Prediction of pollutants in gas turbines using large eddy simulation

par Thomas Jaravel

Thèse de doctorat en Energétique et Transferts

Sous la direction de Bénédicte Cuenot et de Eleonore Riber.

Le président du jury était Frédérique Battin-Leclerc.

Le jury était composé de Bénédicte Cuenot, Denis Veynante, Heinz Pitsch, Perrine Pepiot, Olivier Colin.

Les rapporteurs étaient Denis Veynante, Heinz Pitsch.

  • Titre traduit

    Prédiction des polluants dans les turbines à gaz par simulation aux grandes échelles


  • Résumé

    Les réglementations en termes d'émission de polluants qui s'appliquent aux chambres de combustion de nouvelle génération nécessitent de nouvelles approches de conception. Afin d'atteindre simultanément des objectifs de faibles émissions d'oxydes d'azote (NOx) et de monoxyde de carbone (CO), un processus d'optimisation complexe est nécessaire au développement de nouveaux concepts de moteur. La simulation aux grandes échelles (SGE) a déjà fait ses preuves pour la prédiction de la combustion turbulente. C'est aussi un outil prometteur pour mieux comprendre la formation des polluants dans les turbines à gaz, ainsi que pour en fournir une prédiction quantitative. Dans ces travaux, une nouvelle méthodologie pour la prédiction du NOx et du CO dans des configurations réalistes est développée. La méthode est basée sur une description du système chimique par des schémas réduits fidèles dits analytiques (ARC) combinés au modèle de flamme épaissie (TFLES). En particulier, un ARC ayant des capacités de prédiction précise du CO et du NO est développé, validé sur des cas laminaires canoniques et implémenté dans le solveur SGE. Le potentiel de l'approche est démontré par une simulation haute résolution de la flamme académique turbulente Sandia D, pour laquelle une excellente prédiction du CO et du NO est obtenue. La méthodologie est ensuite appliquée à deux configurations industrielles. La configuration SGT-100 est un brûleur commercial partiellement prémélangé de turbine à gaz terrestre pour la production d'énergie, étudié expérimentalement au DLR. La SGE de cette configuration permet de mettre en évidence les processus chimiques de formation des polluants et fournit une compréhension qualitative et quantitative de l'effet des conditions de fonctionnement. La seconde application correspond à un prototype monosecteur de système d'injection aéronautique multipoint à très faibles émissions de NOx développé dans le cadre du projet européen LEMCOTEC et étudié expérimentalement à l'ONERA. Un ARC représentant la cinétique chimique d'un carburant aéronautique modèle est dérivé et employé dans la SGE de la chambre de combustion avec un formalisme eulérien pour décrire la phase dispersée. Les résultats obtenus montrent l'excellente capacité de prédiction de l'ARC en termes de propriétés de flamme et de prédiction des polluants.


  • Résumé

    Stringent regulations of pollutant emissions now apply to newgeneration combustion devices. To achieve low nitrogen oxides (NOx) and carbon monoxide (CO) emissions simultaneously, a complex optimization process is required in the development of new concepts for engines. Already efficient for the prediction of turbulent combustion, Large Eddy Simulation (LES) is also a promising tool to better understand the processes of pollutant formation in gas turbine conditions and to provide their quantitative prediction at the design stage. In this work, a new methodology for the prediction with LES of NOx and CO in realistic industrial configurations is developed. It is based on a new strategy for the description of chemistry, using Analytically Reduced Chemistry (ARC) combined with the Thickened Flame model (TFLES). An ARC with accurate CO and NO prediction is derived, validated on canonical laminar flames and implemented in the LES solver. The accuracy of this approach is demonstrated with a highly resolved simulation of the academic turbulent Sandia D flame, for which excellent prediction of NO and CO is obtained. The methodology is then applied to two industrial configurations. The first one is the SGT-100, a lean partially-premixed gas turbine model combustor studied experimentally at DLR. LES of this configuration highlights the chemical processes of pollutant formation and provides qualitative and quantitative understanding of the impact of the operating conditions. The second target configuration corresponds to a mono-sector prototype of an ultra-low NOx, staged multipoint injection aeronautical combustor developed in the framework of the LEMCOTEC European project and studied experimentally at ONERA. An ARC for the combustion of a representative jet fuel surrogate is derived and used in the LES of the combustor with an Eulerian formalism to describe the liquid dispersed phase. Results show the excellent performances of the ARC, for both the flame characteristics and the prediction of pollutants.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.