Thèse soutenue

Exploration de nouvelles voies pour l'ignifugation des polymères
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Mohamad Matar
Direction : Bruno AzambreMarianne Cochez
Type : Thèse de doctorat
Discipline(s) : Chimie
Date : Soutenance le 29/06/2016
Etablissement(s) : Université de Lorraine
Ecole(s) doctorale(s) : SESAMES - Ecole Doctorale Lorraine de Chimie et Physique Moléculaires
Partenaire(s) de recherche : Laboratoire : LMOPS - Laboratoire Matériaux Optiques, Photoniques et Systèmes (Metz) - Laboratoire de chimie et physique - Approche multiéchelle des milieux complexes (2012-.... ; Metz)
Jury : Président / Présidente : Jean-Luc Blin
Examinateurs / Examinatrices : Fouad Laoutid
Rapporteurs / Rapporteuses : Christelle Delaite, José-Marie Lopez-Cuesta

Résumé

FR  |  
EN

Dans cette étude, nous avons cherché à développer de nouvelles formulations pour améliorer la stabilité thermique et le comportement au feu de trois matrices polymères de grande diffusion: le polyéthylène (PE), le polystyrène (PS) et le polyamide 66 (PA66). Le système intumescent employé consiste à combiner des retardateurs de flammes classiques (polyphosphate d’ammonium (APP) et pentaérythritol (PER)) avec une faible quantité de nanooxydes métalliques dont les propriétés auraient été ajustées sur mesure de façon à améliorer la compatibilité du mélange à l’état fondu, ou encore pour changer le mécanisme de dégradation d’un point de vue chimique (effets catalytiques) ou physiques (effet barrière, viscosité etc…). Une partie importante de cette étude a donc été d’abord consacrée à la synthèse d’oxydes à morphologie, porosité, structure ou fonctionnalités particulières. A cet égard, les silices mésoporeuses possèdent l’avantage de présenter des surfaces spécifiques élevées (700-1400 m²/g) et une taille de pores compatible avec les chaines polymères. En adaptant les conditions de synthèse, nous avons cherché à établir des relations entre certains paramètres relatifs aux silices préparées (tels que la (1) surface spécifique (2) la taille des particules (3) la taille des pores (4) la morphologie et (5) le type de structure (en général SBA-15)) sur la stabilité thermique et le comportement au feu du polyéthylène. Préalablement, les propriétés texturales, structurales et chimiques de ces silices ont été caractérisées par porosimétrie à l’azote à 77K, DRX et FTIR. Globalement, les améliorations apportées par les silices mésostructurées restent modestes par rapport à celles induites par les RF classiques seuls et ceci particulièrement pour les polymères non charbonnants (PE et PS). Ceci est dû probablement à la très grande disparité des teneurs respectives en silice et RF dans les composites testés (1 et 24% en masse, respectivement). L’effet du taux de silice SBA-15 (0,5-10wt%) à taux de charge constant et égal à 25% massique a été également étudié pour les trois matrices polymères. Les valeurs maximales d’IOL (indice limite d’oxygène) sont toujours obtenues pour 1-2% de SBA-15. Les modifications de surface des silices SBA-15 par greffage des différentes fonctions organiques (CTAB, amine, thiol, phénol, phosphonate, acide benzoïque et diphénylphosphate), inorganiques (aluminium, acide phosphorique et acide tungstophosphorique) ou métalliques (cuivre, nickel) ont fait l’objet de caractérisations poussées afin d’évaluer la quantité et la stabilité thermique des espèces greffées ainsi que la nature des liaisons de surface. D’autres types de nanooxydes synthétiques (aluminophosphates, phosphate de zirconium et nanotubes de type titanates) ou commerciaux (CeO2, ZrO2, CeZr et CePr) ont également été étudiés. La plupart de ces échantillons a montré un effet légèrement positif sur la stabilité thermique et le comportement au feu des polymères. De point de vue mécanistique, les analyses réalisées en Py-GC-MS montrent que les oxydes greffés par des acides catalysent la transformation des alcènes et des diènes issus de la décomposition du PE en aromatiques. En présence de SBA-15, l’analyse des résidus carbonés (par DRX, FTIR) montrent la formation de nouvelles phases cristallines phosphosiliciques qui renforcent la couche protectrice. Les phases condensées et gazeuses de quelques formulations performantes en IOL ont été analysée par cône calorimètre et microcalorimètre (PCFC). La substitution d'une fraction d'APP/PER par de la silice SBA-15 a un effet plus marqué sur la stabilité thermique et le comportement au feu de la matrice PA66 (IOL= 48,5 (+10 par rapport au PA66/APP/PER), comparé aux matrices PE (IOL=25 (+0,5 par rapport au PE/APP/PER) et PS (IOL= 24,1 (+0,8 par rapport au PS/APP/PER). De plus, la fonctionnalisation [...]