Thèse soutenue

Schémas numériques adaptatifs pour les équations de Vlasov-Poisson

FR  |  
EN
Auteur / Autrice : Éric Madaule
Direction : Nicolas BesseErwan Deriaz
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 04/10/2016
Etablissement(s) : Université de Lorraine
Ecole(s) doctorale(s) : École doctorale IAEM Lorraine - Informatique, Automatique, Électronique - Électrotechnique, Mathématiques de Lorraine (1992-....)
Partenaire(s) de recherche : Laboratoire : Institut Jean Lamour (Nancy ; Vandoeuvre-lès-Nancy ; Metz) - Institut Jean Lamour / IJL
Jury : Président / Présidente : Stéphane Colombi
Examinateurs / Examinatrices : Virginie Grandgirard, Simon Labrunie
Rapporteurs / Rapporteuses : Philippe Helluy, Valérie Perrier

Résumé

FR  |  
EN

Le système d'équations de Vlasov-Poisson est un système très connu de la physique des plasmas et un enjeu majeur des futures simulations. Le but est de développer des schémas numériques utilisant une discrétisation par la méthode Galerkin discontinue combinée avec une résolution en temps semi-Lagrangienne et un maillage adaptatif basé sur l'utilisation des multi-ondelettes. La formulation Galerkin discontinue autorise des schémas d'ordres élevés avec des données locales. Cette formulation a fait l'objet de nombreuses publications, tant dans le cadre eulérien par Ayuso de Dios et al., Rossmanith et Seal, etc. que dans le cadre semi-lagrangien par Quo, Nair et Qiu, Qiu et Shu et Bokanowski et Simarta, etc. On utilise les multi-ondelettes pour l'adaptativité (et plus précisément pour la décomposition multi-échelle de la fonction de distribution). Les multi-ondelettes ont été largement étudiées par Alpert et al. pendant les années 1990 et au début des années 2000. Des travaux combinant la résolution multi-échelle avec les méthodes Galerkin discontinues ont fait l'objet de publications par Müller et al. en 2014 pour les lois de conservation hyperboliques dans le contexte des éléments finis. Besse, Latu, Ghizzo, Sonnendrücker et Bertrand ont présenté les avantages d'un maillage adaptatif dans le contexte de Vlasov-Poisson relativiste en utilisant des ondelettes à support large. La combinaison de la méthode Galerkin discontinue avec l'utilisation des multi-ondelettes ne requière en revanche qu'un support compact. Bien que la majorité de la thèse soit présentée dans un espace des phases 1d × 1v, nous avons obtenus quelques résultats dans l'espace des phases 2d × 2v.