Development and application of methods based on extremely localized molecular orbitals

par Benjamin Meyer

Thèse de doctorat en Chimie

Sous la direction de Manuel F. Ruiz-Lopez et de Alessandro Genoni.

Le président du jury était Benoît Guillot.

Le jury était composé de Julia Contreras-Garcia.

Les rapporteurs étaient Arianna Fornili, Simon Grabowsky.

  • Titre traduit

    Développement et application de méthodes basées sur les orbitales moléculaires extrêmement localisées


  • Résumé

    Les recherches menées dans le cadre de cette thèse avaient un double objectif. Premièrement, le développement d’une nouvelle méthode de chimie quantique à croissance linéaire basée sur le concept d’Orbitales Moléculaires Extrêmement Localisées (ELMOs) et adaptée à l’étude de très gros systèmes moléculaires. Deuxièmement, il s’agit d’évaluer le potentiel des méthodes de calcul utilisant de fonctions d’ondes contraintes et leur capacité à reproduire des données de diffraction aux rayons-X. En ce qui concerne le premier objectif, notre approche se base sur le principe de transférabilité, à savoir l’observation que les systèmes moléculaires sont composés par des unités fonctionnelles récurrentes qui conservent leurs caractéristiques lorsqu’elles se trouvent dans un même environnement chimique. Malheureusement, les orbitales moléculaires traditionnellement employées en chimie théorique dans des modèles de particule indépendante (Hartree-Fock, Kohn-Sham) sont complètement délocalisées sur le système étudié et, par conséquent, ne peuvent pas être transférées d’une molécule à une autre. Ce problème peut être résolu en ayant recours à des orbitales moléculaires déterminées de manière variationnelle sous la contrainte d’être exprimées à partir des fonctions de base centrées sur des atomes de fragments présélectionnés : les ELMOs. En fait, puisqu’elles sont strictement localisées, ces orbitales sont en principe transférables d’une molécule à une autre. L’objectif à terme est d’exploiter cette transférabilité en construisant une base de données d’ELMOs permettant de calculer quasiment instantanément, de manière approximative, des fonctions d’ondes et des densités électroniques de macromolécules. Dans la première partie de cette thèse, nous avons évalué le degré de transférabilité des orbitales moléculaires extrêmement localisées et nous avons proposé une approximation appropriée pour les molécules modèles servant à la détermination des ELMOs qui seront stockées dans la future base de données. Nous avons également comparé la transférabilité des ELMOs avec celle de densités électroniques atomiques asphériques (pseudo-atomes) qui sont largement répandues en cristallographie pour le raffinement de structure cristallographique de grands systèmes. La seconde partie de la thèse se focalise sur les méthodes quantiques utilisant des fonctions d’ondes contraintes. Dans ces méthodes, on cherche à déterminer des fonctions d’ondes qui minimisent l’énergie électronique des systèmes étudiés, mais qui en même temps doivent reproduire un jeu d’amplitudes de facteurs de structure expérimentaux. Cette technique, initialement proposée par Jayatilaka, a récemment été étendue à la théorie des orbitales moléculaires extrêmement localisées. Dans ce contexte, nous avons tout d’abord étudié les effets d’une localisation stricte sur la structure électronique dans des calculs de la fonction d’onde contrainte. Puis, nous avons déterminé si la fonction d’onde contrainte (et la densité associée) est capable de capturer des effets de la corrélation électronique. Enfin, en utilisant une nouvelle technique dite Valence Bond "expérimentale", basée sur les ELMOs, nous avons effectué une étude théorique sur le syn-1,6:8,13- Biscarbonyl[14] annulène (BCA) pour expliquer la rupture partielle de son aromaticité à haute pression observée expérimentalement. Cette dernière étude illustre positivement la potentialité du concept d’orbitale moléculaire strictement localisée en chimie quantique, qui ouvre des perspectives très larges notamment pour l’étude statique ou dynamique de systèmes moléculaires complexes.


  • Résumé

    The goal of the present work was dual. At first, this thesis aimed at proposing new lin- ear scaling quantum chemistry methods based on Extremely Localized Molecular Orbitals (ELMOs) and, secondly, it focused on the assessment of the capabilities of the X-ray con- strained wave function approaches. Concerning the first target, our approach is based on the transferability principle, namely the observation that molecular systems are composed by recurrent functional units that generally keep their features when they are in a similar chemical environment. In this context, it is possible to take advantage of the intrinsic trans- ferability of molecular orbitals strictly localized on small molecular subunits to recover wave functions and electron densities of large systems. Unfortunately, the molecular or- bitals traditionally used in quantum chemistry are completely delocalized on the system in exam and, therefore, are not transferable from a molecule to another. This problem can be solved only considering molecular orbitals variationally determined under the constraint of expanding them on local basis sets associated with pre-determined molecular fragments: the ELMOs. In fact, since they are strictly localized, these orbitals are in principle transfer- able from molecule to molecule and our final goal is to construct databanks of ELMOs that will enable to recover almost instantaneously approximate wave functions and electron densities of macromolecules at a very low computational cost. In the first part of this the- sis, we have evaluated the transferability of the Extremely Localized Molecular Orbitals and we have defined a suitable model molecule approximation for the computation of the ELMOs to be stored in the future databases. We have also compared the transferability of the ELMOs to the one of the aspherical atomic electron densities (pseudoatoms), which are largely used in crystallography to refine crystallographic structures of large systems. The second part of this work focuses on the X-ray constrained wave function approach. This method consists in determining wave functions that not only minimize the electronic energy of the systems under exam, but that also reproduce sets of experimental structure factor amplitudes within a desired accuracy. The technique, initially proposed by Jayatilaka has been recently extended to the theory of the Extremely Localized Molecular Orbitals. In this context, we have first studied the effects of introducing a strict a priori localization on the electronic structure in X-ray constrained wave function calculations. Then, we have determined if the X-ray constrained wave function is intrinsically able to capture the elec- tron correlation effects on the electron densities. Finally, also exploiting a novel X-ray con- strained ELMO-based Valence Bond technique, we have reported theoretical studies on the syn-1,6:8,13-Biscarbonyl[14] annulene (BCA) to explain the partial rupture of the aromatic character of the molecule occurring at high-pressure


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?