Modélisation et simulations numériques de la formation de domaines ferroélectriques dans des nanostructures 3D

par Pierre-William Martelli

Thèse de doctorat en Mathématiques

Sous la direction de Séraphin Mbduayoueyou Mefire.

Soutenue le 26-09-2016

à l'Université de Lorraine , dans le cadre de IAEM - Ecole Doctorale Informatique, Automatique, Électronique - Électrotechnique, Mathématiques , en partenariat avec Institut Élie Cartan de Lorraine (2013-.... ; Vandoeuvre-lès-Nancy, Metz) (laboratoire) et de Institut Élie Cartan de Lorraine / IECL (laboratoire) .

Le président du jury était François Alouges.

Le jury était composé de Jean-Guy Caputo, Igor A. Luk'yanchuk, Jean-Rodolphe Roche.

Les rapporteurs étaient Xavier Ferrieres, Rachid Touzani.


  • Résumé

    Dans cette thèse, nous étudions la formation de domaines ferroélectriques dans des nanostructures, à partir d'une modélisation faisant intervenir les équations de Ginzburg-Landau et d’Électrostatique, ainsi que des conditions aux limites d'application potentielle. Dans la première partie de la thèse, les nanostructures sont constituées d'une couche ferroélectrique entièrement enclavée dans un environnement paraélectrique. Nous introduisons un modèle depuis un couplage de ces équations et élaborons, pour son investigation, un schéma numérique faisant usage d’Éléments Finis. Des simulations numériques montrent l'efficacité de ce schéma, qui permet d'établir, par exemple, l'existence de cycles d'hystérésis sous l'influence de paramètres aussi bien physiques que géométriques. Dans la seconde partie, les nanostructures sont constituées d'une couche ferroélectrique partiellement enclavée qui s'intercale entre deux couches paraélectriques. Deux modèles sont proposés à partir d'une variante du couplage réalisé dans la première partie, et se distinguent dans la prescription des conditions aux limites. Des conditions de type Neumann interviennent dans le premier modèle, pour lequel un schéma numérique aussi basé sur des approximations par Eléments Finis est introduit. Dans le second modèle, des conditions périodiques sont prises en considération ; un schéma numérique s'appuyant ici sur une hybridation des méthodes de Différences Finies et d'Eléments Finis est présenté. Les simulations numériques basées sur ces deux schémas permettent de renseigner sur les permittivités dites effectives, des nanostructures, ou encore sur la constitution des parois de domaines ferroélectriques

  • Titre traduit

    Modeling and numerical simulations of the formation of ferroelectric domains in 3D nanostructures


  • Résumé

    In this thesis, we study the formation of ferroelectric domains in nanostructures by modeling based on the Ginzburg-Landau and Electrostatics equations, together with boundary conditions that are suitable for real applications. In the first part of the thesis, the nanostructures are made up of a ferroelectric layer, fully enclosed in a paraelectric environment. We introduce a model based on the coupled system of equations and then develop, for its investigation, a numerical scheme using Finite Elements. Numerical simulations show the efficiency of this scheme, which allows us to establish, for instance, the existence of hysteresis cycles under the influence of physical or geometric parameters. In the second part, the nanostructures are made up of a partially enclosed ferroelectric layer that lies between two paraelectric layers. Two models are introduced from a variant of the coupling performed in the first part, and differ in the prescription of the boundary conditions. Neumann type conditions are prescribed in the first model, for which a numerical scheme also based on Finite Element approximations is developed. In the second model, periodic conditions are taken into account; a numerical scheme based on a combination of Finite Difference and Finite Element methods is presented. Numerical simulations from these schemes allow us, for instance, to investigate the so-called effective permittivities, of the nanostructures, or the formation of ferroelectric domain walls


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université de Lorraine. Direction de la documentation et de l'édition. BU Ingénieurs.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.