

VASP

Differently from WIEN2k, VASP is the “all-purpose” single code capable to manage elec-
tronic and ionic relaxations, the latter to be done with and without distorting the lattice
along with modifying the atoms’ internal coordinates. The VASP team maintains the
project site http://www.vasp.at with links to the exhaustive manual and the “VASP
wiki”. Among the “standard” fixed-name input files of the VASP code, the POSCAR file
is that specifying the crystal structure. A “minimalist” example in Fig. 1.2 refers to
the ε structure of GaSe, not literally identical to that shown in Fig. 1.1. The lattice
vectors, given line by line with their Cartesian components in Ångström, are followed
by relative atom coordinates; four Ga atoms followed by four Se ones. Differently than
the all-electron WIEN2k code that generates all the necessary atom-related information
“from scratch”, VASP relies on POTCAR file, which provides the pseudopotentials for all
constituent species, typically from the standard VASP database. The two other neces-
sary fixed-name input files needed for VASP are the KPOINTS which explicitly describes
the k-mesh sampling (somehow similar to that used in WIEN2k) and the INCAR file acco-
modating a variety of parameters that specify the calculation scenario. Many of these
parameters are good in default setting, but some need attention:

• The PREC tag, that affects certain cutoffs, is set to “Normal” by default (since ver-
sion VASP.5) whereas the accuracy required in our calculations demanded (at least) the
“Accurate” level.

• ENCUT, the planewave cutoff for the basis functions defined according to Eq. (1.22),
needs to be (at least) 500 (measured in eV) for the systems and problems of the present

GaSe-epsilon

1.0

3.7647039890 0.0000000000 0.0000000000

-1.8823519945 3.2603292922 0.0000000000

0.0000000000 0.0000000000 15.8764953613

Ga Se

4 4

Direct

0.333333343 0.666666687 0.576569974

0.333333343 0.666666687 0.423429996

0.000000000 0.000000000 0.076559998

0.000000000 0.000000000 0.923439980

0.666666687 0.333333343 0.150110006

0.666666687 0.333333343 0.849889994

0.000000000 0.000000000 0.349889994

0.000000000 0.000000000 0.650110006

Figure 1.2: A POSCAR file for VASP calculation of the ε phase of GaSe.
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study.

• EDIFF, the convergence criterion for stopping the electronic relaxation, has to be
reduced to, at least, 1E-6 (the default being 1E-4= 10−4).

• In order to allow the ionic relaxation, the switch IBRION=2 needs to be set up that
chooses the conjugate-gradient algorithm (otherwise no relaxation is done by default);
moreover EDIFFG= -0.03 stipulates, as the criterion of termination, that forces on all
atoms ought to be inferior to 0.03 eV/Å.

• The ISIF tag chooses the ionic relaxation mode; it provides a number of possibil-
ities to allow or not the displacement of atoms (driven by forces) and variations of
the unit cell volume and shape (driven by calculated stress tensor). The “interesting”
combinations are: ISIF=2 (atoms relaxed in rigid unit cell, a scenario corresponding to
running the min lapw script in WIEN2k) and ISIF=4 (relaxation of ions and of the unit
cell shape, for fixed cell volume; a convenient mode for constructing energy/volume
curves to compare competitive crystal structures). ISIF=3 performs an unconstrained
relaxation of all structure parameters.

The crystal symmetry in VASP is by default taken into account; however, it can be
explicitly switched off assigning the ISYM tag a value of 0 or -1. Specifically, some
symmetry analysis is done, and the atom coordinates and the charge density are sym-
metrized. The WIEN2k code enforces a more strict use of symmetry than VASP: a detailed
space group analysis is done, and all the relevant calculated properties consistently sym-
metrized. An attempt to switch off the existing symmetry would demand an arduous
trickery (describing equivalent atoms as belonging to different species etc.) whereas in
VASP, a modification of a single tag would do the job.

We come now to discussion of the k-mesh convergence issue, that is somehow com-
mon for WIEN2k and VASP (and for many other electronic structure codes). The accuracy
of k-space integration according to Eq. (1.24) by either the tetrahedron method Blöchl
et al. [1994]; Jepsen and Andersen [1971] or by sampling Monkhorst and Pack [1976]
improves as the k-mesh becomes more fine. The criterion of convergence in the sense of
k-mesh “saturation” is that the properties of interest (typically, total energy differences
between different states subject to comparison) become stabilized to the meaningful ac-
curacy.

An example of such analysis is given on Fig. 1.3, for the case of converging the total
energies of several phases of GaSe, on the basis of WIEN2k calculation. The density
of k-mesh is characterized by a single parameter, the (cubic root of) the number of k
points within the unit of reciprocal volume. One can see that the absolute total energy
values goes on to decrease as the k-points density (Dk) increases. However, what is of
physical meaning is not the total energy by itself, but its difference between the phases
one wants to compare. The Dk necessary to get reliable trends may vary from case
to case. Obviously, the energy difference between the β and ε phases gets stabilized
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Figure 1.3: A k-convergence test for different phases of GaSe, after WIEN2k calculations.

(on the energy scale of ≃ 0.1 mRy, relevant for discriminating the two) already from
Dk ≃ 25 Å; the δ phase reliably places itself between the latter phases fromDk ≃ 30 Å
on. Finally, the γ phase converges worse and arrives at the same slope of ∆E/Dk only
from Dk ≃ 55 Å. In fact, the γ phase has rhombohedral unit cell (and Brillouim
zone), whereas the other three phases are hexagonal. Moreover the β and ε phases
share roughly the same c/a relation while the δ unit cell is twice longer. Consequently
the systematic errors of k-space integration are the most efficiently compensated for β
vs ε phases, whereas the γ phase has the tetrahedra completely differently arranged in
the k-space, hence such systematic error compensation does not occur. The message
from this analysis is that the (N1×N2×N3) divisions along the reciprocal lattice vectors
need to be taken as (at least) (17×17×3) for β and ε phases, (17×17×1) for the δ phase
and (12×12×12) for the γ phase, in order to yield a reliable energy comparison between
the three phases. An alternative solution concerning the “problematic” γ phase could
have been to treat it in hexagonal setting, that would permit a not so demanding kmesh
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(with Dk ≃ 35 Å), at the price of triplicating the number of atoms in the unit cell.
However, in terms of calculation time, a multiplication of the number of atoms is much
more demanding than an “equivalent” increase of k points. Moreover, at least when
using WIEN2k code that is quite strict in exploiting the maximal available symmetry,
it costs efforts to cheat the code into imposing a (lower) hexagonal symmetry onto an
inherenty rhombohedral system.

As a final remark, Fig. 1.3 serves just test purposes and does not reveal the true
energy relation between phases. The calculation compared were done for some fixed
geometry of each phase, close to (but not exactly at) corresponding equilibrium struc-
tures. A more meaningful inspection of energy relations between phases has to take
into account the variation of energy with volume, and is discussed in due place.
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Systems to be studied

2.1 General introduction

The initial motivation for the work was to study the electronic structure of mixed semi-
conductors important for photovoltaic applications. Prototype systems in this relation
are chalcopyrite-type CuInSe2 (CISe) and CuGaSe2 (CGSe). CISe and CGSe crystals,
among many other ternary compounds with chalcopyrite structure, have been probably
first described and synthetized by Hahn et al. [1953]. The practical interest for related
systems arised in 1970s in the context of optical applications, e.g., the luminiscence of
CuGaS2 [Wagner et al., 1973] or CuInS2 [Bridenbaugh and Migliorato, 1975]. The cor-
responding complex sulphides, or mixed sulphides-selenides, do also appear in practical
works on photovoltaics. As polycrystalline thin films used for photovoltaics, these sys-
tems marked an outstanding efficiency, up to 19.9% [Ramanathan et al., 2003; Repins
et al., 2008]. CISe and CGSe possess “good” band gap for the use in photovoltaics, that
can be further on tuned by alloying [Gabor et al., 1996]. Murata et al. [2014] write:
“The bandgap of a Cu(In,Ga)Se2 (CIGSe) absorbing layer is varied from 1.0 to 1.7 eV
by changing the composition ratio of gallium, realizing an optimum design for solar
cell absorbers.” Many other compounds of the same family have been studied, under
the angle of possible photovoltaic applications or otherwise. A rich overview of the
knowledge corresponding to the end of 1970s in what concerns structures, band gaps
and positioning in the structure phase diagrams of several important chalcopyrite-type
ternary semiconductors was done by Pamplin et al. [1979]. Concerning first-principles
calculations, a pioneering work of Jaffe and Zunger [1983] should be mentioned which
served as a benchmark (for band structures, charge densities etc.) or a source for
inspiration in more than 360 later publications.

The presence of structural defects, either intentional (e.g., chemical doping) or un-
intentional (in the course of samples preparation or treatment) is another hot topic of
study on these materials. Generally, it somehow reduces the photovoltaic efficiency –
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see, e.g., Cao et al. [2011] and Wi et al. [2015], just to mention a couple of recent works.
Some defects can be “cured” under appropriate growth conditions [Mainz et al., 2016],
and in general these chalcopyrite-type materials have a reputation to be quite robust,
in what regards not much degrading their photovoltaic properties, under irradiation.
Among first-principles works, that of Zhang et al. [1998] should be singled out as the one
that established some hierarchy in the relative “importance” of possible point defects
(in CISe), discussed the placement of the defects’ energy levels etc. An extension over
point defects in CGSe has been done by the same team soon after [Wei et al., 1998].

The defect-related issues have been intentionally left out of the scope of this work,
and, for chalcopyrite-type systems, only Ga/In isovalent substitution briefly considered.
In view of large number of first-principles calculations done in the course of last decades
by many researchers on CISe and CGSe, the present motivation was to try the state-of-
art accuracy (within the DFT, using WIEN2k) in optimizing the crystal structure and
exploring the band structures, “corrected” within the mBJ XC scheme. To study the
effect of Ga/In substitution was part of the work objective; this (partial) substitution
was simulated in the simplest way, by considering the number of supercells describing
fictitious ordered structures with 1:3, 2:2 ans 3:1 composition of In:Ga. Despite the
“crudeness” of this approach, it can be somehow excused by an a posteriori observation
that the resulting composition-dependent trends are very smooth.

The chalcopyrite-type structure of CISe (or, similar for CGSe) is shown in Fig. 2.1;
the Wyckoff positions of participating elements, corresponding to the space group I 4̄2d
(Nr 122), are indicated in Table 2.1. The structure can be understood as the zincblende-
type one, in which the cation sites are split into two species, occupied, in an ordered way,
by two distinct elements, stemming from the two columns of the periodic table. This
lowers the symmetry: it is reduced from cubic (in zincblende) to tetragonal, although
the c/2 would only slightly differ from a. Moreover the anion sites acquire a free

Figure 2.1: Tetragonal
unit cell of CuInSe2 in the
chalcopyrite structure in a
perspective view (left) and
in the top view (right).
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Table 2.1: Wyckoff positions in chalcopyrite-type CISe or CGSe (space group I 4̄2d). The
missing coordinates in the tetragonal cell (Fig. 2.1) can be obtained by the translation (12

1
2

1
2).

Site Coordinates Element

(4a) (0 0 0); (1
2
0 3

4
) Cu

(4b) (0 0 1
2
); (1

2
0 1

4
) In / Ga

(8d) (x 1
4

1
8
); (x̄ 3

4
1
8
); (1

4
x̄ 7

8
); (3

4
x 7

8
) Se

internal coordinate, x in Table 2.1. The deviation from the “ideal” value x = 1/4
means that distance of Se to its (two) Cu neighbours is not the same as to its (two)
In or Ga neighbours. This distortion is clearly seen in the top view of the (really
relaxed) CISe unit cell. The Cu–Se bond is shorter than (In/Ga)–Se, hence x < 1

4
.

Mandel et al. [1977] reported the crystal structure of pure CGSe by X-ray diffraction;
Paszkowicz et al. [2004] refined the crystal structure of pure CISe. A recent experimental
determination of the crystal structure data (by EXAFS) for Cu(In,Ga)Se2 throughout
the whole concentrations range has been recently reported by Schnohr et al. [2012].
These experimental data will be discussed later, in comparison with our calculation
results.

The nearest coordination of atoms which enter the covalent bonding to form the
crystal structure of a semiconductor tend to satisfy the “octet rule”, that is, to make
a closed 8-electron shell for each atom, counting together the electrons donated by /
shared with its neighbours. In case of a conventional (4-coordinated) semiconductor,
say ZnSe, whether in zincblende or wurtzite structure, the counting would read as
follows:

electr. per Zn: 2 + [ 4 Se neighbours ] · 6 (per Se)
[
shared between 4 Zn neighb.

] =8 ;

electr. per Se: 6 + [ 4 Zn neighbours ] · 2 (per Zn)
[
shared between 4 Se neighb.

] =8 ,
(2.1)

and similar for III-V (e.g., GaAs), IV-IV (e.g., SiGe) or I-VII semiconductors.

In CISe, each Se atom has 2×Cu + 2×In neighbours, hence 2×1+ 2×3 = 8 valence
electrons provided by all these cations, this yet to be divided by 4, because each cation
shares its valence electrons to four Se neighbours. Adding 6 electrons provided by
the Se itself yields 8. For cations, the octet rule is satisfied “on the average”, the
electronegativities of Cu and In being not identical. The same counting applies to
CGSe, or throughout the compositions in the Cu(In,Ga)Se2 solid solutions.

As was already mentioned, only hypothetical (ordered) mixed chalcopyrite-type sys-
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tems with 1:3, 2:2, 3:1 relation of Ga:In have been considered; the corresponding struc-
ture considerations are discussed below in Section 2.2. Other structures addressed in
this work, the binaries (III)(VI) and (III)2(VI)3, will be explained in Sections 2.4 and
2.6, respectively. These binary semiconductors belong to the structure phase diagram
“bracketing” the (I)(III)(VI)2 – see, e.g., Figs.3-6 of Pamplin et al. [1979] – or appear in
the technical discussions about the sample preparation for photovoltaic devices [Gabor
et al., 1996]. Zhang et al. [1998], in their discussion on the defect physics of CISe,
invoke the ordered-vacancies phases. In what regards specifically the In-containing
phases, these are CuIn3Se5 (1-3-5) and CuIn5Se8 (1-5-8); they seem to be particularly
stable and often present in the preparation of Cu–In–Se mixed systems. It was noticed
that these stable phases have the generic formula CuIn2n+1Se3n+2, so that n=0 yields
CuInSe2, n=1 – (1-3-5) and n=2 – (1-5-8). Otherwise we can write generic formula as
1
2
(Cu2Se)+(n+ 1

2
)(In2Se3). This way it is seen that the compound is a mixed selenide,

both components of which are “electrically balanced”: Cu+
2 Se

2− and In3+
2 Se2−3 . Obvi-

ously, these charge indications are purely nominal, as both compounds have a strong
degree of covalency, especially the second one. As n increases, the In2Se3 starts to
dominate over Cu2Se. The binary compound In2Se3 (and, correspondingly, Ga2Se3)
have been reported to exist in different phases, whereby the hexagonal one seems to be
the most stable. Its crystal structure, however, leave place for some ambiguities. The
composition of the hexagonal phase and its discussed strucure models are addressed
in Sec. 2.6. An interesting observation is that, on varying the Cu/In concentration
throughout ternary systems, a transition must occur at some point from chalcopyrite-
type (that is, tetragonal) to In2Se3-type hexagonal lattice. It was one of initial ambitions
of the present work to try to suggest a model for this structure transformation, and to
compare it with the experimental data which exist on the latice type and the symmetry
of some intermediate systems, but do not reveal the placement of atoms [Bodnar’ et al.,
2006, 2007]. However, this task has not been fulfilled in the course of work, and only
the “pure” In2Se3, Ga2Se3 systems have been analyzed along this line.

The In2Se3, Ga2Se3, in their turn, can be “derived” from “prototype” layered struc-
tures InSe and GaSe, correspondingly. These systems are quite interesting, and in fact
the major part of the present work is devoted to them. They crystallize in hexago-
nal structure, that have some similarity with wurtzite. In wurtzite, the sequence of
ingerchanged cation/anion hexagonal (0001) layers repeats itself along [0001] in the
AB-AB-AB... stacking, so that each given atom, say a cation B, is bonded to three
anions in A-layer “below” (no dash) and to one A-atom from the layer “above” (in-
dicated by dash). In InSe / GaSe binaries, one can say that the AB layer is isolated,
duplicated as a mirror image, and pinned to its mirror counterpart the cation-cation
bonds perpendicular to the layers: AB-BA. The resulting hexagonal double layers are
further on stacked in different combinations, giving rise to a variety of polytypes. It can
be noted that (i) the outer anion layers are always in the eclipsed configuration, that
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is, mirror-symmetric with respect to the double-layer mid-plane; (ii) there is no anion-
anion covalent bond between the outer atoms of two adjacent double layers. Each anion
is only bonded to three neighboring cations, whereas each cation is connected to three
anions and its opposite (symmetric) cation. Such arrangement helps to formally satisfy
the octet rule as follows. In case of a double-layer III-VI semiconductor, 3 own valence
electrons per cationic (say Ga) site plus X (yet unknown overlap with the neighboring
Ga atom) plus 3 times Y (overlap with each of three neighboring Se atoms) makes 8 to
satisfy the octet rule; on the Se site, 6 own electrons are added 3 times Y (overlap to
neighboring Ga) to yield the octet rule, hence

{
3 +X + 3Y =8 ;

6 + 3Y =8
⇒

{
X =3 ;
Y =2/3 .

(2.2)

In the “fully ionic” counting, the Se atom strips 3×2/3 from its Ga neighbors to fill the
own full shell, that leaves 3− 3×2/3 = 1 electron on each Ga atom, to be collectivised
on the Ga−Ga bond. We’ll see later on how this formal counting corresponds to the
bands occupation.

There is, at most, very weak, Se–Se covalent bonding between the adjacent double
layers. It is presumed, somehow simplifying, that the layers are kept together essentially
by the vdW interactions. In reality the Se-Se bonding seems to be stronger than might
be expected from just the vdW interaction. The space between the adjacent double
layers is referred to as the vdW gap.

The possible arrangements of double layers is subject to general constraint of hexag-
onal (or trigonal) symmetry and a couple of simple rules specified in Sec. 2.4. The
variety of double-layer stockpilings results in a number of polytypes for a given binary
compound. The polytypes relevant for the present work are further on explained in
detail, and the works previously done on the binary systems briefly discussed.

2.2 Ordered structures based on cation substitu-

tions in chalcopyrite

As the primitive cell of the chalcopyrite structure does already contain two identical
In (or Ga) atoms (see Table 2.1), making them different is probably the easiest way
to create a In:Ga=1:1 superstructure (Fig. 2.2, left panel). The structure in question
will be in fact that of kesterite, named after the Cu2(Zn,Fe)SnS4 mineral but common
in new photovoltaic materials – see, e.g., Siebentritt and Schorr [2012]. Note that in
“genuine” kesterite materials, the cations in the 2,3 positions of the chemical formula
typically have split valences, i.e., ZnII + SnIV rather than InIII + GaIII in our formal
construction.
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The kesterite structure presumes strict alternance of Cu-Ga and Cu-In (001) planes.
However, the (112) planes, the most “densely packed” ones in the chalcopyrite structure
[equivalent to (111) in zincblende], are evenly populated with In and Ga atoms. Each
Se anion is now within a tetrahedron composed of two Cu atoms, In and Ga, so that
no more symmetry constraints apply to keep the Se atom at any symmetric position;
all its three internal coordinates are free. The space group of this superstructure is I 4̄
(Nr 82), with Cu atoms in (a) and (c) positions, In in (b) / Ga in (d), or other way
around, and Se in the (g) positions. Replacing one of (so far equivalent) Ga atoms by
In would result in In:Ga=3:1 supercell (shown in the right panel of Fig. 2.2), further
reducing the symmetry. The space group becomes P 4̄ (Nr 81), with Cu in (2g), (b)
and (c) positions, In in (2g) and (d), Ga in (a) and Se in two distinct (4h) positions.
Beyond the Se positions whose all coordinates are not fixed by symmetry, the Cu and
In atoms in the (2g) positions have adjustable z coordinates. Obviously, the swap of
In↔Ga positions would give rise to the Ga-rich In:Ga=1:3 model supercell.

The suggested 3:1 structure is somehow too artificial in the sense that it imposes a
strict (3 Cu-In layers)/(one Cu-Ga layer) ordering, hardly very probable in real mate-
rials which would likely favour a more uniform distribution of In versus Ga ions over
different lattice planes. However, we retain this simplified model for the sake of easy
comparison with pure CISe / CGSe chalcopyrites and with the 1:1 structure.

A consequence of having a simple tetragonal (st) cell for the study of 3:1 structures,
in place of a body-centered tetragonal (bct) in case of pure chalcopyrites and a 1:1
substitution, is that the BZ is cut (horizontally and vertically) along the medians of its
eight delimiting hexagons, reducing its volume by factor of two. The construction of the
corresponding BZs is explained in Appendix 1 (Sec. 2.7), and the resulting shapes, along
with (identical) k-path selected for further discussion of band dispersions, are shown in
Fig. 2.3. One notes notably that the Z − Γ path in the body-centered structure maps

Figure 2.2: Tetragonal body-
centered supercell used to simu-
late the In:Ga=1:1 composition
in the mixed chalcopyrite-type
structure (left panel, the kesterite
structure); tetragonal supercell
with the In:Ga=3:1 composition
(right panel). The (112) planes
are marked by color.
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Figure 2.3: BZ and the path selected for energy bands plotting in the (bct) chalcopyrite-
type structure (left panel) and in the simple tetragonal structure with the same c/a ≈ 2
relation (right panel). The labelling of high-symmetry points is given according to Bradley
and Cracknell [1972]. The path chosen is the same in both cases in spite of different labelling.

onto the Γ − Z − Γ of the simple tetragonal one, that would yield mirror-symmetric
dispersion (half of this path becoming redundant). Another observation is that there
must be twice more bands in the (two times smaller) BZ of the bct structure.

2.3 Previous works on pure CuInSe2 and CuGaSe2
chalcopyrites

The amount of experimental works addressing the optical properties, or otherwise (in-
directly) the electronic structure, is tremendous and will not be covered here in detail.
Among the theory works that fall more or less in the context of first-principles cal-
culations, mostly DFT, one can single out, as one of the pioneering works, the band-
structure calculation on CuGaSe2 done by Šipr et al. [1997], albeit for “simplified”
tetragonal lattice. The band dispersions were not specified there; the discussion imme-
diately proceeded towards the interpretation of the X-ray absorption spectra, obtained
in the experiment. The “explicit” electronic structures of a number of chalcopyrites,
including CISe and CGSe, have been calculated (for fixed experimental lattice param-
eters) by Jaffe and Zunger [1983]. This study was followed by a detailed discussion, by
the same authors, of details of band dispersion and the impact of different XC schemes
[Jaffe and Zunger, 1984].

The next important step concerns the optimization of crystal structure on the basis
of DFT calculations. As it seems, the first attempts concerning the systems under
discussion have been undertaken by Kılıc and Zunger [2003], who used the VASP code
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(which experienced important improvements since then), and by Belhadj et al. [2004]
who used WIEN97, a predecessor of the WIEN2k code. Both calculations were done with
the LDA; predictably, the lattice parameters came out somehow underestimated as
compared with experimental data. These results are summarized in Table 2.2. For
experimental values, only those cited by Kılıc and Zunger [2003] are included in the
table. Further experimental results are cited by Belhadj et al. [2004], and a more
exhaustive selection can be found in Chapter 3.

In recent times, the implementation of hybrid XC functionals in the calculation codes
stimulated a number of new studies, aimed at different problems (related to doping
etc.), which included however the results on pristine CISe and CGSe as intermediate
benchmarks. Thus, at least three recent works, namely Paier et al. [2009], Pohl and Albe
[2010] and Oikkonen et al. [2011] used the Perdew-Burke-Ernzerhof (PBE) flavour of
the GGA and the Heyd – Scuseria – Ernzerhof (HSE) hybrid XC functional. The values
of optimized lattice parameters and the corresponding optical gap, as reported in this
works, are reproduced in Table 2.3. A slight but noticeable scattering of the numbers
obtained with effectively identical method may give an idea of practical stability /
reliability of results that can be considered as “state of art” at the DFT level.

Among “state of art” works done not with the VASP code, one can single out that
of Liborio et al. [2012], dedicated to the study of (001) surface of CGSe, related recon-
structions etc. using the CRYSTAL code (an all-electron one, with Gaussian-type basis
functions). The results for perfect CGSe bulk can be compared with those in Tab. 2.3
because they are otherwise also done for two XC potentials: (i) the GGA-PBE and
(ii) B3LYP, a (different than HSE) hybrid functional. According to this calculation,

Table 2.2: Lattice parameters of CISe and CGSe as obtained in earlier calculations within
the LDA, in comparison with X-ray diffraction data. a, c: tetragonal lattice parameters; x:
the internal coordinate.

a (Å) c (Å) x Method Reference

CuInSe2
5.701 11.464 0.2168 VASP (LDA) Kılıc and Zunger [2003]
5.733 11.40 0.250 WIEN97 (LDA) Belhadj et al. [2004]
5.781 11.609 0.2281 X-ray powder Zahn and Paufler [1988]

CuGaSe2
5.513 10.941 0.2430 VASP (LDA) Kılıc and Zunger [2003]
5.542 10.840 0.260 WIEN97 (LDA) Belhadj et al. [2004]
5.5963 11.0036 0.2423 X-ray single crystal Abrahams and Bernstein [1974]
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Table 2.3: Results of earlier calculations done on CISe and CGSe with the VASP code, using
GGA-PBE and the HSE hybrid functionals. a, c: tetragonal lattice parameters; Eg: band
gap.

a (Å) c (Å) Eg (eV) Reference

CuInSe2
5.871 11.79 −0.35 PBE, Paier et al. [2009]
5.880 11.83 0.01 PBE, Pohl and Albe [2010]
5.871 11.82 0.01 PBE, Oikkonen et al. [2011]

5.834 11.72 0.85 HSE, Paier et al. [2009]
5.839 11.75 1.07 HSE (ω=0.13), Pohl and Albe [2010]
5.824 11.73 0.86 HSE (ω=0.20), Oikkonen et al. [2011]

CuGaSe2
5.685 11.22 0.03 PBE, Paier et al. [2009]
5.687 11.28 0.01 PBE, Pohl and Albe [2010]

5.637 11.12 1.40 HSE, Paier et al. [2009]
5.650 11.10 1.68 HSE (ω=0.13), Pohl and Albe [2010]

a=5.692 Å, c=11.30 Å end Eg=0.38 eV with PBE, and a=5.739 Å, c=11.31 Å end
Eg=1.73 eV with B3LYP.

A considerable “scattering” of first-principles results concerning the lattice param-
eters and band gaps of pristine CISe and CGSe justifies an attempt undertaken in the
present work to probe the XC flavours implemented in all-electron WIEN2k code in what
regards their ability to yield reliable structure with PBEsol prescription for the GGA,
and to obtain “reasonable” band structures with the mBJ XC functional, more simple
in practical calculations than the hybrid functionals otherwise used.

2.4 Crystal structures of [In,Ga]Se polytypes

Cation and anion planes are hexagonal, whereby cations are sitting on top of their
neighboring cations, and anions are “eclipsed”, i.e., along [0001] from the anions of
the opposite surface of a given double layer. Obviously, cations are laterally shifted
with respect to anions (so as to be at equal distance to the three of them); moreover,
the anions are laterally shifted with respect to their counterparts (across the vdW
gap) of the adjacent double layer. Remembering that the hexagonal stacking allows
three distinct positions, say A/a = (0 0), B/b = (2

3
1
3
), C/c = (1

3
2
3
), we introduce a
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notation indicating how the cation and anion sites can be occupied, upwards plane by
plane. Reserving capital letters to mark cation positions and lowercase letters for anion
positions, moreover retaining the dash to indicate the bonds along [0001], we can write
for the wurtzite structure:

−Ab−Ba−Ab−Ba−Ab−Ba−

or for the zincblende:
−Ab−Bc−Ca−Ab−Bc−Ca− .

For one of possible II-VI double-layer structures, it may look as follows:

· · · bA−Ab · · · aC−Ca · · · cA−Ac · · · bA−Ab · · ·

(dots stand for interactions across the vdW gap), or, in a compact notation:

[Ab Ca Ac] ,

suppressing the redundant information about the mirror symmetry within each double
layer, and bracketing the unit of repetition. Only two formal rules have to be respected:
(i) cation and anion letters within each given layer must be different; (ii) the anion let-
ters of two adjacent double layers must be different. Apart from these, all combinations
are in principle possible, so that, allowing longer repetition chains, one can generate
infinite number of polytypes. In practice, only few of them have been identified and
seem relevant for the characterization of real systems.

The description of different polytypes is scattered over literature. The most sys-
tematic source seems to be a work by Kuhn et al. [1975], whose Table 1, with some
additions, is reproduced below as Table 2.4. The paper deals with GaSe, so that the
internal coordinates may turn out slightly different for InSe.

There is a misprint in the original Table of Kuhn et al. [1975]: the Wyckoff positions
for the ε phase enlists Ga in 2(i) position, in place of 2(h). With this error, the ε phase
would become a shifted equivalent of β. The Fig. 1 of Kuhn et al. [1975] depicting the
structures is correct.

The stacking sequence in Table 1 of Kuhn et al. [1975] is given in terms of just
one symbol (letter) per double layer, e.g., the placement of the cation sites, without
specifying how the anions are rotated. In this notation, both β and ε structures are
coded “ABAB· · · ” and hence indistinguishable.1 We adjust the stacking sequence using
the notation explained above; with this it becomes apparent that the β phase reveals
“holes” when is looked at along [0001]: one of the three hexagonal (a, b, c) sites remains
unoccuopied by neither cations nor anions in none of the planes. For comparison, the

1The γ structure was coded “ABCAB...”, the δ one – “ABACA...”
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ε phase includes rotations by 60◦ when translating from one double layer to the next
one; consequently the “holes” are closed.

Table 2 of Kuhn et al. [1975] summarizes lattice parameters of different polytypes
of GaSe, whose structures are shown in Fig. 2.4. In all of them, a≃ 3.74− 3.75 Å, and
c varies according to the number of planes in the stacking sequence (2 for β and ε; 3
for γ; 4 for δ), so that c̄, the Z-period per Se-Ga-Ga-Se layer, remains within 7.94 –
7.99 Å. Assessing this crystallographic information, one can note that β and ε are the
two “simplest” phases, characterized by the shortest possible periodicity along c and

Table 2.4: Crystal structure of polytypes of hexagonal GaSe [after Kuhn et al., 1975]; see
remarks and modifications in the text.

Poly-
type

Space
group

Stacking
order Wyckoff positions z-values

β
(2H)

P63/mmc
(Nr 194)

[CbBc] 4(f)







(1
3

2
3
z)

(2
3

1
3
z+ 1

2
)

(2
3

1
3
z̄)

(1
3

2
3
z̄+ 1

2
)

{

Ga : 0.180= 1
4
− 0.070

Se : 0.590= 3
4
− 0.160

ε
(2H)

P 6̄m2
(Nr 187)

[AbCa]

2(h) (1
3

2
3
±z)

2(i) (2
3

1
3
±z)

2(g)

{
(0 0 z)

(0 0 z̄)

Ga : 0.57 = 1
2
+ 0.07

Se : 0.15
{
Ga : 0.075
Se : 0.65 = 1

2
+ 0.15

γ
(3R)

R3m
(Nr 160)

[AbBcCa] 3(a)







(0 0 z)

(2
3

1
3

1
3
+z)

(1
3

2
3

2
3
+z)







Ga : 0.05

Ga : 0.95 = −0.05

Se : 2
3
+0.1

Se : 2
3
−0.1

δ
(4H)

P63mc
(Nr 186)

[AbCaAcBa]

2(a)

{

(0 0 z)

(0 0 z+ 1
2
)

2(b)

{

(1
3

2
3
z)

(2
3

1
3
z+ 1

2
)







Ga : 0.962=−0.038

Ga : 0.0391

Se : 0.179= 1
4
−0.071

Se : 0.328= 1
4
+0.078







Ga : 0.2116= 1
4
−0.0384

Ga : 0.2875= 1
4
+0.0375

Se : 0.575 = 1
2
+0.075

Se : 0.425 = 1
2
−0.075
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Figure 2.4: Side and top view of the unit cells of β, γ, δ and ε polytypes of GaSe. Large
circles: cations, small circles: anions. The stacking notation is explained in the text.

differing by the relative rotation (or, translation) of the double layers. The γ phase
with triple double-layer stacking has a “virtue” of being a rhombohedral one, hence
possessing the primitive cell of just four atoms.

The δ phase is singled out of (many) more-than-three double-layer sequences for the
simple reason that it has been included in the crystal structure data by Kuhn et al.
[1975]. The δ phase has [Ab Ca Ac Ba] stacking order, hence the cation A plane (which
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Ab
1  2_  _(   )3, 3

_  _2  1(   )

Ca

Ac

Ba

Ab

(0,0) 3, 3

Figure 2.5: A schematic side view of the δ poly-
type, with displacements of atom layers from high-
symmetry positions indicated (strongly exaggerated)
by arrows. The labelling of double layers is indicated
on the left, and the (x, y) coordinates of correspond-
ing atoms are marked below. The anions of the “Ac”
layer are supposed to be in symmetric positions with
respect to z=0 / z = 1

2 planes. Cations are shown by
small circles and anions by large circles, contrary to
the convention of Fig. 2.4.

repeats as every second one) is different by symmetry from B and C, which are mutually
congruent. Neither the placement of the inner cation double plane between the outer
anion planes of each double layer, nor the positioning of the B/C cation layers between
the adjacent anion “a” layers are fixed by symmetry. This lack of symmetry constraints
manifests itself in some distortion (warping along z) of layers, shown in Fig. 2.5 by
arrows of largely exaggerated magnitude but correct sense (see Table 2.4). One can
note that the warping of layers occurs towards the vacant sites in the adjacent layers
above or below. These displacements moreover imply that the z-polarisations within
double layers follow in alternating order (those in A layers being opposite to B and C).

The Brillouin zone (BZ) of all phases is hexagonal, with labelling of high-symmetry
points as shown in Fig. 2.6. The thickness of the BZ diminishes from β/ε to γ to δ,
accordingly to how the c parameter of the unit cell increases. We’ll see later (Chapter 4)
the similarities and the differences in the band dispersions related to different structures.
The case of the γ phase deserves a brief discussion in this particular context (of tracing

Figure 2.6: Side view of the hexagonal BZ. G

H

A

K

L

M
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Figure 2.7: Side view of the "fiat" 
rhombohedral BZ (Figure 1-4 from the 
PhD thesis of S. Limpijwnnong, Case 
Western Reserve University, 2000) . 
Note that the choice of Cartesian unit 
vectors kx, ky differs by 90°-rotation 
from that of Kx , Ky used in Sec. 2.8. 

of band dispersions, and comparing them across the phases) . Namely, its electronic 
structure calculation can be arranged in the hexagonal setting ( similarly to the other 
phases), with three times the primitive cell (hence 12 atoms) per unit cell; this way the 
calculations have been done using the VASP code. However, this amounts to spoiling 
the calculation ressources, because the rhombohedral primitive cell of 'Y contains only 
4 atoms and, correspondingly, three timè less occupied bands to take into account in 
the solution of the KS equations. Moreover, the WIEN2k code, which is particularly 
strict in applying all the symmetry actually present in the system, strongly "resists" 
using a unit cell larger than the minimal possibly one. A possible solution would be to 
perform calculations on the rhombohedral cell and further on, for the sake of producing 
a "comparable" band structure, to fold down the bands dispersion onto the convenient 
k path selected in the hexagonal BZ. This "exercise" is explained in the Appendix 2 
(Sec. 2.8), specifically for the case of "fiat" rhombohedral BZ (with hexagonal caps, 
Fig. 2. 7) that corresponds to prolate unit cells ( that is the case for multilayer structures) . 
In a nutshell, the rhombohedral BZ as in Fig. 2. 7 can be horizontally eut into three slices 
of equal thickness which (after some cutting/pasting at the edges) become identical to 
hexagonal prisms, the BZ of the hexagonal lattice. In order to pass from rhombohedral 
to hexagonal band structure, a path chosen across the rhombohedral BZ must be folded 
down into a single thin prism. Putting it other way around: in order to reconstruct the 
band structure in the hexagonal setting from a calculation done in the rhombohedral 
setting, one needs, by applying the symmetry operations, to triplicate the path chosen 
within a single hexagonal prism onto the three distinct fragments traced somewhere 
across the rhombohedral BZ, calculate the band energies along each path, and overlap 
the results. This way, the resulting band structure will conta.in three times more bands 
than the initial rhombohedral band structure. An example of such construction will be 
given in Chapter 4, Fig .. 

Before passing on to a. review of previous experimental and theoretical studies of 
properties, we briefly mention some curiosities related to the crystal structure of III-
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column chalcogenides:

• GaS crystallizes only in the 2H β [Kuhn et al., 1976]; a=3.587 Å, c=15.492 Å,
whence c̄=7.75 Å. Its internal coordinates as refined by Kuhn et al. [1976]: (1

3
2
3
0.1710)

for Ga; (1
3

2
3
0.6016) for S.

• GaSe, according to Polian et al. [1976], indeed crystallizes in different modifica-
tions, although “the existence of the β-structure, which is well ascertained for
GaS, is still doubtful in GaSe” (as of 1976; check later publications). Raman
spectra of γ, ε and δ-GaSe are given by Polian et al. [1976].

• Electronic structure of β-GaSe and -InSe was calculated in a tight-binding ap-
proach by Camara et al. [2002]. This calculation can be characterized as not a very
accurate one, however historically important in view of tight-binding parametriza-
tion there elaborated, and due to a comparison with ARPES data done in this
work. The work cites, for the crystallographic data on InSe, those from Likforman
et al. [1975]. However, Likforman did not refined any phase but γ. Camara et al.,
for their calculations of β-InSe, took Likforman’s a and 2

3
× of their c, and cite

the latest number as genuine, without saying a further word...

• In a number of publications, it is repeated that “Indium selenide grown by the
Bridgman method crystallizes in the γ polytype” – e.g., Manjón et al. [2001], –
and modern calculations are overwhelmingly done for this phase.

• However, Larsen et al. [1977] in their experimental work dealing with band struc-
tures extracted from ARPES experiments, specify: “The unit cell of InSe contains
eight atoms, two In and two Se atoms from two adjacent sandwiches”, not giving
any further clue as to whether their single-crystal samples were of presumably β,
or ε, type. The comparison to theory in the work cited by Larsen et al. [1977]
referred to then avaiable calculation results for GaSe Schlüter et al. [1976].

• The lattice parameters a=4.05 Å, c=16.93 Å, apparently coming back to Semiletov
(1958), left a long incognito trace in the literature. Yu et al. [1999] cite them as
those from Larsen et al. [1977], who, in their turn, cite them as stemming from
the Wyckoff’s book “Crystal Structures” of 1963.

• The confusion, if not the controversy, concerning the structure of InSe seems to
persist in later experimental works. In the combined experimental / theoretical
work by [Yu et al., 1999], it was indicated that “InSe is a semiconductor with
layered crystal structure belonging to the non-symmorphic space group D4

6h”,
that means P63/mmc describing the β phase.
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2.5 GaSe and InSe: previous research of properties

Looking back at the history of theory studies of III-VI systems (mostly GaSe and InSe,
some papers also mentioning GaS in the same context), we can identify several “waves”
of interest, marked by different motivation.

The end of 1970s saw an initial bunch of band structure calculations, mostly parameter-
dependent ones, which helped to elucidate band dispersions, and, at least preliminarily,
to addres the differences brought about by stacking of layers in different polytypes.
Schlüter et al. [1976]; Schlüter and Cohen [1976] calculated band structure and related
properties of GaSe using phenomenological pseudopotentials (PP) and plane-waves
(PW) basis. McCanny and Murray [1977] calculated band structures of GaSe and
InSe using a semi-empirical tight-binding (TB) method (a single tetralayer was taken,
hence no distinction between polytypes considered). Doni et al. [1979] performed band
structure calculations of β-GaSe and -InSe with a PP TB method. Depeursinge et al.
[1978] calculated electronic structure of β-InSe by semiempirical TB method, and of
ε-InSe by an empirical PP method. Depeursinge and Baldereschi [1981] discussed band
dispersion and folding depending on layer stacking in polytypes (β, ε, γ), on an ex-
ample of GaSe. “Improved” TB calculation results for β-, γ- and ε-GaSe have been
reported by Nagel et al. [1979]. Robertson [1979] calculated (also within a TB method)
the band structures and densities of states of β-GaSe, β-InSe and single tetralayers
of both materials, discussing at some length the symmetries and the composition of
bands. Some of the mentioned works made a comparison of calculated band structures
with angle-resolved photoelectron spectra, e.g., of Larsen et al. [1977] for β-InSe, and
Thiry et al. [1977] for β-GaSe. A much later work by Camara et al. [2002], dedicated
to the electronic structure of both InSe and GaSe, also follows the pattern of model
TB approach, guided by a comparison to photoemission data. The TB parametrization
was such that effectively neglected the difference between polytypes.

Since about mid-1990s, the III-VI semiconductors regained interest for calculations,
this time for parameter-free ab initio ones done in the framefork of the density-functional
theory (DFT), which proven able to provide accurate structure parameters and mean-
ingfully compare results for different polytypes. Among the methods of practically
performing such calculations, some rely on ab initio PPs and often (yet not exclusively)
use the PW basis sets. Otherwise, all-electron schemes were used, including the WIEN2k
code, with different flavours of the XC potentials used. Most of these works included
the relaxation of corresponding crystal structures following the total energy minimiza-
tion. Some works addressed specific 3-dimensional phases, whereas the others explicitly
studied the effect of augmenting the number of (tetra)layers on the 2-dimensional band
structure. Gomes da Costa et al. [1993] calculated the electronic structure of β- and
γ-InSe by ab initio PP-PW method using the LDA, notably taking into account the
spin-orbit interaction. Adler et al. [1998] studied ε-GaSe by a PW method using ultra-
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soft PP, within the LDA, whereby the structure optimization was followed by an analysis
of phonon dispersion. Yu et al. [1999] studied spin-resolved ARPES from InSe using
circularly polarized radiation; comparison was done with calculations by WIEN97 (the
predecessor of the WIEN2k package) taking the spin-orbit interaction into account, how-
ever optimizing only the internal coordinates at fixed lattice parameters. Zhang et al.
[2006] optimized the lattice parameters of ε-GaSe using the WIEN2k method and the
LDA. Rybkovskiy et al. [2011] studied band structure of GaSe with 1,2,3,4 tetralayers,
using the PP-PW method as implemented in the abinit code, and the LDA. Ghalouci
et al. [2013] calculated the equations of state of β- and ε-GaSe in comparison with other
phases (typical for “conventional” semiconductors but too high-energetic and hence “ir-
relevant” for the III-VI systems), using the WIEN2k method in combination with the
GGA. Ma et al. [2013] provided band structure calculations of GaSe (using the VASP

code and GGA) as bulk crystal and as a multilayer system (with 1 to 4 tetralayers) and
reported the corresponding lattice parameters. Olgúın et al. [2013] relaxed the struc-
ture of γ-InSe and ε-GaSe, also using the WIEN2k with GGA (with some additional
efforts in the study of band gaps, see below). Zhang et al. [2014] calculated equilibrium
structure, elastic and optical properties of ε-GaSe by a PP-PW method within the
LDA. Rybkovskiy et al. [2014] calculated band structures of β- GaSe, InSe, and GaS in
dependence on number of tetralayers, using another realisation of the PP-PW formal-
ism (Quantum Espresso) and several flavours of GGA for comparison, with spin-orbit
taken into account.

A number of relatively recent works primarily addressed the properties (optical,
elastic, vibrational) under hydrostatic pressure, or under stress, often in the con-
text of comparison or combination with experimental studies. Even as the simulation
under pressure are not by itself our interest in the present study, we mention such works
below for possible references, since we span the range of volumes while constructing the
equation of state curves around equilibrium; moreover some of the “under pressure”
works contain the useful reference data concerning the ambient conditions. Manjón
et al. [2001] simulated, in combination with experiment, an evolution of some relevant
transitions in γ-InSe with pressure, whereby the calculations have been done by the
Siesta code, that relies on norm-conserving PPs and basis function of localized nu-
merical functions, using specifically the LDA. Ferlat et al. [2002] applied several ab
initio methods to study γ-InSe at 0, 7 and 8 GPa. Rushchanskĭı [2004] optimized the
structure of γ-InSe in a PW calculation (using the abinit code), for a range of pressures
from 0 to 14 GPa. Errandonea et al. [2005] calculated electronic structure (bands in the
vicinity of the gap) for γ-InSe and ε-GaSe (hexagonal) at 0 and 7 GPa, discussing the
comparison with measured transport properties. Schwarz et al. [2007] studied structural
parameters of GaSe under pressure, whereby the electronic structure of ε-GaSe was cal-
culated by WIEN97 (a predecessor of WIEN2k) in combination with GGA. Errandonea
et al. [2008] studied high-pressure monoclinic and tetragonal phases of InSe, applying,
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in combination with first-principle calculations, the X-ray diffrection and Raman spec-
troscopy. In both these works, the Siesta code was employed for calculation. Brudnyi
et al. [2010] calculated lattice parameters and electronic structure of ε-GaSe (using PP-
PW formalism as implemented in the abinit code, in combination with the LDA), also
under pressure. Zhu et al. [2012] simulated variation of band structure of β- and ε-GaSe
at different strains, using WIEN2k and GGA, in the context of strain engineering of band
gaps. Kosobutsky et al. [2013] calculated electronic and elastic properties of ε-GaSe
under biaxial and uniaxial stress, using abinit and Quantum ESPRESSO codes with
LDA and GGA. Band structure was compared with ARPES experiments of Plucinski
et al. [2003]. Ma et al. [2013] discussed the variation, depending on strain, of the band
gap in bulk and multilayer GaSe, from the results of band structure calculations done
with the VASP code using the GGA.

Several ab initio studies addressed the GaSe compound containing point defects
(we are not aware of similar calculations for InSe). Rak et al. [2009] simulated electronic
structure of doped (substitutional impurities and Ga / Se vacancies) GaSe in a supercell
approach, using WIEN2k and VASP code, making reference to calculation of the perfect
bulk crystal. Ao et al. [2015] calculated (by VASPmethod, using the GGA) the electronic
structure, relaxation pattern, formation energies etc. related to point defects: the Ga
vacancy and larger “holes” (missing GaSe3 and Ga2Se6 fragments) in a single tetralayer,
using 4×4 or 7×7 supercells.

As is the case in many studies of semiconductors, the issue of the band gap, rou-
tinely underestimated in “conventional” DFT (LDA or GGA) calculations, was subject
to special attention in some recent works. In principle, the GW approximation [...]
seems to be a “state of the art” in this sense; a practical alternative can be hybrid func-
tionals, available along with some calculation codes, or e.g. (not as accurate but much
less demanding in implementation and ressources) the modified Becke – Johnson (mBJ)
flavour of the exchange-correlation functional, implemented in the WIEN2k code. Ferlat
et al. [2002] reported GW results for some high-symmetry k-points in the Brillouin
zone (BZ) of γ-InSe. Rybkovskiy et al. [2011] performed GW calculations at the BZ
center of GaSe (for increasing number of tetralayers and the bulk). Olgúın et al. [2013]
compared band structures calculated for γ-InSe and ε-GaSe using the WIEN2k code
with GGA and mBJ, and discussed the latter results in the context of available GW
calculations. An et al. [2014] addressed the issue of band gap, as obtained by different
methods for ε-GaSe (and also in β-GaS), offering an overview across other available
results and implementations. Original calculations have been done by WIEN2k, using
LDA, GGA, mBJ, and an implementation of the GW formalism within an all-electron
approach, interfaced with WIEN2k; moreover, some GW calculations were done using
the VASP code.

Since about early 2000s, a number of works have been inspired by low-
dimensionality, nanoscale tunability or other “special” properties of III-VI semiconduc-
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2.6. Crystal structure of In2Se3

tors as layered systems. Thus, Côté et al. [1998] calculated structural and electronic
properties of (hypothetical) GaSe nanotubes; Zhirko et al. [2007] discussed perspec-
tives of hydrogen storage in γ-InSe and ε-GaSe; Wang et al. [2009] described high-
performance photodetectors whose active element is a InSe nanowire; Late et al. [2012]
described a layer transistor based on a single layer of GaS or GaSe; Lei et al. [2014]
overview photoconductivity properties of InSe, in view of its use in optoelectronics; Li
et al. [2014] described controlled growth of crystalline thin layers of GaSe, potentially
useful for electronic and optoelectronic devices.

To conclude the overview of previous works, we mention some dedicated to lattice
dynamics, which usually specify the ground-state structure as a benchmark, even if vi-
brations as such are not within the scope of the present study. Wieting and Verble [1972]
studied vibrations in β-GaSe by infrared (IR) and Raman specroscopy, and offered an
extensive analysis of modes. Hayek et al. [1973] reported the variation of Raman spec-
tra of GaSxSe1−x with concentration. Kuroda et al. [1987] studied vibrations in GaSe
(among other compounds; under pressure) by Raman spectroscopy. Julien et al. [1992]
studied vibrations in γ-InSe from far-IR spectra. Adler et al. [1998] calculated (and
discussed in comparison with experiments) the phonon dispersions in ε-GaSe, using the
density-functional perturbation theory (DFPT) and LDA. Rushchanskĭı [2004] calcu-
lated, using a PP-PW method (abinit), the shift of vibration frequencies with pressure
in γ-InSe. Allakhverdiev et al. [2006] measured Raman and IR spectra of pure and
doped GaSe and offered a comparison with own and a number of previous calculations.
Rybkovskiy et al. [2012] calculated band dispersions in GaSe (tetra)layers of increasing
thickness (1 to 4) by abinit method, using the LDA. Lei et al. [2013] described the
growth of large thin GaSe layers and their characterization by vibration spectroscopy
(Raman), depending on thickness.

2.6 Crystal structure of In2Se3

As was mentioned above, the In2Se3 phase, according to nominal valences of con-
stituents, is electrically balanced. Therefore, the octet rule can be satisfied with the
tetrahedral coordination of cations and anions, which must however include the presence
of ordered cation vacances (one per two In atoms) to provide the correct stoichiometry:
InIII

2 � SeII3 . The question is, how are the In vacancies distributed. Probably all structure
studies report different phases of either hexagonal or rhombohedral type. The study of
Ye et al. [1998] summarizes previous reports (see Fig. 1 thereof) and suggests casting of
all reliable information into two phases: the “vacancies ordered in screw form” (VOSF)
and the “layer structure phase” (LSP). Both are basically wurtzite, with different or-
dering of vacancies.
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2.6.1 Vacancies ordered in screw form

The VOSF phase corresponds to
√
3 ×

√
3 × 3 multiplication of the wurtzite cell and

hence has 9×4− 6 = 30 atoms. (We remember that the wurtzite primitive cell has two
cations in the A and B hexagonal positions, with an anion on top of each, ideally at
z = 3/8). Fig. 2.8 depicts the hexagonal plane with wurtzite primitive cell spanned by
the aw

1 and aw
2 vectors, and lattice vectors of the supercell: a1 = aw

1 −aw
2 , a2 = 2aw

2 +aw
1 .

The third vector is tripled and transverses 6 (say, cationic) planes. The composition of
the latter is shown in Fig. 2.9.

The lattice parameters identified by Ye et al. [1998] are: a=7.14 Å; c=19.38 Å. The
placement of vacancies corresponds to Fig. 2 of Ye et al. [1998]. It is seen that, coming
from plane to plane, the vacancies make a screw around the (2

3
1
3
).

Atom position in the VOSF phase, read in directly from Fig. 2.9, are summarized
in Table 2.5.

In fact, the atoms have to be displaced from these positions due to reduced symmetry
of their environment. [Ye et al., 1998] specify the space group as P61 (Nr. 169) or P65
(Nr. 170), which differ in the direction of screw (left-hand or right-hand). The Wyckoff
positions are of type (6a) only, as follows:

(x y z), (x−y x z+ 1
6
), (ȳ x−y z+ 1

3
), (x̄ ȳ z+ 1

2
), (x̄+y x̄ z+ 2

3
), (y x̄+y z+ 5

6
) for P61;

(x y z), (y x̄+y z+ 1
6
, (x̄+y x̄ z+ 1

3
), (x̄ ȳ z+ 1

2
), (ȳ x−y z+ 2

3
), (x−y x z+ 5

6
) for P65.

The first choice seems, indeed, to match the coordinates in Table 2.5, if the origin of
coordinates in the (x, y) plane is shifted into the projection of the screw axis, (2

3
1
3
).

We easily see that all atomic positions in Fig. 2.9 are indeed general (not symmetric)
ones. For example, an atom A at (1

3
1
3
0) in its plane is equally surrounded by three

vacancies, so its projection seems to be fixed by symmetry. However, the placement of
its neighbours in the upper plane (z = 1/6) impose only a mirror symmetry, i.e., the

1a
w

a
w
2

a1

a2

BA

AB

A

B A

B

A

A

A

B

B
Figure 2.8: Relation between the wurtzite primitive
cell (spanned by black vectors) and the VOSF super-
cell (spanned by red vectors) in their projection onto the
hexagonal plane.
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B

B

B

A

A

A

B

A

B

B

z=0

A

B

A

B

A

A

A

A

B

A B

z= 1

6

A

A

A

B

B

A

B

A

A

B

B

B

z= 2

6

A

A

B

A

A

A

B

B

A

B A

z= 3

6
B

A

A

A

B

B

A

B

B

B

z= 4

6

B

B

B

A

A

A

B

A

A

A A

z= 5

6

Figure 2.9: Cationic position in six consecutive hexagonal planes of the VOSF structure,
with z-values indicated. A and B mark different hexagonal positions; those not situated in
the plane in question are shown faded. The In vacancies are indicated by squares.

Table 2.5: Atom coordinates (ideal symmetric positions) in the VOSF phase of In2Se3, after
Fig. 2 by Ye et al. [1998]. The square indicates an In vacancy; Se atoms are marked in
superscript as 3-coordinated or 2-coordinated (neighbouring a vacancy).

Atom Coordinates Atom Coordinates Atom Coordinates

In 2/3 0 0 In 1/3 0 4/24 In 2/3 0 8/24
In 1/3 1/3 0 In 0 1/3 4/24 � 1/3 1/3 8/24
� 0 2/3 0 � 2/3 2/3 4/24 In 0 2/3 8/24

Se(3c) 2/3 0 3/24 Se(3c) 1/3 0 7/24 Se(3c) 2/3 0 11/24

Se(3c) 1/3 1/3 3/24 Se(3c) 0 1/3 7/24 Se(2c) 1/3 1/3 11/24

Se(2c) 0 2/3 3/24 Se(2c) 2/3 2/3 7/24 Se(3c) 0 2/3 11/24

� 1/3 0 12/24 � 2/3 0 16/24 In 1/3 0 20/24
In 0 1/3 12/24 In 1/3 1/3 16/24 � 0 1/3 20/24
In 2/3 2/3 12/24 In 0 2/3 16/24 In 2/3 2/3 20/24

Se(2c) 1/3 0 15/24 Se(2c) 2/3 0 19/24 Se(3c) 1/3 0 23/24

Se(3c) 0 1/3 15/24 Se(3c) 1/3 1/3 19/24 Se(2c) 0 1/3 23/24

Se(3c) 2/3 2/3 15/24 Se(3c) 0 2/3 19/24 Se(3c) 2/3 2/3 23/24

57



Chapter 2

atom in question must be free to move along [11]. Its neighbours in the lower plane
(z = 5/6) impose another mirror symmetry and a possibility to displace along [10].
Note that the displacemenmt along the z direction is not fixed either. Taken together,
this destroys any symmetry constraints (apart from having 6 partners, related by screw
rotation). A practical consequence for choosing calculation input: start from “nominal”
0/1

3
/2
3
positions as in Table 2.5, they are not more “symmetric” than any other, and

let the relaxation find the final ones.

In practical calculation setup for either WIEN2k or VASP method, the vacancies do
not enter the list of atoms, and any “genuine” atom (2×In + 3×Se) in a given (say z=0)
plane makes a separate species, replicated 6 times by screw operations. When passing
the coordinates as defined above, the sgroup program in the WIEN2k initialization
sequence modifies the input: it shifts the above coordinates by (1

3
2
3
0), so that the

screw axis passes through (0, 0) – see Sec. 2.9.

The corresponding plane-by-plane distribution of cations (with the space group P61)
is shown in Fig. 2.10.
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Figure 2.10: Cationic position in six consecutive hexagonal planes of VOSF-In2Se3 (space
group P61), with z-values indicated (setting modified by WIEN2k). “A” and “B” indicate two
different In positions (In1 and In2 in the struc file of Appendix 3 / Sec. 2.9, correspondingly,
each one is replicated into 6 equivalent ones by screw rotations. The projections of cations
from adjacent planes are shown faded. The In vacancies are indicated by boxes.
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2.6. Crystal structure of In2Se3

2.6.2 The Layer Structure Phase

According to Ye et al. [1998], this phase has wurtzite basal vectors aw
1,2 of Fig. 2.8, with

a=4.00 Å and c=28.80 Å. The latter roughly corresponds to 9 wurtzite (double) layers,
of which the VOSF phase has 6. Correspondingly, 28.80×2/3=19.20 Å, quite close to
19.38 Å of the VOSF phase but slightly smaller, because now several full layers of In
are missing. The 9 double layers go as 3×[-(Se-In-Se-In-Se)-�-] – see Fig. 10 of Ye et al.
[1998]; the unit cell has 3 formula units hence 15 atoms.

We can otherwise look at it as an additional anion plane added at the middle of the
double-layer block Se-In-In-Se of a InSe structure.

The ambiguity yet remains in the stacking of layers. As there are three layered
blocks per unit cell, they can be only stocked as A-B-C. However, within each block the
sequence of three Se layers may be either “wurtzite-like”, A-B-A, or “zincblende-like”,
A-B-C. Taken together, this yields two possibilities, shown in Fig. 10 of Ye et al. [1998]:

Table 2.6: Nominal (unrelaxed) atom positions in the Layer Structure phase. Vacances are
indicated by boxes.

“Model 1” “Model 2”
Atom Coordinates Atom Coordinates
Se (A) 2/3 1/3 0 Se (A) 2/3 1/3 0
In (C) 0 0 1/36 In (B) 1/3 2/3 1/36
Se (C) 0 0 4/36 Se (B) 1/3 2/3 4/36
In (A) 2/3 1/3 5/36 In (C) 0 0 5/36
Se (A) 2/3 1/3 8/36 Se (C) 0 0 8/36
� (C) 0 0 9/36 � (A) 2/3 1/3 9/36
Se (B) 1/3 2/3 12/36 Se (B) 1/3 2/3 12/36
In (A) 2/3 1/3 13/36 In (C) 0 0 13/36
Se (A) 2/3 1/3 16/36 Se (C) 0 0 16/36
In (B) 1/3 2/3 17/36 In (A) 2/3 1/3 17/36
Se (B) 1/3 2/3 20/36 Se (A) 2/3 1/3 20/36
� (A) 2/3 1/3 21/36 � (B) 1/3 2/3 21/36
Se (C) 0 0 24/36 Se (C) 0 0 24/36
In (B) 1/3 2/3 25/36 In (A) 2/3 1/3 25/36
Se (B) 1/3 2/3 28/36 Se (A) 2/3 1/3 28/36
In (C) 0 0 29/36 In (B) 1/3 2/3 29/36
Se (C) 0 0 32/36 Se (B) 1/3 2/3 32/36
� (B) 1/3 2/3 33/36 � (C) 0 0 33/36
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A-C-A· · ·B-A-B· · ·C-B-C· · · (“Model 1”), or A-B-C· · ·B-C-A· · ·C-A-B· · · (“Model

2”). Indicating a place of a missing atom, this would yield: A-C-A··C ··B-A-B··A ··C-
B-C··B ··, or A-B-C··A ··B-C-A··B ··C-A-B··C ··. Choosing A and B positions as in
Fig. 2.8. with C at (0,0), yields the following “ideal” atom positions in the two mod-
els. Note that the distance between adjacent cation (or adjacent anion) layers is 1/9,
whereas the distance between the cation and anion “on top” is 3/4 of it, i.e., 1/12.
1/9− 1/12 = 1/36.

Ye et al. [1998] argue that “model 1 is considered to be more realistic than model
2, since the VOSF phase is based on the wurtzite structure”.
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2.8. Appendix 1. BZ of body-centered and simple tetragonal lattices

2.7 Appendix 1. Brillouin zones of body-centered

tetragonal and simple tetragonal lattices.

Two cases of our interest are the following:
1. The bct lattice with c ≈ 2a; translation vectors:

~a = (−a/2, a/2, c/2 ) ; ~b = (a/2, −a/2, c/2 ) ; ~c = (a/2, a/2, −c/2 ) .

The reciprocal lattice vectors are:

a
∗
bct = (0, 2π/a, 2π/c) ; b

∗
bct = (2π/a, 0, 2π/c) ; c

∗
bct = (2π/a, 2π/a, 0) .

2. The simple tetragonal lattice with c ≈ 2a; translation vectors:

~a = (a, 0, 0) ; ~b = (0, a, 0) ; ~c = (0, 0, c) ,

and the reciprocal lattice vectors

a
∗
st = (2π/a, 0, 0) ; b

∗
st = (0, 2π/a, 0) ; c

∗
st = (0, 0, 2π/c) .

ky

kx

bbct
*

c*
bct

kz

kx

kx

ky

kz

kx

st

z

st

c*

k

b

a*st

*st

a*

Figure 2.11: Reciprocal lattice nodes (blue dots) within the (kx, kz) plane (above) and within
the (kx, ky) plane (below), along with the corresponding projections of the body-centered
tetragonal BZ of the chalcopyrite structure (left panel) and of the simple tetragonal BZ with
the same unit cell dimensions (right panel).
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2.8 Appendix 2. Relation between rhombohedral

and hexagonal settings for the Brillouin zone

and the band dispersions for the γ phase.

We express the reciprocal lattice vectors ~a∗, ~b∗, ~c∗ in terms of so far undefined A, C
parameters which will be specified further on. The choice of reciprocal lattice vectors
in the Figure is the following:

~a∗ =
(A

2
, −A

√
3

2
, C

)

, ~b∗ =
(A

2
,
A
√
3

2
, C

)

, ~c∗ =
(

−A, 0, C
)

. (2.3)

The resulting BZ is shown in Fig. 2.12 in two projections.1 The positions of some

1We note that at C/A≥1/
√
2 the upper hexagon disappears; the case C/A = 1/

√
2 corresponds to
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Figure 2.12: Projections of the “flat” rhomboherdal BZ with some high-symmetry points
indicated; in the rhombohedral setting (left panel); in the hexagonal setting (right panel).
See text for details.
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symmetric points can be read from the figure. In the cartesian coordinates (along the
axes KX , KY , KZ in the figure) they are:

1 :
(
0, 0, 3C

2

)
2 :

(
A
2
, 0, C

)

3 :
(

A
2
− C2

A
, 0, 3C

2

)

4 :
(

A
2
+ C2

2
, 0, C

2

)

5 :
(
−A

2
, 0, C

2

)
6 :

(

−A
2
+ C2

A
, 0, 3C

2

)

7 :
(

−A
2
, A

2
√
3
+ 2C2

A
√
3
, C

2

)

8 :
(

−A
2
+ C2

A
, A

2
√
3
− 2C2

A
√
3
, C

2

)

9 :
(

−A
2
− C2

2A
, 0, 0

)

(2.4)

The transformation to relative coordinates kx, ky, kz (in units of reciprocal lattice
vectors):






kx

ky

kz




 =






1
3A

− 1
A
√
3

1
3C

1
3A

1
A
√
3

1
3C

− 2
3A

0 1
3C











KX

KY

KZ




 ;

This matrix contains linewise the translation vectors in the direct space, whence the
identification of A, C should be straightforward. In fact they are: A = 2/(aH

√
3),

C = 1/cH . The resulting (kx, ky, kz) coordinates of symmetric points are:

1 :
(
1
2
, 1

2
, 1

2

)
2 :

(
1
2
, 1

2
, 0

)

3 :
(

2
3
− C2

3A2 ,
2
3
− C2

3A2 ,
1
6
− 2C2

3A2

)

4 :
(

1
3
+ C2

3A2 ,
1
3
+ C2

3A2 , −1
6
− 2C2

3A2

)

5 :
(
0, 0, 1

2

)
6 :

(
1
3
+ C2

3A2 ,
1
3
+ C2

3A2 ,
5
6
− 2C2

3A2

)

7 :
(

−1
6
− 2C2

3A2 ,
1
6
+ 2C2

3A2 ,
1
2

)

8 :
(

1
6
+ 2C2

3A2 ,
1
2
, 5

6
− 2C2

3A2

)

9 :
(

−1
6
− C2

6A2 , −1
6
− C2

6A2 ,
1
3
+ C2

3A2

)

(2.5)

Discuss now how the rhombohedral BZ is related to a hexagonal one. The direct
(a, b, c) and reciprocal (a∗, b∗, c∗) vectors in rhombohedral (R) and hexagonal (H) set-
tings, in terms of hexagonal lattice parameters a and c, are as follows:

(~aH ~bH ~cH) = (~e1 ~e2 ~e3)






a
√
3

2
0 0

−a
2

a 0

0 0 c




 (lattice vectors columnwise); (2.6)

cubic primitive lattice.
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~c∗H




 =






2
a
√
3
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1

a
√
3

1
a

0

0 0 1
c
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 (reciprocal lattice vectors linewise); (2.7)

(~aR ~bR ~cR) = (~e1 ~e2 ~e3)






a
√
3

6
a
√
3

6
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√
3

3
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2
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2

0
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3
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c
3




 (lattice vectors columnwise); (2.8)
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1
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a
1
c

1
a
√
3

1
a

1
c
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a
√
3

0 1
c











~e1
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 (reciprocal lattice vectors linewise). (2.9)

We note that the projections of the reciprocal lattice sites onto the KX , KY plane
is about the same for R and H lattices (see Figure). The R-BZ (shown in thin lines in
the figure) is “simplified” into a prism (thick lines), and is flattened by factor of 3. The
coordinates of high-symmetry points, indicated as for the standard hexagonal setting,
are as follows:

in KX , KY , KZ in a∗H , b
∗
H , c

∗
H in a∗R, b

∗
R, c

∗
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2.9 Appendix 3. Crystal structure information (the

.struc file) for the WIEN2k calculation of the VOSF

phase of In2Se3

In2Se3

H LATTICE,NONEQUIV.ATOMS: 5169_P61

MODE OF CALC=RELA unit=ang

15.287883 15.287883 37.511061 90.000000 90.000000120.000000

ATOM -1: X=0.66666667 Y=0.00000000 Z=0.00000000

MULT= 6 ISPLIT= 8

-1: X=0.66666667 Y=0.66666667 Z=0.16666667

-1: X=0.00000000 Y=0.66666667 Z=0.33333333

-1: X=0.33333333 Y=0.00000000 Z=0.50000000

-1: X=0.33333333 Y=0.33333333 Z=0.66666667

-1: X=0.00000000 Y=0.33333333 Z=0.83333333

In1 NPT= 781 R0=0.00001000 RMT= 2.15 Z: 49.0

LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000

0.0000000 1.0000000 0.0000000

0.0000000 0.0000000 1.0000000

ATOM -2: X=0.00000000 Y=0.33333333 Z=0.50000000

MULT= 6 ISPLIT= 8

-2: X=0.66666667 Y=0.00000000 Z=0.66666667

-2: X=0.66666667 Y=0.66666667 Z=0.83333333

-2: X=0.00000000 Y=0.66666667 Z=0.00000000

-2: X=0.33333333 Y=0.00000000 Z=0.16666667

-2: X=0.33333333 Y=0.33333333 Z=0.33333333

In2 NPT= 781 R0=0.00001000 RMT= 2.15 Z: 49.0

LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000

0.0000000 1.0000000 0.0000000

0.0000000 0.0000000 1.0000000

ATOM -3: X=0.66666667 Y=0.00000000 Z=0.12500000

MULT= 6 ISPLIT= 8

-3: X=0.66666667 Y=0.66666667 Z=0.29166667

-3: X=0.00000000 Y=0.66666667 Z=0.45833333

-3: X=0.33333333 Y=0.00000000 Z=0.62500000

-3: X=0.33333333 Y=0.33333333 Z=0.79166667

-3: X=0.00000000 Y=0.33333333 Z=0.95833333

Se3 NPT= 781 R0=0.00005000 RMT= 2.18 Z: 34.0

LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000

0.0000000 1.0000000 0.0000000

0.0000000 0.0000000 1.0000000

ATOM -4: X=0.66666667 Y=0.00000000 Z=0.45833333

MULT= 6 ISPLIT= 8

-4: X=0.66666667 Y=0.66666667 Z=0.62500000

-4: X=0.00000000 Y=0.66666667 Z=0.79166666

-4: X=0.33333333 Y=0.00000000 Z=0.95833333
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-4: X=0.33333333 Y=0.33333333 Z=0.12500000

-4: X=0.00000000 Y=0.33333333 Z=0.29166666

Se4 NPT= 781 R0=0.00005000 RMT= 2.18 Z: 34.0

LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000

0.0000000 1.0000000 0.0000000

0.0000000 0.0000000 1.0000000

ATOM -5: X=0.66666667 Y=0.00000000 Z=0.79166667

MULT= 6 ISPLIT= 8

-5: X=0.66666667 Y=0.66666667 Z=0.95833334

-5: X=0.00000000 Y=0.66666667 Z=0.12500000

-5: X=0.33333333 Y=0.00000000 Z=0.29166667

-5: X=0.33333333 Y=0.33333333 Z=0.45833334

-5: X=0.00000000 Y=0.33333333 Z=0.62500000

Se5 NPT= 781 R0=0.00005000 RMT= 2.18 Z: 34.0

LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000

0.0000000 1.0000000 0.0000000

0.0000000 0.0000000 1.0000000

6 NUMBER OF SYMMETRY OPERATIONS

...
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Chapter 3

Results for Cu(In,Ga)Se2 systems

3.1 Introduction

As becomes obvious from Sec. 2.3, quite a number of first-principles calculations has
been done on pristine CISe and CGSe. Our new contribution is (i) the use of PBEsol
XC potential, proven to be quite able for quite accurate predictions of equilibrium
structures in many compounds with different levels of ionicity / covalence; (ii) the use of
mBJ “meta-GGA”, that was shown capable, at least, to “improve” the calculated band
gaps for a number of semiconductors and insulators; (iii) to trace the above properties
throughout the range of systems with partial In/Ga substitution (even if only several
small high-symmetry supercell have been taken into account). In the following, we
briefly discuss the results concerning the crystal structures (the PBEsol part) and the
band structures (the mBJ part) for Cu2In2Se4, Cu4In3GaSe8, Cu2InGaSe4, Cu4InGa3Se8
and Cu2Ga2Se4 supercells in comparison.

3.2 Crystal structures optimized with GGA

The first-principles calculations on chalcopyrite-type systems were done with WIEN2k

method, using several prescriptions for the XC potential. The structure optimization
was performed in a sequence of consecutive optimizations of volume (with fixed c/a)
and the c/a value (with fixed volume), as the full automatic optimization of lattice
parameters is not implemented in the WIEN2k code. On the contrary, the internal
coordinates, for lattice parameters fixed, can be searched for by minimizing the forces
of atoms. To this end, a script is provided along with the WIEN2k code.

Table 2.2 and Fig. 3.1 imply that the LDA results underestimate the lattice pa-
rameters of both CISe and CGSe by 0.5 – 1.5%; in order to assess the previous results
in this context, we should indicate that there is, in fact, a considerable scattering of
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Figure 3.1: Optimized a and
c lattice parameters for pris-
tine chalcogenide systems: a
summary of experiments (Ta-
ble 3.1) and earlier calculations
(Table 2.3). The XC flavour
is indicated for some previous
theory results. The data of the
present work (obtained with
GGA – PBEsol) are marked by
yellow diamonds.

data concerning each of these pristine materials (due to samples preparation, samples
quality, characterization methods, etc.) An idea of such scattering can be given by
Fig. 3.1, that “visualizes” the data of Table 2.2 in combination with the selection of
experimental lattice parameters, Table 3.1.

As concerns the calculation procedure, it can be reminded here that the structure
optimization done by WIEN2k is organized step by step in a practically “by hand” way,
because the optimization of the lattice parameters is separated from the optimization
of internal coordinates. The first is done by fitting the total energy values from certain
number of trial calculations with different a, c values. Once the lattice parameters
which minimize the energy are identified, the script mini lapw is started that conse-
quently shifts the atoms (within the fixed unit cell) in a loop over electronic structure
calculations, until the forces on all atoms become smaller than the specified tolerance
value. After which, a refinement of a, c values in another set of scanning the total
energies might be needed etc. This makes the procedure cumbersome and prone to
human errors...

As has been mentioned in Chapter 2, there is only one free internal coordinate (x
for anions) in the chalcopyrite structure but more free coordinates in the supercells that
describe intermediate concentrations. In fact, the anion is not fixed by symmetry in
the center, or along the symmetry axis, of a tetrahedron formed by different cations.
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3.2. Crystal structures optimized with GGA

Table 3.1: Lattice parameters of CGSe and CISe according to different experiments.

a (Å) c (Å) c/(2a) Reference

CuGaSe2
5.607 10.99 0.980 Hahn et al. [1953]
5.6159 11.0182 0.987 Boyd et al. [1972]
5.5963 11.0036 0.983 Abrahams and Bernstein [1974]
5.614 11.03 0.982 Spiess et al. [1974]
5.614 11.022 0.982 Mandel et al. [1977]

CuInSe2
5.773 11.55 1.000 Hahn et al. [1953]
5.782 11.620 1.005 Parkes et al. [1973]
5.784 11.616 1.004 Spiess et al. [1974]
5.7815 11.6188 1.005 Paszkowicz et al. [2004]
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Figure 3.2: Lattice constants, a (red circles) and c/2 (blue triangles) versus composition for
Cu(In,Ga)Se2. Left panel: WIEN2k calculations with GGA – PBEsol. Experimental values
by Hahn et al. [1953] for end systems are indicated by open symbols. Right panel: Fig. 39
from Schnohr [2015]. The data there are taken from Refs. 36 [Suri et al., 1989] and 38
[Durante Rincón et al., 2001]. The dashed and solid lines represent the ternary values and
Vegard’s law, respectively.
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Moreover, in the supercells representing the 3:1 (or 1:3) concentration of In:Ga, the
“majority” cation can relax along the z direction. The Table 3.2 summarizes the struc-
ture information concerning the relaxed end-composition and intermediate-composition
structures.

The variation of lattice parameters is also depicted in the left panel of Fig. 3.2. In
the right panel of the same figure, a selection of experimental data done by Schnohr
[2015] is shown. Concerning these trends, one can make the following observations:
• The slope is very smooth and linear with concentration (hence following the Vegard’s
law, as is common for many mixed semiconductors).
• The tetragonal distortion is very small (c/(2a)≈1 within 1%); however, with concen-
tration a shift occurs from slightly prolate CISe to slightly oblate CGSe.
• The agreement with experimental lattice constants is very good for CISe (note that
the old c value reported by Hahn et al. [1953] is at variance with the later measurements,
e.g., those shown in the right panel of Fig. 3.2). However, the lattice relaxation of CGSe
yields a bit too short a and too long c (as was already seen in Fig. 3.1). This tendency
for “overbonding” for gallium will be seen again in the next chapters concerning binary
compounds.
• The crossing point a = c/2 is shifted in the calculation towards ∼75% of Ga whereas

Table 3.2: Crystal structure parameters from the relaxation of Cu(In,Ga)Se2 supercells using
the WIEN2k code and PBEsol-GGA. Only “non-trivial” internal coordinates are indicated.

Space Wyckoff
% Ga a (Å) c (Å) c/(2a) group position x y z

0 5.772 11.621 1.007 I 4̄2d Se(8d): 0.21645 1/4 1/8

25 5.722 11.514 1.006 P 4̄ Cu(2g): 0 1/2 0.24522
In(2g): 0 1/2 0.75482
Se(4h): 0.23717 0.27005 0.11705
Se(4h): 0.25134 0.21620 0.62721

50 5.672 11.384 1.003 I 4̄ Se(8d): 0.22881 0.23651 0.13051

75 5.624 11.257 1.001 P 4̄ Cu(2g): 0 1/2 0.25539
Ga(2g): 0 1/2 0.74429
Se(4h): 0.26286 0.27020 0.13375
Se(4h): 0.24912 0.24077 0.62218

100 5.581 11.099 0.994 I 4̄2d Se(8d): 0.24177 1/4 1/8
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3.2. Crystal structures optimized with GGA
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Figure 3.3: Element-specific In-Se (blue triangles), Ga-Se (green circles), and Cu-Se (red
squares) bond lengths as a function of composition x for CuInxGa1−xSe2. Left panel: WIEN2k
calculations with GGA – PBEsol. Right panel: Fig. 41 of Schnohr [2015] depicting the
EXAFS measurements. Full and open symbols correspond to powder and polycrystalline
samples, respectively; for the meaning of the lines drawn refer to the work cited.

in the experiment it is placed at ∼25% of Ga.

The variation of the internal coordinates can be otherwise characterized by the mod-
ification, and corresponding scattering, of bond length, as shown in Fig. 3.3. Whereas
the lattice constants change by ∼3% throughout the concentration range, each species
of the bond length follows this general trend but within much reduced range, within
∼0.7%. Such relative invariance of the individual (element-specific) bond lengths in
semiconductor alloys is a since long established trend, known from early EXAFS ex-
periments; a number of examples can be found in a review paper by Claudia Schnohr
[2015]. In this work, the bond lengths in the CISe-CGSe mixed systems have been
measured; the results are directly compared with our calculations in Fig. 3.3. One
should pay attention that the ordinate axis in the left panel of Fig. 3.3 is split into two
pieces, so that the In-Se bonds are in fact much longer (by ∼0.2 Å) than the other two
bond species which differ by merely ∼0.05 Å (according to calculation) or by ∼0.01 Å
(according to experiments). Putting it differently, the Se atoms within the tetrahedra
composed of Ga and Cu atoms tend to go more off-center according to calculation than
as is derived from EXAFS experiments. Apart from this observation, the agreement
between the experiment and theory is quite good. However, one more point might
deserve a more careful analysis in the later works. The bond length values for every
given concentration are characterized, on the basis of EXAFS data, by a single value.
Schnohr [2015] specifies (in the caption to her original Fig. 41) that the uncertainty of
the values is ±0.002 Å. The problem is, however, that in mixed systems some scattering
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of the bond length values occurs simply because, as the local symmetry is lowered, the
Se atoms tend to move off-center in all senses, placing themselves closer to Ga than
to In. In very ordered supercells like those used in our calculation, this gives rise to a
splitting of individual bond species into three distinct In-Se ones in the Cu4In3GaSe8
supercell (or, symmetrically, three Ga-Se bond length values in Cu4InGa3Se8), and four
different Cu-Se bonds in each of these cases. In “real” solid solution (say simulated by
a big number of large supercells) this scattering will be more smooth, but the general
span of the bond length values is not likely to be much reduced. From the left panel of
Fig. 3.3 we can estimate the half-width of this scattering as ∼0.1 Å. The analysis of the
EXAFS data, apparently, cannot resolve the “fine structure” in the bond lengths distri-
bution and extracts simply the mean value. It may be that the inspection of vibration
spectra, which are known to be quite sensitive to bond lengths distribution, would help
to provide additional information. Such works on mixed semiconductors (not chalcopy-
rites so far) are underway in the host laboratory; a more specific discussion is beyond
the scope of the present work.

3.3 Band structures of pristine systems calculated

with GGA and mBJ

3.3.1 PBEsol-GGA

The band structure of CGSe and CISe is well known from previous theory works,
some of which are mentioned in Chapter 2. The study by Soni et al. [2011] might
be particularly useful, because it discusses in detail the band structure and partial
densities of states of both systems, as obtained with two calculation methods, one of
which is WIEN2k, as in our case, the only slight difference being the XC flavour (PBE
in the work cited vs PBEsol in the present work). To set a frame for the following
discussion, Fig. 3.4 shows the band structures for CGSe and CISe according to PBEsol.
The narrow band near −15 eV is due to Ga3d or In4d states; the isolated band just
above it, around −14· · · − 13 eV – the Se4s band. The following isolated band near
−7 eV is due to Ga4s or In5s states. Immediately above it, separated by a narrow gap,
starts the “main” valence band, formed by Cu3d, Se4p and Ga4p or In5p states, within
which one finds yet another pronounced gap (at ∼ − 2.5 eV), probably due to splitting
into bonding and antibonding states. One can note that this latter gap does not come
out in all calculations; for instance, it does not appear (neither for CGSe nor for CISe)
in the CRYSTAL03 calculation (using the Gaussian basis set) of Soni et al. [2011]. At the
same time, the WIEN2k results from the same work are practically identical with ours,
in what concerns the band structures.

The counting of bands, including semicore states, proceeds from counting contribut-
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3.3. Band structures of pristine systems calculated with GGA and mBJ

ing electrons (excluding core shells) as follows:
Cu 3p6 3d9 4s2 → 17; In 4d10 5s2 5p1 → 13; Ga 3d10 4s2 4p1 → 13; Se 3d10 4s2 4p4 → 16,
hence 17 + 13 + 16×2 = 62 valence-band electrons per formula unit, or 62×2 = 124
electrons per unit cell, or 124/2 = 62 bands. We find this counting – the last occupied
band is #62 and the first vacant one #63 – also in Fig. 2 and 3 of Soni et al. [2011].
The Cu3p and Se3d states are deep and not included in the Fig. 3.4. The “standalone”
semicore states (up to Ga 4s / In 5s) include 42 bands, so that there rest 20 for the
“main valence band” (Cu3d 4s + Se4p + cation p).

Comparing band structures of CGSe and CISe, one notes (i) slightly deeper place-
ment and smaller dispersion of the Ga3d band with respect to the (less localized) In4d
band, (ii) a slightly more shallow placement and smaller width of the Se4s band in
CISe than in CGSe (probably, primarily a consequence of larger lattice constant in the
first compound), and (iii) a much more shallow placement of the In5s band compared
to Ga4s. Apart from this, there is a striking similarity between CGSe and CISe in what
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Figure 3.4: Band dispersions as calculated by WIEN2k with PBEsol for CGSe (left panel,
showing also the total density of states) and CISe (right panel). Zero energy delimits the
occupied bands (shown in blue); the vacant bands are shown in orange.
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concerns dispersions throughout the “main valence band”, with one marked exception:
at the valence band top in Γ, three upper bands converge and become nearly degenerate
in CGSe, whereas in CISe the band #60 is shifted down by ∼0.4 eV. Exactly the same
behavior is seen in Fig. 2,3 of Soni et al. [2011] without being discussed; strangely, in
their CRYSTAL02 calculation the three topmost valence bands nicely converge towards
Γ for both CGSe and CISe. We’ll see that the such behaviour will be recovered when
passing to the mBJ XC potential.

The “optical” band gap between the occupied (blue) and vacant (orange) states is
negligible (98 meV for CGSe and 2 meV for CISe) yet existent in Γ. The experimental
values (to be discussed below) are much larger.

The contribution of different orbital states in different bands and k-points is shown
in Fig. 3.5, for the case of CISe. The figures of similar design will also come about
in the following, so some explanations can be made here. The solution of the Kohn-
Sham equation yield eigenvalues, i.e., the band energies E(k), and eigenvectors. The
eigenvector reflects the participating of different basis functions at the given solution.
The basis functions of the WIEN2k code are augmented plane waves, i.e., the (quite
numerous) plane waves passing (within the atomic spheres) into the numerical functions
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Figure 3.5: Orbital contributions along band dispersions in CISe as calculated by WIEN2k
with PBEsol-GGA. See text for details.
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3.3. Band structures of pristine systems calculated with GGA and mBJ

centered at atoms and numbered by the atomic site and the (l,m) (orbital, magnetic)
quantum numbers. Within a given eigenvector, one can sum up the squares of all its
components which refer to the given atom and the given l index, whatever the m values
and the plane waves participating. The corresponding sum is a measure of the given
(atom, l-value) participants in the eigenvector concerned, and is plotted as a circle of
proportional radius around the corresponding eigenvalue. The general scaling factor
(for the whole plot) is chosen out of graphic convenience in each plot independently.
The underlying band structure (neglecting the circle radii) is the same in all three
panels of Fig. 3.5 (and also the same as in the right panel of Fig. 3.4). As was argued
before, the bands at −13 · · · −14 eV are of almost exclusively Se4s character (as is
evident from the middle panel), and otherwise a noticeable Se s-contribution is only
seen in the band #60 (the third one back from the top of the valence band) near Γ,
where this band ascends to −0.4 eV. In the left panel one sees that this band has also a
noticeable In s contribution near Γ. Otherwise the In s participation is shared between
the occupied bands at −7 · · · − 6 eV and the vacant bands at 0 · · · 2 eV. From the
right panel one sees that the Se p states contribute into a large number of bands, from
−7 eV upwards (including the “nominally In4s” band at −7· · · − 6 eV).

3.3.2 mBJ

The use of mBJ XC potential (explained in Subsec. 1.2.3) modifies the band structure,
the most important effect being the general shift of the vacant states upwards, that
results in an increase of the band gap (or, sometimes in opening of the gap in the
systems which failed to be correctly identified in semiconductors or insulators in a
calculation done within LDA or GGA). Fig. 3.6 shows this modification, to be compared
with the GGA band structure in Fig. 3.5. What happens is a slight general shift of the
unoccupied bands upward, in addition to which somehow stronger perturbations happen
at both sides (within about ±5 eV) from the “Fermi energy” (separating occupied and
vacant states).

The band gap opens to 0.46 eV in CISe. Interestingly, the situation with band
dispersions in the vicinity of the optical gap at Γ is now “healed” and becomes similar
to that in CGSe: the upper occupied bands, #60 to #62, ascend towards Γ and become
degenerate in it, whereas the In s character is completely pushed from these bands into
the vacant ones, #63 and #64. Comparing the left panels of Figs. 3.5 and 3.6, one can
get an idea of what is going on: in the GGA calculation the lower vacant band, with
pronounced In s character (and also with an important Se p contribution) would in fact
dive by ∼ 0.4 eV into the valence band. However, its crossing with the convex upper
valence band #62 is avoided, and the band structure arranges itself with a “technically
zero” band gap, pushing the occupied band #60 downwards in Γ. A passage to mBJ
shifts the conduction band generally upwards by ∼1 eV; the “immersed” lower vacant
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Figure 3.6: Similar to Fig. 3.5 (for the same equilibrium structure), with the mBJ XC
potential.

band #63 then “gets free” from the valence band and stabilizes in the “qualitatively
correct” configuration of bands with its minimum at 0.46 eV. It is remarkable that the
effective upward shift of the lower conduction band in CGSe is of about the same net
value as in CISe. The difference is that in CGSe a tiny band gap (0.08 eV) existed
already with the GGA, and was increased with mBJ up to 1.06 eV. The difference
between the band gap values in CGSe and CISe is thus correctly established, even as a
systematic underestimation of experiment data by about 0.5 eV still takes place. The
discussion about the band gap and its variation with concentration follows in the next
subsection.

The comparison of band structures of CGSe and CISe as calculated with mBJ is
shown in Fig. 3.7; this figure has to be compared with Fig. 3.4 to see the effect of mBJ
vs GGA-PBEsol. Besides the opening of the band gaps, a slight contraction of the
width of the upper “blue” bands (with large Se4p and Cu3d contribution) can be noted.
This effect is also seen in the increase of the density of states (scaled identically with
that in the DOS panel of Fig. 3.4).

For reference purposes, the density of states of CuInSe2 is shown in Fig. 3.8; that
for CuGaSe2 would be very similar. Note that the partial DOS are defined from inte-
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Figure 3.7: Similar to Fig. 3.4 (for the same equilibrium structure), with the mBJ.
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gration of the wavefunctions within the (non-overlapping) atomic radii, therefore the
contribution from the interstitial region is missing. Moreover, the contributions in some
other l channels than those shown in Fig. 3.8 (e.g., Cu-p, Se-d etc.) are not negligible.
In order to check how the total DOS sums up from partial ones one should remember
to count the Se contribution twice, moreover multiply the sum by two (because of two
formula units in the primitive cell) and once more by two (because of spin degeneracy).

3.4 Band structures in mixed systems; band gaps

varying with concentration

Fig. 3.9 depicts the energy bands for superlattices which imitate intermediate concen-
trations of Ga and In. As discussed in Chapter 2, the 50:50 concentration is modeled by
letting the two III-column cation positions in the chalcopyrite unit cell to be occupied
one by Ga and the other by In. The Brillouin zone and the number of bands are not
changed as compared to the case of pristine compounds, however, some degeneracies
in the band dispersions are lifted. This is best seen by comparing the bands along the
X−P path or in Z, where many degeneracies occured in Fig. 3.7 which are lifted as the
In/Ga distinction happens between the two sites. For one thing, the Ga4s and In5s
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Figure 3.9: Band structures of supercells with intermediate concentrations of Ga:In, calcu-
lated with the mBJ XC potential. Occupied bands are marked blue, unoccupied in orange.
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3.4. Mixed systems; band gaps varying with concentration

states give rise to two separated bands situated at ∼ − 7 · · · − 6 eV. This reflects the
fact that the Ga4s state is slightly deeper than In5s. In larger supercells Cu4In3GaSe8
and Cu4InGa3Se8, where the total number of bands doubles, the structure of these in
this region changes correspondingly: in the first case, a deeper single band is separated
from three placed ones above it whereas in the second case, the isolated band is higher.
The Ga3d / In4d states, of which Ga3d is slightly deeper, are dominating in the narrow
band at ∼ −16 eV, (in fact, a bundle of bunds, five from every In/Ga atom participat-
ing) which acquires a structure according to In/Ga concentration: its weight its shifted
the upper edge in CuIn0.75Ga0.25Se2, to the lower edge in CuIn0.75Ga0.27Se2 and evenly
distributed in CuIn0.5Ga0.7Se2.

As was discussed in Chapter 2, the 1:3 and 3:1 supercells imply the doubling of the
unit cell (from body-centered tetragonal to simple tetragonal) and shrinking of the BZ.
The Z−Γ path of the bct BZ, when mapped onto the single tetragonal BZ, starts at Γ
of the adjacent BZ and hits the BZ surface at half-way. The corresponding labelling
is used in the k-path of the first and the third panels of Fig. 3.9, even if “physically”
the path is the same in all three plots. The doubling of the unit cell leads to doubling
of the number of bands, which are “reflected” at the zone boundary at “new” Z and
folded back into the BZ, like in the textbook example of doubling the cell in a linear
chain.

It is remarkable that the vicinity of the band gap (at Γ) is only slightly quantitatively
affected, compared to cases of pure compounds. In all cases, independently on the total
number of bands and their folding over the BZ, the band structure in the immediate
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Figure 3.10: Left panel: Band gaps in Cu(In,Ga)Se2 supercells from WIEN2k calculations
with the mBJ XC potential (the accurate values are indicated near every data point). Right
panel: Fig. 40 from Schnohr [2015], “Bandgap energy versus composition x for the direct semi-
conductor CuInxGa1−xSe2”, citing the ellipsometry results of Durante Rincón et al. [2001].
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vicinity of the band gap is cleanly made by a single (the lowest) among the vacant
bands, protruding downwards at Γ, and three highest bands among the valence ones,
which protrude upwards in Γ and are degenerate in this point. This consistency justifies
somehow the choice of ordered supercells for simulation of solid solutions.

One notes a regular increase of the band gap with Ga concentration. This can
be seen in Fig. 3.10, in comparion with experimental results extracted from Schnohr
[2015]. The magnitudes are systematically underestimated by ∼ 0.5 eV, whereas the
slope (the total variation of the band gap from CISe to CGSe) of ∼ 0.6 eV is very
close to experiment. One can speculate even that the band gap bowing of b=0.2 eV,
according to Schnohr [2015], is grasped correctly; the upward kick at x=0.5 may well
be an artefact of having a too ordered supercell; any disorder would tend to reduce the
band gap value.

3.5 Summary on chalcopyrite-type structures

• According to WIEN2k calculations, PBEsol-GGA provides a very accurate de-
scription of lattice parameters in case of CuInSe2, but slightly (by ∼0.1%) over-
estimates the c parameter in CuGaSe2.

• The band gap is direct at all concentrations; it occurs at Γ between the triply
degenerate highest occupied bands and the isolated lowest vacant band.

• The band gap values are systematically underestimated by ∼ 0.5 eV, but the slope
(and, probably, bowing) in dependence on concentration is faithfully reproduced.
It seems that the GGA calculation for CGSe would show in fact a “physical”
overlap of the highest occupied and the lowest unoccupied bands. Due to an
avoided crossing of bands, the system “technically” opens a tiny band gap and
remains semiconductor.
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Results for GaSe and InSe systems

4.1 Introduction

The main aims of the study of the GaSe, InSe crystals, like in relation to previously
addressed chalcopyrite-based systems, were the accurate lattice relaxation (attributing
the major attention to the performance of PBEsol XC functional), and the description
of the band structures and the band gap (especially the performance of the mBJ XC
potential). The peculiar features of the compounds under study are :
(i) the layer structure in which the double anion-cation-cation-anion layers are separated
by “van der Waals gap” and, presumably, an importance of dispersion interaction for
fixing the interlayer distance, hence problems for “conventional” DFT methods;
(ii) the presence of competing polytypes with, presumably, very close energies. For (i),
the VASP calculations have been organised in parallel with the WIEN2k ones, because
the available version of the VASP code takes into account (in parametrized form) the
dispersion interactions within the Grimme formalism (see Chapter 1). For (ii), special
efforts have been applied to arrive at utmost precision in order to resolve the energy
/ volume curves for different polytypes. Like in the previous chapter, the outline of
lattice relaxations and related observations (for both GaSe and InSe systems) will be
followed by the discussion on the structures, making reference to the copper-containing
chalcopyrite-type structures and explaining the effect of mBJ.

4.2 Optimized crystal structures

As was mentioned in Chapter 1, the structure relaxation in WIEN2k and VASP codes was
performed in technically different way. In VASP, the procedure is more automatized,
whereby one can choose between different relaxation regimes, freezing or releasing either
lattice parameters or internal coordinates. The WIEN2k way is more rigid and more
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dependent on human intervention; the sequence of fittings (and minimisations) of the
total energy as function of volume and c/a is alternated by “sessions” of optimizing
the internal coordinates (by minimizing forces on all atoms) at fixed lattice parameters.
The results of this analysis for different polytypes, after both WIEN2k and VASP and in
comparison with experimental data, are shown in the following figures and tables.

Lattice parameters; an overview of different XC schemes

Fig. 4.1 offers a “bird’s view” over the performance of different XC schemes, incorpo-
rated in WIEN2k and VASP calculations, in what regards the accuracy of predicting the
lattice parameters in GaSe and InSe. The polytypes (discussed in Chapter 2) all have
similarly small (minimal) lattice parameter in the hexagonal plane, a, but different
number of double layers. For the sake of comparison, the c values are “normalized” in
the following to the number of structural units per unit cell (two for β and ε, three for
γ, four for δ. This will be further on applied also to the discussion of total energies).
Moreover it can be mentioned that the WIEN2k calculations for the γ phase have been
technically done for the rhombohedral unit cell whereas the VASP calculations used the
hexagonal unit cell, tripled with respect to the rhombohedral one. The experimental
results are only available for several phases (β,ε-GaSe and β,γ-InSe) studied at differ-
ent conditions; however they reveal the closeness of a, c parameters throughout the
compound given (as well as the closeness of results from different experiments). The
scattering of the calculation results, also those obtained within the present work with
different XC schemes, occurs at much larger scale.

First it should be noted that the GGA-PBE results (“original” PBE, see Chapter
1) are very far off, considerably overestimating both a and c parameters. This can be
“repaired” by switching to the PBEsol scheme (applied within the WIEN2k code), or
by including dispersive interaction on top of PBE within one or another variation of
the Grimme scheme (indicated PBE+D2, PBE+D3 or PBE+D3-BJ) implemented in
the VASP code. (Most of the trial calculations with VASP have been done by Michaël
Badawi to whom I owe the completeness of these tests). It is obvious that a combination
of PBEsol with the Grimme correction (PBEsol+D3, PBEsol-D3-BJ), also tried with
VASP, too much overbinds in all cases. As a result of practical observation rather than of
a profound analysis, the PBEsol (with WIEN2k) and PBE+D2 (with VASP) are retained
for the following detailed inspection of band structures, enery/volume curves, etc.

A more attentive look at the results of Fig. 4.1 reveals that, whereas the situation
with GaSe can be considered as satisfactory (good agreement of PBEsol and PBE-D2
results between themselves and with the experiments available), for InSe it is by far not
the case. PBE+D2, while correctly predicting c value, yields an apparently too short
(by ∼1%) in-plane lattice constant; PBEsol is performing much better in this sense.
The PBEsol, in its turn, has a strange problem with – of all phases – ε-InSe, for which
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Figure 4.1: Lattice parameters of GaSe (upper row) and InSe (lower row) polytypes from
calculations and experiment. PBE and PBEsol refer to WIEN2k calculations, the cases marked
+D2 or +D3 or +D3-BJ – to different implementations in VASP of the Grimme scheme to
treat dispersive interaction. The data of earlier calculations are indiscriminately marked by
red dots.
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it predicts the c parameter longer as expected by as much as 6%. This seems unlikely
to have a genuine physical reason; however, a careful search for a technical error in
repeated calculations, attentive comparisons with those for the β phase etc. so far did
not produce any evidence of error. In the lack of explanation, the results for the ε-InSe
phase have been withhold in the publications but are exposed here as they are.

A vague interpretation of the difference between GaSe and InSe, in what regards the
use of PBE+D2, could be a presumed larger “degree of covalence” and delocalization of

Table 4.1: Optimized structure parameters (in Å) of GaSe and InSe polytypes in comparison
with experiment: lateral lattice constant a, double layer period c/n and thickness h, vdW
gap separating double layers d, cation-anion bond lengths l. For δ phase, average values over
a spread of h, d, l present in the structure are given.

Polytype a c/n h d l

GaSe-β 3.751a 8.093a 4.784a 3.309a 2.463a

3.741b 8.003b 4.812b 3.191b 2.467b

3.755c 7.970c 5.101c 2.869c 2.600c

3.750d 7.998d 4.750d 3.247d 2.453d

GaSe-γ 3.752a 8.075a 4.789a 3.285a 2.465a

3.747b 7.951b 4.805b 3.146b 2.468b

3.739e 7.954e 4.722e 3.232e 2.467e

GaSe-δ 3.756a 8.037a 4.785a 3.253a 2.465a

3.744b 8.011b 4.809b 3.202b 2.468b

3.755e 7.998e 4.784e 3.214e 2.463e

GaSe-ε 3.754a 8.059a 4.785a 3.253a 2.464a

InSe-β 4.016a 8.385a 5.341a 3.044a 2.647a

3.943b 8.468b 5.463b 3.005b 2.641b

4.006f 8.321f

InSe-γ 4.027a 8.367a 5.313a 3.054a 2.646a

3.947b 8.408b 5.461b 2.947b 2.642b

4.000g 8.440g 5.358g 3.082g 2.632g

4.002h 8.316h 5.280h 3.036h 2.630h

InSe-δ 3.968a 8.424a 5.430a 2.994a 2.659a

3.942b 8.471b 5.463b 3.008b 2.641b

InSe-ε 4.009a 8.847a 5.342a 3.505a 2.647a

Present calculations: aWIEN2k with PBEsol; bVASP with PBE+D2. Experiments: cJellinek and Hahn

[1961, powder]; dBenazeth et al. [1988, single crystal]; eKuhn et al. [1975, summarizing earlier results];
fSiciliano et al. [2011, nanowires]; gLikforman et al. [1975, single crystals]; hRigoult et al. [1980, single

crystals].
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4.2. Optimized crystal structures

electron states in the latter. So to say, the double layers in GaSe are more “isolated” by
the vdW gap and hence “underbound”, so an explicit inclusion of dispersion interactions
via the Grimme’s corrections is needed to fix the situation. In InSe, the situation is
already “covalent enough”, so that an inclusion of D2 on top of PBE (or, even worse, on
top of PBEsol) overbinds too much. It is remarkable that PBEsol does a fair job in all
cases (at the exception of “mysterious” ε-InSe), thus providing a reasonable practical
compromise.

The results of thus “selected” calculations, i.e., WIEN2k with PBEsol and VASP with
PBE+D2, are further specified in Table 4.1. According to them, the net thickness of the
double layer h (i.e., Se-Se distance across the layer) and the vdW gap d somehow vary
over the polytypes (as a manifestation of different stacking), whereas the (intralayer)
bond lengths l remain quite stable. Referring to the above mentioned anomaly in the
optimized c parameter of the InSe-ε phase, one can note that it is namely the interlayer
distance (the vdW gap) that is largely overestimated (∼3.5 Å vs ∼3.0 Å for the other
phases), not the distances within the layer.

It can be emphasized again that the PBEsol calculations yield very accurate es-
timates (vs. experiments) for the a lattice parameter, whereas the c/n is generally

Table 4.2: Interatomic distances in GaSe and InSe polytypes according to WIEN2k PBEsol cal-
culations, separately for cation-anion nearest-neighbours and next-nearest neighbours, cation-
cation bonds within the double layer (perpendicular to it), anion-anion interlayer (connecting
Se atoms across the vdW gap), anion-anion ‖[001] across the double layer (the layer thickness)
and anion-anion in-plane (the a lattice constant). For the δ phases, all the available entries
in each category are shown.

cat-ani cat-cat ani-ani

Polytype nn nnn ‖[001] interlayer thickness in-plane

β-GaSe 2.4645 4.2143 2.4406 3.9581 4.7885 3.7533
ε-GaSe 2.4643 4.2133 2.4392 3.9243 4.7873 3.7537
γ-GaSe 2.4657 4.2124 2.435 3.9353 4.7894 3.7521
δ-GaSe 2.4644 4.2127 2.4369 3.9175 4.7904 3.7508

2.4647 4.2132 2.4372 3.9528 4.7914
2.4648

β-InSe 2.6467 4.6822 2.7891 3.8288 5.3485 4.0128
ε-InSe 2.6433 4.6656 2.7745 4.2127 5.3275 4.0090
γ-InSe 2.6483 4.6755 2.7815 3.8374 5.3322 4.0215
δ-InSe 2.6497 4.6789 2.7871 3.8112 5.3420 4.0144

2.6465 4.6790 2.7872 3.8362 5.3423
2.6466
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overestimated by ∼0.1 Å. This overestimation is quite accurately corrected for β, γ and
δ of GaSe via inclusion of the Grimme correction (PBE+D2). A more careful insight
reveals that the vdW gap d comes out a bit too short, that is compensated by a bit
overestimated double layer thickness h. This “deformation” hardly affect the Ga-Se or
In-Se bond lengths l which are almost identical after PBEsol and PBE+D2. We will
see some similarities in their band structures as well.

To conclude the section about equilibrium structures, the resulting interatomic dis-
tances are shown in Table 4.2. They depend on the internal coordinates of atoms but
are often explicitly given in experimental or theory papers. For the δ phase, there
are several nonequivalent positions and hence different “species” of various interatomic
distances, all of which are listed in the Table 4.2. Even as the scattering of these val-
ues is very small, one can note, à toutes fins utiles, that the largest disparity is in the
anion-anion interlayer distances, hence in the width of the vdW gaps, and not in the
thickness of double layers.

4.3 Band structures and Densities of States

The band structures discussed calculated under different conditions and shown in this
section will share much similarity. However, we will try to concentrate on their small
yet important differences. The general composition of band structure, from individual
electronic states of participating atoms, is already known from the previous chapter,
only that now there are no Cu3d states participating. The other difference is, the
compounds in question do not satisfy matching the formal charge, e.g., Cu+Ga3+Se−2

2 ,
so we deal with a partially occupied Se4p shell, and the band gap (as there will be
a band gap!) develops between bands with Se4p participation. Apart from this, the
semicore Ga3d / In4d states, as well as Se4s and the “below the valence band” Ga4s /
In5s narrow yet dispersing bands can be found at their expected locations.

An analysis of orbital compositions in several symmetry points of the BZ has been
done already by Robertson [1979], in relation with the latter’s calculation within a
tight-binding model. Later on, Gauthier et al. [1984] suggested a simple scheme that
is reproduced in Fig. 4.2, which has been further elaborated in the work by Gauthier
et al. [1989] – see Fig. 11, 12 therein. Gauthier et al. argued that the splitting at Γ
marked E(1) in the figure is due to Ga-Ga (4s) intralayer interaction, the E ′ (1) splitting
in M – due to Ga 4pxy intralayer interactions, whereas the “secondary” splittings EBV

and EBC are induced by inter layer interactions involving mostly Se 4pz states, and E
′ (1)
BC

is due to interaction in M between Ga 4pz states. These simple considerations generally
remain valid in view of later calculations, including the figures presented below in this
chapter.

A subtle issue is the band foldings, on passing from smaller-cell to larger-cell poly-
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Fig. 2 Schematic band 
structure of Ga Se. 
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Figure 4.2: Schematic band structure of GaSe: Fig. 2 from Gauthier et al. [1984]. 

types. The related splittings are the most visible along the (short) r-A k-path in the 
[001] direction. Finally, the use of the mBJ XC potential shifts the bands and affects 
the electronic states more in one parts of the BZ than in the others. We start with 
an outline of a "naiven model of band dispersion in a hexagonal double layer. As a. 
four sites / four states model, it neglects the "richness" of the hybridization between 
the Gap and Sep states, but has an advantage of being exactly solvable. Further on, 
a number of band structures is shown. The comparison will be concentrated on the 
cases [the same XC potential, different polytypesJ, (a given phase, WIEN2k vs VASP] and 
[a given phase, mBJ vs PBEsol]. The +D2, +D3 corrections aimed at including the 
dispersion interactions do affect only the total energies / forces and have no immediate 
effect onto the band structures ( only via the modified relaxed geometry), so they are 
excluded from this consideration. 

4.3.1 Band structures with PBEsol calculated by WIEN2k 

Band dispersions for different polytypes, as calculated with PBEsol, are shown in 
Fig. 4.3. They can be understood as t hose of a ((prototype" double layer, upfolded 
according to the number of units (double layers) per unit cell and slightly modified in 
the course of structure relaxation in each particular system. As is well known from the 
textbook example of dispersion of electronic states on a linear chain, and the effect of 
doubling the unit of such chain, a given state in r is split in two, at the corresponding 
ascending and descending dispersion branches get degenerate at the zone boundary. 
The doubling (or tripling, quadrupling) the cell occurs here along the [001] direction, 
and the zone boundary is at A. Accordingly, the band structure of ( doubled) f3 and e 
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Figure 4.3: Band structures of GaSe polytypes in their respective equilibrium structures,
as calculated by WIEN2k with GGA-PBEsol. Occupied (vacant) bands are shown in blue
(orange).
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Figure 4.4: Band structures of γ-GaSe polytype calculated by WIEN2k with GGA-PBEsol in
the rhombohedral setting, along the k-path shown in Fig. 2.6 (as for the hexagonal BZ), the
same path shifted by [0, 0,±2π

3c ], and the superposition of the three band structures into that
in the hexagonal setting (right bottom panel, the same as in Fig. 4.3). See text for details.
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phases reveals a lot of degeneracies in A, which are lifted along the (A-Γ) line. This is
the most clearly seen for the isolated bands near −5 – −7 eV, and also in the highest
occupied bands. If such “simple” splitting occurs in β, ε systems, in γ we observe a
more sophisticated “back and forth” splitting, due to tripling the structure unit, and in
δ – the “reflected” splitting, as a band originally degenerate in Γ splits towards A, and
each of its parts splits yet again on returning from A to Γ. In the lack of interaction
between double layers such folding would be just a geometry exercise; in real systems,
however, the upfolded bands are slightly modified by interlayer interaction, and namely
there modifications give rise to tiny preferences in the band energy of one or the other
phase, to be discussed in the last section of this chapter.

Another consequence of the foldings of bands is a possible modification of the band
gap character, as the positions of the bands’ minima and maxima may be affected by
replicating the unit cell. For example, the band gap which occurs at Γ in the β and ε
phases shifts to A in the γ phase, as an even number of bands is affected by the “back
and forth” splitting. One can imagine that in some other possible polytypes, the nature
of the band gap might be changed from direct to indirect.

Specifically for the γ phase, the stockpiling of bands can be the most naturally ana-
lyzed. The calculation for this phase has been done in WIEN2k as for the rhombohedral
structure, with one double layer (four atoms) per unit cell. The counting of the bands in
this case, following from the counting of electrons included in the valence states (above
the atomic cores), is the following: Se 3d104s24p4 → 16 electrons + Ga 3d104s24p1 →
13 electrons = 29 × 2 (formula units per unit cell) = 58 electrons → 29 bands (of which
the deepest ten, due to Se3d states, are not covered by the band structure plots shown;
the next ten, due to Ga3d, form a tight bunch near −15 eV, and the remaining nine
can be easily counted). This relatively “sparse” band structure is then traced along
three different k paths in Fig. 4.4, according to how our “standard” hexagonal path is
mapped onto the (three times larger) Brillouin zone of the rhombohedral lattice. In fact
this amounts to simply shifting the path from its original position by ±[0 0, 2π/(3c)].
The three resulting “rhombohedral” band structures can be then simply superposed, as
is shown in Fig. 4.4, where the color code of each contributing figure is kept different,
for clarity. The resulting band structure plot is exactly the same as would be obtained
from performing a calculation on an equivalent, three times larger hexagonal unit cell.
The corresponding relations between unit cells and Brillouin zones are explained in the
Appendix of Chapter 2.

For making sure that the band structures delivered by WIEN2k and VASP are con-
sistent, a direct comparison of the results of two calculations, for the case of β-GaSe,
is shown in Fig. 4.5. The underlying crystal structures (for which the bands were cal-
culated) stem from the relaxation with PBEsol (in case of WIEN2k) and PBE+D2 (in
case of VASP) schemes. As can be seen from Fig. 4.1 and Table 4.1, the resulting
structures are reasonably close. The band were calculated using, correspondingly, the
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β-GaSe : WIEN2k(PBEsol) ; VASP (PBE+D2)
Figure 4.5: Comparison of band
structures of β-GaSe as calculated
by WIEN2k (blue lines) and VASP

(red lines). The energy scales are
arbitrarily shifted for better visibil-
ity. See text for details.

PBEsol XC functional and the conventional PBE. In view of these tiny differences,
the agreement looks astonishingly good, especially taking into account that the “inner
mechanics” of the two calculation methods are quite different. For one thing, the Se3d
states counted within the valence band in WIEN2k are omitted from the valence band
(and managed within the projected augmented wave technique) with VASP. One can
see that some band splittings at Γ are just a bit larger in the VASP calculation than
with WIEN2k. Being generally satisfied with the agreement, we did not further explored
whether these tiny differences can be traced to the crystal structure, or XC functional,
or the calculation method (basis etc.) used.

The band structures of InSe phases are quite similar; an explicit comparison of GaSe
to InSe will be done for the case of calculations performed with the mBJ XC potential.

4.3.2 Band structures calculated with mBJ; band gaps

The set of band structure plots for the GaSe polytypes, as calculated with mBJ, is
shown in Fig. 4.6, and their InSe counterparts – in Fig. 4.7. As could have been
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Figure 4.6: Similar to Fig. 4.3 (polytypes in the same relaxed structures), with band struc-
tures calculated by WIEN2k with mBJ.
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Figure 4.7: Band structures of InSe polytypes in their respective equilibrium structures, as
calculated by WIEN2k with mBJ XC potential. Occupied bands are shown in blue, vacant ones
– in orange.
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anticipated from comparison of band structures of CuInSe2 and CuGaSe2 in the previous
chapter, the differences between both systems are mostly quantitative – a different size
of splitting in that or other part of the BZ, whereas otherwise the placement of all
essential bands is the same. To underline the similarities, the fragments of the band
dispersion picture with orbital contributions indicated are shown in Fig. 4.8.

The numerical values of band gaps from the present calculations and experiments
are collected in Table 4.3. Whereas, as expected, the band gap is increased while mak-
ing a calculation with mBJ, some more specific observations can be formulated:
(i) All the phases are semiconductors with appreciable band gaps already according to
“conventional GGA”. The “augmentation” of the GGA gap due to mBJ (by ∼1 eV)
is much larger than in CGSe, CISe (∼0.6 eV). (ii) GaSe reveals a much larger (by
∼0.8 eV) band gap than InSe, that is consistent with the situation in chalcopyrite-type
systems (the gap in CGSe in by ∼0.6 eV larger than in CISe); this trend exists with
GGA and is “translated” into the mBJ results.
(iii) According to PBEsol, GaSe has a direct Γ-Γ gap, that is replaced by a indirect
one, since the conduction band acquires a minimum in M slightly deeper than in Γ. In
InSe, no such “transformation” occurs, the band gap remains direct in all cases.
(iv) The nature of the band gap (indirect in GaSe, direct in InSe) is correctly pre-
dicted by calculation, and the numerical values are in unusually good agreement with
experiment.

Table 4.3: Band gaps (eV) in GaSe and InSe after GGA-PBEsol and mBJ calculations, in
comparison with experimental data.

Polytypes
Method β(2H) γ(3R) ε(2H) δ(4H)

GaSe PBEsol(Γ-Γ): 0.934 0.924 0.745 0.853
mBJ(Γ-Γ): 2.092 2.113 1.889 2.010
mBJ(Γ-M): 1.949 1.963 1.786 1.886
Exp.a (direct): 2.169 2.120
Exp.b (direct): 2.020
Exp.a (indirect): 2.117 2.065
Exp.b (indirect): 2.010

InSe PBEsol(Γ-Γ): 0.304 0.240 0.731 0.607
mBJ(Γ-Γ): 1.232 1.204 1.697 1.493
Exp.c : 1.29

aAulich et al. [1969]; bGauthier et al. [1989]; cJulien and Balkanski [2003].
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Figure 4.8: Band structure with orbital contributions for β-GaSe (upper panel) and InSe
(lower panel), as calculated with mBJ.
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4.4 Scans of total energy vs volume;

the relative stability of phases

The calculated equilibrium structure gives no clue as for how stable, or unstable, the
particular phase is compared to possible competing ones. In fact, the static energies
of these competing phases allow to judge about their relative stability only in a very
indirect way. A more systematic study consists in inspecting the variation of the total
energy depending on some structure parameter, typically – the volume (or, pressure).
This helps to figure out how steep (or flat) the local energy minimum is and how easily
the system can be, under certain conditions, driven into another crystal structure.

Such tests have been done for all phases studied of both GaSe and InSe systems,
using both WIEN2k and VASP methods. The idea of using the both method was to get
the general confidence in the accuracy in a procedure where a quite high precision was
expected to be needed in order to resolve the presumably very similar behaviour of dif-
ferent polytypes. The other reason was to make use of the option, provided by the VASP
code, to perform full relaxation of the crystallographic parameters (c/a and the internal
coordinates) for every trial value of volume. This is, in principle, a correct method to
study the Energy(Volume) or Energy(Pressure) relation, that would allow to extract
the bulk modulus (if needed), or other elastic parameters, applying corresponding con-
straints. The WIEN2k code, from its side, is less flexible in performing volume-dependent
scans, because anything other than the simplest uniform expansion/compression (con-
trolled by the single lattice parameter as the universal unit length), becomes technically
quite complicated.

As an attempt of a meaningful comparison between the results by VASP and WIEN2k,
Fig. 4.9 depicts the scans of total energy as function of unit cell volume, which pass
through the fully optimized structure for each respective polytype and explore the
uniform expansion / compression of the unit cell from this optimized geometry. The
absolute total energy values do not have any special meaning, but the relative energy
scale make sense and should be comparable between the methods. Indeed, the gen-
eral shape of the nearly parabolic scan in the right panel depicting the WIEN2k results
quite perfectly coincides with the steep parabola in the left panel, marked “c/a fixed”,
which reveals the same type of distortion applied in VASP calculation. Unfortunately,
the agreement between the methods in what regards fine details, i.e., the placement of
individual parabolas, is not that perfect. The less trivial observations can be system-
atized as follows:

− According to both calculations, the β phase is the ground-state one, producing
the lowest-lying parabola.

− The spread in energy between the polytypes, for a given volume, is very close –
around 1 meV (per two formula units, f.u.) in VASP and around 1.5 meV according to
WIEN2k.

96



4.4. Total energy vs volume for polytypes of GaSe and InSe
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Figure 4.9: Energy/volume curves as calculated by VASP (left panel) and WIEN2k (right panel)
for different phases of GaSe, using the PBEsol XC potential. The steeper set of curves (those
for WIEN2k, and those labelled “c/a fixed” for VASP) correspond to the uniform scaling of the
structure at equilibrum. The softer set of curves (labelled “c/a relaxed” for VASP) correspond
to the fully relaxed structure for every volume.

− The equilibrium volume, not much different throughout the polytypes, is ∼100 Å3

(per two f.u.) according to VASP and ∼98.5 – 99 Å3 according to WIEN2k.
− The placement of the curve corresponding to the γ polytype shows the largest

difference between the two calculations: it is the highest one according to VASP but
almost competing to the ground-state β curve, according to WIEN2k. In this relation it
should be mentioned that the γ phase was treated as rhombohedral one in WIEN2k but
as a hexagonal one (with triple amount of atoms in the unit cell) in VASP, so that the
systematic error is probably the largest in the case of this phase.

− The ε and the δ phases are consistently identified as the highest one and the
intermediate one, correspondingly, according to both calculations.

Taken together, this seems to reveal a comforting level of agreement, considering a
very different background of calculation methods and the delicacy of the differences to
identify. We tend to look at it as a justification of VASP results by comparison with a, a
priori, superior method in what regards the precise total energy calculations for a given
geometry, whereas the relaxed structure data might well come out more accurate in
VASP, due to more sophisticated and less “human-dependent” algorithm implemented
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Figure 4.10:
Similar to the left panel
of Fig. 4.9, for InSe poly-
types.

in this code.
The second set of curves in the left panel of Figure 4.9, marked “c/a relaxed”, which

share the minimum points with their “c/a fixed” counterparts but pass much more flat,
represent the case where the structure was fully relaxed (including also the internal
coordinates) at each trial value of volume.

These curves could be used for extracting the bulk modulus (not discussed here be-
cause of limited usefulness of this single parameter for the strongly anisotropic systems
under study). Corresponding calculations have not been done with WIEN2k, because of
too large amount of relaxations to be done effectively “by hand”.

Similar calculations (identification of the fully relaxed structure for each phase,
followed by “rigid” and “c/a relaxed” volume scans) have also been done for InSe; the
results (from VASP calculations only) are shown in Fig. 4.4. Differently from the case
of GaSe, one notes a small spread of minimum positions – from ∼117.5 Å3) (for γ and
ε, which are almost degenerate and come about as ground states) to ∼118.5 Å3) for
the β phase which is now characterized by the highest-energy curve, opposite to its
attribution in GaSe. One notes however that at small negative pressure (i.e., looking
at the range of volumes larger than 120 Å3), the β phase would tend to dominate, and,
in general, the whole system of E(V ) curves very faithfully recovers the order of phases
established for GaSe. We note that the predominance of the γ phase for InSe was long
ago argued for by Likforman and Guittard [1974].

98



Chapter 5

Results for Ga2Se3 and In2Se3

5.1 Introduction about crystal structures

An attempt to address the In2Se3 and Ga2Se3 systems faces a problem of certain am-
biguity in crystal structures definition. The statement by Popović et al. [1977], The
published data concerning In,Se, and its phase transitions are rather confusing and even
conflicting in many details, is still valid nowadays. In principle, the (III)2(VI)3 stoi-
chiometry restores the formal matching of cation / anion valences, so that the structure
can be apparently arranged without “neutralizing” an excess in cations by forming
cation-cation bonds, using just a network of “regular” cation-anion bonds, with, pre-
sumably, tetrahedral local environments. On the other hand, the 2:3 stoichiometry can
come together with tetrahedral connectivity only if 1/3 of cation vacancies are somehow
included into the lattice, according to the formula (III)2�(VI)3. What is known with
relative safety is that the hexagonal (or rhombohedral) setting is predominant, and
the sequence of Se-In-Se-In-Se- layers is an important structure element; however, the
stoichiometry can be established by placing the cation vacancies in the layers, instead
of organizing a full missing layer.

Table 5.1 offers some limited overview of the experimental data concerning In2Se3.
In total, we assume that the VOSF and LSP models introduced by Ye et al. [1998] and
discussed in detail in Sec. 2.6 are plausible from the side of experiment, and make a
valid basis for theory simulations.

For Ga2Se3, there are largely other structures than hexagonal that are brought into
consideration – see Table 5.2. Most of the later work refer to phases which can be
identified with those indicated as “Hahn α” and “Lübbers β” structures, both being
stable. The most thorough analysis of available crystal structure data, among relatively
recent works, has been offered by Hotje et al. [2005] and Huang et al. [2013]. These
latter authors essentially reported first-principles studies of the electronic structure,
optimizing also the lattice parameters, for monoclinic and orthorhombic phases. Much
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Table 5.1: Lattice parameters of In2Se3 from different experiments.

a (Å) c (Å) Z Identification Ref.

4.14 28.84 3 Osamuraa α-phase
4.03 29.35 3 Osamuraa β-phase

As cited by Yu et al. [2013]

4.05 28.77 3 Osamuraa α-phase
4.05 29.41 3 Osamuraa β-phase

As cited by Ye et al. [1998]

16.00 19.24 32 Semiletovb α-phase
7.11 19.30 6 Semiletovb β-phase

As cited by Ye et al. [1998]

7.12 19.38 6 Likforman α
4.025 19.12 2 Likforman β

Likforman and Guittard [1974]

4.025 19.235 2 Popović α (H)
4.025 28.762 3 Popović α (R) Popović et al. [1971]
4.00 28.33 3 Popović β (R)

high-temp. (> 200◦C)
7.11 19.33 6 van Landuytc γ (H)

high-temp. (> 650◦C)
(?) – As cited by Popović et al. [1977]

7.14 19.38 6 VOSF
4.00 28.80 3 Se-In-Se-In-Se layers

Ye et al. [1998]

References aOsamura et al. [1966] and bS.A. Semiletov, Soviet Physics Cryst. 5, 673 (1961);

6, 158 (1961) were not directly verified.
cvan Landuyt et al. [1975] discuss a number of superstructures but do not seem to mention

the values of a, c cited by Popović et al. [1977].

Table 5.2: Lattice parameters of Ga2Se3 from experiments.

a, b, c (Å) Identification Ref.

5.418 cubic [Hahn α] Hahn and Klingler [1949]

6.66, 6.66, 11.65 monoclinic (γ=108.12◦)
Mikkelsen β Mikkelsen Jr. [1981]

5.462 Mikkelsen γ

5.462 − 5.465 cubic Hotje et al. [2005]

6.661, 11.652, 6.649 monoclinic [Lübbers β] (β=108.94◦) Lübbers and Leute [1982]
6.645, 11.661, 6.661 monoclinic (β=108.94◦) Katerynchuk et al. [2014]

earlier, Peressi and Baldereschi [1998] studied, in a first-principles calculation, an or-
thorhombic body-centered structure and predicted this material to be semiconducting,
with a direct gap of 1.26 eV already in LDA (i.e., probably strongly underestimated).
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5.2. Relaxed crystal structures from calculation

To maintain a link with the previously discussed results on 1:1 systems, in this
chapter only hexagonal structure model will be discussed, which might seem somehow
hypothetical for Ga2Se3. However, we note that the monoclinic phase is only moderately
distorted, as compared to hexagonal, and was even mistaken for the latter is some early
works. Moreover, the study of the driving force of the monoclinic distortion in Ga2Se2,
as compared to the lack of such tendency in otherwise apparently similar In2Se3, might
be enlightening for future work. Another interesting issue is that, independently of
the monoclinic distortion, the underlying structure of Ga2Se3 seem to be definitely
“zincblende-like”, whereas different phases of In2Se3 fall into “wurtzite-like” category.
The analysis of this discrepancy, might also deserve attention in subsequent studies.

For plausible structure models used in the present calculations, we follow the work
by Ye et al. [1998], which explains different ways of ordering the vacancies in the un-
derlying wurtzite structure, the “vacancies ordered in screw form” (VOSF) and the
“layer structure phase” (LSP). These models have been explained with some details in
Chapter 2.

The VOSF unit cell is a
√
3×

√
3×3 multiplication of the wurtzite one and contains

9×4−6 = 30 atoms, hence 6 formula units. The corresponding space group can be either
P61 (Nr. 169) or P65 (Nr. 170), according to the screw being left-hand or right-hand.
The LSP possess the wurtzite lattice vectors in the basal plane (without multiplication),
and the vacancies are assembled into missing cation layers, so that instead of “double
layers” (VI)-(III)-(III)-(VI) the system consists of “triple layer” packages (VI)-(III)-
(VI)-(III)-(VI), separated by van der Waals gaps between the opposing anion layers.
The structure, with its possible variations, is explained by Fig. 10 of Ye et al. [1998].

Whereas such triple layers can be assembled in an infinite number of possible se-
quences, as is generally the case with hexagonal polytypes, Ye et al. [1998] distinguishes
between the two simplest stackings, according to whether the Se sheets within each
triple layer follow the “wurtzite-like” sequence, A-B-A, or “zincblende-like” one, A-B-
C. Taken together, this yields two possibilities, shown in Fig. 10 of Ye et al. [1998]:
A-C-A· · ·B-A-B· · ·C-B-C· · · (“Model 1”), or A-B-C· · ·B-C-A· · ·C-A-B· · · (“Model
2”). Indicating a place of a missing atom in parentheses, this would yield: A-C-
A··(C)··B-A-B··(A)··C-B-C··(B)··, or A-B-C··(A)··B-C-A··(B)··C-A-B··(C)··.

5.2 Relaxed crystal structures from calculation

The structure of VOSF phase is shown in the left panel of Fig. 5.1, to explain the
positions of 2-coordinated and 3-coordinated Se atoms, to be referred to later. The
right panel of Fig. 5.1 depicts the layered phase.

For all three structure models, the lattice parameters have been optimized in a
sequence of WIEN2k calculation steps (this involved also optimization of internal coordi-
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Figure 5.1: Left panel: the unit cell of the
VOSF phase of In2Se3, underlying the difference
between the two-coordinated (yellow spheres)
and three-coordinated (green spheres) Se atoms.
Right panel: the cell of the LSP1 phase of Ga2Se3.

nates). The resulting parameters are given in Table 5.3. The lattice parameters of LSP
and VOSF phases are very different, but both are derived from the wurtzite lattice
(by introducing vacancies either in “scattered” form, as in VOSF, or as missing cation
planes in LSP). It is convenient to refer to underlying wurtzite parameters, which can
be recovered as a/

√
3, c/6 for VOSF and a, c/9 for LSP.

Table 5.3: Lattice parameters (Å) of Ga2Se3 and In2Se3 crystal structures as optimized in
calculations by WIEN2k using the PBEsol XC potential.

Polytype a “wurtzite a” c “wurtzite c”
Ga2Se3

VOSF 6.73 3.89 18.90 3.15
LSP1 4.04 4.04 28.89 3.21
LSP2 4.04 4.04 28.95 3.22

In2Se3
VOSF 7.18 4.15 20.23 3.37
LSP1 4.19 4.19 29.30 3.26
LSP2 4.29 4.29 28.49 3.17
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5.2. Relaxed crystal structures from calculation

The Wyckoff positions of the relaxed structures, along with corresponding band
lengths, are listed in Tables 5.4, 5.5 for the VOSF phase and in Tables 5.6, 5.7 for
the layered phases. It is obvious that the bond connecting the “lonely” Se atom (2-
coordinated in the VOSF phase, or “top Se” in layered phases) is considerably short-
ened.

As follows from the discussion in Sec. 5.1, the comparison of calculated lattice pa-
rameters with experiment is not possible in case of Ga2Se3. However, an interesting
comparison can be made with the work by Popović et al. [1977], who studied the vari-
ation of structures in (In,Ga)2Se3 solid solutions. According to their data, the mixed
crystals remain hexagonal starting from the In-rich side all the way through up to 1:2
molar ratio of In:Ga, whereby the hexagonal a parameter gradually shrinks from 7.11 Å
in In2Se3 to 6.82 Å in (In1/3Ga2/3)2Se3. At the same time, the c parameter starts from
19.33 Å at the In-reach side, gradually drives through the minimum c = 18.85 Å at
In:Ga=1:1 concentration, and recovers to c = 19.30 Å at the Ga concentration reaches
2/3 (and the hexagonal structure ceases to exist). It is interesting to note that the
corresponding lattice parameter values from Table 5.3 are quite close to these numbers,
including the fact that the c parameters do not differ much between Ga2Se3 and In2Se3
(within ∼1.5%), whereas the a parameters do (by ∼6%). It would be interesting and
not particularly difficult to estimate, from additional calculations for the 1:1 mixed
system, whether the c parameter will be indeed considerably reduced, as compared to
end systems, and to try to understand the driving forces of such effect.

As could be expected, the in-plane size of VOSF phase, that contains vacancies in
every layer, is more tight. Interestingly, the “wurtzite c” parameter of LSP phases is
(as intuitively expected) increased in Ga2Se3 but (a bit counter intuitively) expanded in
In2Se3, with respect to that of the VOSF phase. This is consistent with the fact that the
LSP structures are hold together by interaction between triple layers across the vdW
gap, whereas the VOSF structures are knitted by “conventional” covalent interactions
in all directions. The dispersive interactions, a priori not included in a conventional

Table 5.4: Wyckoff positions in the relaxed VOSF structure of In2Se3 (a = 7.1877 Å, c =
20.2335 Å), and the span of the resulting bond lengths. Only the atoms whose z-coordinate is
closest to zero are shown; each position is replicated into (in total) six, applying the symmetry
operations of the P61 space group (Nr 169).

Atom x y z
In 0.64954 0.99027 0.00071
In 0.01223 0.67837 0.99763
Se 0.00873 0.32457 0.96180
Se 0.33589 0.00585 0.95520
Se 0.65157 0.64666 0.95982

Bond lengths:

In − (2-coord. Se) = 2.491 ± 0.002 Å ;
In − (3-coord. Se) = 2.60 ± 0.01 Å.
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Table 5.5: Similar to Table 5.4, for Ga2Se3 (a = 6.7256 Å, c = 18.9013 Å).

Atom x y z
Ga 0.63559 0.97763 0.00134
Ga 0.00314 0.67046 0.99835
Se 0.99990 0.31399 0.96350
Se 0.32431 0.99114 0.95042
Se 0.63596 0.62989 0.96166

Bond lengths:

Ga − (2-coord. Se) = 2.344 ± 0.004 Å ;
Ga − (3-coord. Se) = 2.46 ± 0.01 Å.

Table 5.6: Wyckoff positions in the relaxed LSP1 and LSP2 structures of In2Se3, and the
resulting bond lengths. Only the atoms within one 5-layer block are indicated.

LSP1 structure of In2Se3 (a = 4.1962 Å, c = 29.3881 Å):
Atom x y z

bottom Se 2/3 1/3 0.98308
In 0 0 0.01875

middle Se 0 0 0.11112
In 2/3 1/3 0.15413

top Se 2/3 1/3 0.23520

Bond lengths (Å):
bottom Se− In 2.6398

In− Se middle 2.7146
middle Se− In 2.7325

In− Se top 2.3825

LSP2 structure of In2Se3 (a = 4.2973 Å, c = 28.4910 Å):
Atom x y z

bottom Se 0 0 0.98392
In 2/3 1/3 0.01682

middle Se 2/3 1/3 0.11060
In 1/3 2/3 0.15262

top Se 1/3 2/3 0.23492

Bond lengths (Å):
bottom Se− In 2.6554

In− Se middle 2.6719
middle Se− In 2.7526

In− Se top 2.3424

Table 5.7: Similar to Table 5.6, for LSP1 phase of Ga2Se3.

LSP1 structure of Ga2Se3 (a = 4.0404 Å, c = 28.9571 Å):
Atom x y z

bottom Se 2/3 1/3 0.99927
Ga 0 0 0.02694

middle Se 0 0 0.11125
Ga 2/3 1/3 0.14158

top Se 2/3 1/3 0.22096

Bond lengths (Å):
bottom Se−Ga 2.4659

Ga− Se middle 2.4352
middle Se−Ga 2.4919

Ga− Se top 2.2928

104



5.3. Band dispersions and orbital contributions

DFT calculation (also in those done with PBEsol), seem to be stronger underestimated
in Ga-Se systems than in In-Se ones. Consequently, the Ga2Se3 lattice looses a bit on
insertion of “vacancy layers”, whereas the In2Se3 lattice becomes a bit tighter due to a
stronger covalent part in Se-Se interaction across the vdW gap.

The study of the relative stability of polytypes would require to scan there en-
ergy/volume curves near the corresponding equilibria, as was done in Chapter 4 for the
1:1 phases. This was not concluded at this moment.

5.3 Band dispersions and orbital contributions

5.3.1 Layered phases

Band dispersions of two layered phases and of the VOSF, as calculated within GGA
(using PBEsol XC functional), are shown in Fig. 5.2. All these phases are hexagonal;
the labelling of high-symmetry points in the BZ can be found in Fig. 2.6. However, the
dimensions of the BZ and the number of bands are different: VOSF has roughly

√
3

times longer in-plane lattice parameter and 2/3 times the c parameter than the LSP;
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Figure 5.2: Band dispersions in three phases of In2Se3 as calculated by WIEN2k with PBEsol.
Note that the layered phases are not semiconducting according to GGA.
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correspondingly, the number of bands is twice that of LSP.

The band structures in Fig. 5.2 are aligned by the “Fermi level” (chosen as zero at
the energy scale), that is, for the VOSF phase which exhibits a band gap, by the top
of the valence band. This has an inconvenience that well localized In4d states, as well
as the Se4s band, are not aligned. Concerning the Se4s states, one notes a narrow non
dispersive band (at ∼ −11.5 eV in 5.2) which is quite separated (by ∼2 eV) from the
“main” (dispersive) Se4s band (at −12 – −14 eV). This split-off state is due to the
4s states of Se atoms which are in incomplete coordination and therefore miss to be
efficiently hybridized with the states of neighbouring atoms. In the layered structures,
these missing-coordination atoms are the Se atoms at the surface of the Se-In-Se-In-Se
layer, or, more specifically (since the layer is not symmetric), the “lonely” Se atoms
which are on top of the cation beneath, and bonded only with the later.

To remind the geometry of the layer, we refer to the right panel of Fig. 5.1 which
is labelled Ga2Se3; the structure of In2Se3 would be identical. The “lonely” atoms in
question are those labelled as “Se (top)” in the figure cited. The Se atoms on the
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Figure 5.3: Total (left upper panel) and partial densities of states in LSP1 phase of Ga2Se3
calculated by WIEN2k with PBEsol. See Fig. 5.1 for identification of atoms.
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5.3. Band dispersions and orbital contributions

opposite surface of the layer (marked “bottom”) also have an incomplete coordination,
but of much less dramatic type: they bond to three cations in the same (warped)
wurtzite-like plane; only the fourth their bond is not saturated. The Se atoms in the
middle of the layer have full tetrahedral environment.

This different environment and different saturation of covalent bonds for different
Se atoms manifests itself also in the density of states of correspondng atoms, shown
in Fig. 5.3 (for the case of Ga2Se3; the trends are very similar for In2Se3-LSP). The
Se (top) atoms not only have very narrow and less deep 4s state, but also their Se4p
band is relatively narrow and shifted upwards on the energy scale, compared to other Se
atoms. In principle, the upward shift of 4s and 4p can be anticipated, as the crystalline
potential at the peripheric “top” atom is less deep than within the layer.

Coming back to Fig. 5.2 and the absence of band gap for the LSP phases, one can
see that this is due to an overlap, that happens only in some vicinity of the BZ center
(including Γ and A) of convex upper valence bands and protruding down lower conduc-
tion bands, similarly to what we observed in CuInSe2 according to GGA calculation.

5.3.2 Vacancy-ordered phase

The band structure of the VOSF phase (Fig. 5.2) also contains a narrow split-off band
at ∼−11.5 eV, and its origin can also be traced to a reduced coordination of a Se atom.
Indeed, the crystal structure of VOSF, as was explained in Chapter 2 and is shown in
the left panel of Fig. 5.1, includes 3-coordinated and 2-coordinated Se atoms. Their
local densities of states (Fig. 5.4) and contributions to the eigenvectors in different parts
of the energy dispersion pattern (Fig. 5.5) can be analyzed separately. From Fig. 5.5
that shows orbital contributions from 4s and 4p states of three-coordinated and two-
coordinated Se atoms it becomes evident that the split-off band among those related to
the Se4s states is brought about almost exclusively by the states of the 2-coordinated
Se atoms. Correspondingly, the Se4p states of these atoms, within the valence band,
are dominating towards the top of the valence band. These trends can also be seen in
plot of the densities of states, shown in Fig. 5.4.

5.3.3 Band gaps

The GGA calculation predicts the band gap of 0.916 eV for Ga2Se3 and 0.552 eV for
In2Se3, both being in the VOSF phase. Such relation is consistent with qualitative
trends found in other earlier discussed In-based and Ga-based compounds. Layered
phases, according to GGA, have no band gap. With mBJ XC potential, the band gap
predictably increases to ∼1.986 eV for VOSF-Ga2Se3 and ∼1.587 eV for VOSF-In2Se3.
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Figure 5.4: Total (left upper panel) and partial densities of states in VOSF phase of In2Se3
calculated by WIEN2k with PBEsol. There are two inequivalent In positions in the unit cell,
but the corresponding DOS are nearly identical.

The corresponding band structures, in comparison according to PBEsol and mBJ
calculations, are shown in Fig. 5.6. The band structure of In2Se3 with PBEsol was
already shown above in Fig. 5.2 but is included in Fig. 5.6 for the convenience of
comparison. One can see that the modifications of the band structure are more complex
than just increasing the band gap. Namely, the (upper) valence band (dominated by
Se4p and Ga4p/In5p states, see Fig. 5.4) gets “compressed” by ∼0.5 eV, “pushed”
from below by the nearly rigid bunch of Se4p-Ga4s/In5s states. The Se4s-dominated
bands situated at about 13 eV below the valence band top remain essentially rigid on
passing from PBEsol to mBJ; they only undergo a slight upward shift. The Ga3d /
In4d-related band at ∼15 eV, on the contrary, drifts downwards and becomes more
narorow in mBJ. The same effect of the Se4s band shifting upwards against the In4d
band shifting downwards under the effect of the mBJ XC potential can be seen in
Fig. 3.5 vs Fig. 3.6 in Chapter 3.

The conduction band, on being generally shifted upwards under the effect of mBJ,
becomes more flat. Whereas the top of the valence band stays invariably in Γ, a local
minimum in the conduction band develops at M and becomes competitive with that in
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Figure 5.5: Band dispersions in VOSF In2Se3 with s and p orbital contributions from 2-
coordinated and 3-coordinated Se atoms, as extracted from WIEN2k calculations with PBEsol.

Γ (in Ga2Se3, not so markedly in In2Se3).

The experimental works report a number of estimates of the band gap of In2Se3,
which are sometimes difficult to bring in relation with the crystal structures, due to
ambiguity in the latters’ attribution (as seen in Table 5.1). Julien et al. [1990] cite
the optical gap value of 1.812 eV (at room temperature) or 2.05 eV (extrapolated to
zero temperature) for the phase they refer to as γ-In2O3, a high-temperature one (cf.
“van Landuyt γ” in Tab. 5.1) but which presumably can be stabilized also at room
temperature. Further on, Julien et al. [1990] cite the optical gap of the α phase as
∼1.35 eV at room temperature, to become 1.560 eV when extrapolated to zero tem-
perature. In principle, both “Likforman α” and “van Landuyt γ” from Table 5.1 could
be reasonably associated with the VOSF, based on the similarity of their respective
lattice parameters. Under this angle, one can conclude that the mBJ calculation yield
the band gap either (assuming α=VOSF) in unexpectably good agreement with exper-
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Figure 5.6: Band structures of Ga2Se3 (two left panels) and In2Se3 (two right panels) in the
VOSF phase, calculated with PBEsol and mBJ XC potentials.

iment, or (assuming γ=VOSF) slightly underestimated, as is typically the case in many
other semiconducting systems.

For Ga2Se3, the situation is more delicate, because the most relevant phases under
discussion seem to be not of hexagonal structure. For instance, Takumi et al. [1999]
report the fundamental absorption edge of 2.3 eV (at ambient pressure, among their
studies done at elevated pressures) for the (monoclinic) β-Ga2Se3 phase, whose structure
was specified by Lübbers and Leute [1982]. As is seen from Fig. 2 of Lübbers and Leute
[1982], the nearest-neighbour arrangement and the distribution of cation vacancies have
similarities to the correspondent characteristics for the VOSF, only that the underlying
structure of Ca2Se3 is zincblende and not wurtzite. Similarly, Okamoto et al. [1993] refer
to zincblende-related phase of Ga2Se3 in which Ga vacancies occupy every third (011)
or (011̄) plane, and estimate the band gap to be 2.1 eV. Such reasonable agreement
with the band gap value calculated for VOSF Ga2Se3 (as well as the observation that
the band gap exceeds that of In2Se3 by ∼0.4 eV) may not be fully fortuitous.

Calculations with mBJ for layered phases encountered some technical problems (very
unstable start-off while initializing the mBJ procedure). Comparing the “extrapolated”
value of increasing the gap due to mBJ, say ∼1 eV, with the “negative gap” in Fig. 5.2
(the overlap of the valence and conduction bands), which is of about the same order,
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5.4. Assessment of results on (III)2Se3 systems

one can conclude that the opening or not of the gap is possible but not granted.

5.4 Assessment of results on (III)2Se3 systems

The work done so far on In2Se3 and Ga2Se3 leads to the following conclusions.

1.
√
3×

√
3×3 superstructures on the basis of wurtzite have been very actively

under discussion in relation with In2Se3. The VOSF phase is a plausible realisation
of such model. The ordered distribution of cation vacancies imposes the presence of
2-coordinated and 3-coordinated Se atoms, which quite markedly differ by their bond
lengths to neighbouring In atoms, and give rise to a very pronounced features in the
band structure / densities of states (narrow peaks hinting for localized states). Accord-
ing to DFT calculations, this phase is semiconducting already when using the GGA.
The use of the mBJ XC potential opens the band gap even further. In fact the pre-
dicted band gap values obtained with mBJ are in quite good quantitative agreement
with experiment, but this should be looked at with caution, for two reasons. First, the
reference In2Se3 phases on which the experiments have been done may only presumably
be related to VOSF. Second, the Ga2Se3 phases used in experiments are zincblende-
based and may, at best, only provide the nearest coordination and distribution of cation
vacancies similar to those in VOSF phase, but not the long-range order nor the local
symmetry of the later.

2. The layer structures, whose in-plane lattice constant is essentially that of wurtzite,
make the other “family” of phases involved in many discussions. Obviously, the arrange-
ment of cation/anion layers, within the given stoichiometry, can be realized by many
possible ways. The LSP1 and LSP2 are just two models which seem plausible, in view of
existing literature. First-principles calculations for them encounter a problem that the
band structure of these materials, according to GGA, is not semiconducting. By itself,
it does not necessarily “devaluate” the predictions done in the calculations concerning
the equilibrium structures. However, the necessary caution should be applied in assess-
ing these data. It is likely that applying the mBJ treatment will result in opening a
band gap. Unfortunately, this won’t be necessary useful for “improving” the structure
predictions, because the mBJ XC potential was designed just in view to “correct” the
band energies and does not include any “mechanism” to correct at the same time the
total energies and forces acting on atoms.

3. In any case, on the base of the results so far obtained, one can conclude that
the reduced coordination of some Se atoms in the layer structures manifests itself in
somehow similar way as in VOSF. Namely, the lengths of bond connecting such low-
coordinated anions to In atoms are very noticeably reduced. Again in similarity with
what happened in VOSF phases, localized electronic states have been formed related
to these low-coordinated atoms, characterized by narrow peaks in the density of states.
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4. In what regards Ga2Se3, the strictly hexagonal models like VOSF or LSP seem to
be too idealized, because numerous experimental indications exists towards distortion
into monoclinic structure. However, in the present work the idea was to trace the
Ga-based and In-based selenide systems in comparison, through different compositions
and phases. An analysis of instability versus changing from hexagonal into monoclinic
structure may become an interesting option for future first-principles calculations.
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Conclusion

This works brings some studies to supposed termination, but quite a number of issues
failed to find their due resolution. The simulations on chalcopyrite-type structures were
confined to somehow too ordered model systems. Various III-VI polytypes are predicted
to have astonishingly close energies, but only few of these systems are realized in nature;
the reason for this remains obscure. The effects of lattice vibrations and of spin-orbit
interactions were completely left out of the scope of this work, yet they might play
important role in some situations. The colleagues doing experiments in vibrational or
electron spectroscopies have big expectations from theory but they can not always be
rewarded...

This work signifies a long road which I passed since first confronting with the issues
of first-principles calculations for materials, through many small discoveries, victories,
annoyances and despairs towards a stage where some parts of work are concluded,
the others ought to come to conclusion very soon, and yet others did not went as
expected, and demanded to take new turns and to change the plan on the road. I
learned about semiconductors and photovoltaics, crystallography and phase diagrams,
calculation methods and their pitfalls. It was rewarding to learn how first-principles
calculations are able to do very accurate predictions, and what various information can
be extracted from very basic electronic properties. There are yet so many interesting
problems to look into, and so many interesting things to learn...

This work resulted from my PhD years offered me various and many defiances
regarding the study of semiconductors of binary, ternary, big crytals and alloys. It
offered me many intellectual and practical skills leading me to a new way of thinking
scientifically and logically... And a new proficiency and expertise to solve the scientific
problems more effectively.

It was not originally intended, but utimately turned good, to apply two methods
of first-principles calculations, both considered as very reliable, in comparison. Done
out of frustration about particular technical problems, it turned out very useful to give
some confidence in particularly sensitive calculations, and to estimate the real accuracy
and credibility offered by state-of-art theory.
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Bodnar’, I. V., A. A. Văıpolin, V. Y. Rud’ and Y. V. Rud’ (2006). Crystal structure of
CuIn3Se5 and CuIn5Se8 ternary compounds. Techn. Phys. Lett. 32(12), 1003. URL
http://dx.doi.org/10.1134/S1063785006120029. Original Russian text published
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