Etude de l'injection et détection de spin dans le silicium et germanium : d'une mesure locale de l'accumulation à la détection non locale du courant de spin

par Fabien Rortais

Thèse de doctorat en Nanophysique

Sous la direction de Matthieu Jamet et de Céline Vergnaud.

Soutenue le 18-10-2016

à Grenoble Alpes , dans le cadre de École doctorale physique (Grenoble) , en partenariat avec Photonique, électronique et ingénierie quantiques (Grenoble) (laboratoire) .

Le président du jury était Joël Cibert.

Le jury était composé de Jean-Marie George, Pierre Dalmas de Réotier, Federico Bottegoni.

Les rapporteurs étaient Pierre Renucci, Michel Hehn.


  • Résumé

    Depuis la découverte de la magnétorésistance (MR) géante en 1988 par le groupe d'Albert Fert (prix Nobel de physique en 2007), le domaine de l'électronique de spin a connu un essor sans précédent, justifié par toutes les applications qu'elle permet d'envisager en électronique.Depuis une vingtaine d'années, il est question d'utiliser le degré de liberté de spin directement dans les matériaux semi-conducteurs avec le gros avantage par rapport aux métaux de pouvoir manipuler électriquement le spin des porteurs. L'électronique de spin dans les matériaux semi-conducteurs utilise pour coder l'information non seulement la charge des porteurs (électrons et trous), mais aussi leur spin. En associant charge et spin, on ajoute de nouvelles fonctionnalités aux dispositifs de micro-électronique traditionnels.Le premier challenge consiste à contrôler l’injection et la détection d’une population de porteurs polarisés en spin dans les semi-conducteurs traditionnels (Si, Ge).Pour cela, nous avons étudié des dispositifs hybrides de type MIS: Métal ferromagnétique/Isolant/Semi-conducteur qui nous permettent d'injecter et de détecter électriquement un courant de spin. La première partie de cette thèse concerne les dispositifs à 3 terminaux sur différents substrats qui utilisent une unique électrode ferromagnétique pour injecter et détecter par effet Hanle l’accumulation de spin dans les semi-conducteurs. Une amplification des signaux de spin extraits expérimentalement par rapport aux valeurs théoriques du modèle diffusif est à l’origine d’une controverse importante. Nous avons alors démontré que l’origine du signal de MR ou de l’amplification ne peut être expliquée par la présence de défauts dans la barrière tunnel. A l’inverse, nous prouvons la présence d’états d’interface qui peuvent expliquer l’amplification du signal de spin. De plus, la réduction de la densité d’états d’interface par une préparation de surface montre des changements significatifs comme la diminution du signal de spin.La deuxième partie de ces travaux concerne la transition vers les vannes de spin latérales sur semi-conducteurs. Dans ces dispositifs utilisant deux électrodes FM, le découplage entre l’injection et la détection de spin permet de s’affranchir des effets de magnétorésistance parasites car seul un pur courant de spin est détecté dans le semi-conducteur. Par une croissance d’une jonction tunnel ferromagnétique épitaxiée, nous avons démontré l’injection de spin dans des substrats de silicium et germanium sur isolant. En particulier nous observons un fort signal de spin jusqu’à température ambiante dans le germanium.Finalement, les prémices de la manipulation de spin par l’étude du couplage spin-orbite ont été étudiées dans les substrats d’arséniure de gallium et de germanium. En effet, nous avons induit par effet Hall de spin (une conséquence du couplage spin-orbite) une accumulation de spin qui a été sondée en utilisant la spectroscopie de muon. On démontre alors, à basse température, la présence de l’accumulation grâce au couplage entre les spins électroniques accumulés et les noyaux de l’arséniure de gallium.

  • Titre traduit

    A Study of spin injection and detection in silicon and germanium : from the local measurement of spin accumulation to the non-local detection of spin currents


  • Résumé

    Since the discovery of the giant magnetoresistance in 1988 by the group of Albert Fert (Nobel Prize in 2007), the field of spintronics has been growing very fast due to its potential applications in micro-electronics.For almost 20 years, it has been proposed to introduce the spin degree of freedom directly in the semiconducting materials. Spintronics aims at using not only the charge of carriers (electrons and holes) but also their intrinsic spin degree of freedom. In that case, spins might be manipulated with electric fields. By using both charge and spin, one might add new functionalities to traditional micro-electronic devices.Indeed, the first challenge of semiconductor spintronics is to create and detect a spin polarized carrier population in traditional semiconductors like Si and Ge to further manipulate them.For this purpose, we have used hybrid ferromagnetic metal/insulator/semiconductor devices which allow us to perform electrical spin injection and detection. The first part of this thesis deals with 3 terminal devices grown on different substrates and in which a single ferromagnetic electrode is used to inject and detect spin polarized electrons using the Hanle effect. A spin signal amplification is measured experimentally as compared to the value from the theoretical diffusive model, this raised a controversy concerning 3 terminal measurements. We demonstrate that localized defects in the tunnel barrier cannot be at the origin of the measured MR signal and spin signal amplification. Instead, we show that the presence of interface states is the origin of the spin signal amplification in all the substrates. By using a proper surface preparation and the MBE growth of the magnetic tunnel junctions, we reduce the density of interface states and show a significant modification of the spin signals.In a second part, we present the transition from 3 terminal measurements to lateral spin valves on semiconductors. In the last configuration by using two ferromagnetic electrodes, charge and spin currents are decoupled in order to avoid any spurious magnetoresistance artefacts. Using epitaxially grown magnetic tunnel junctions we can prove the spin injection in silicon and germanium. Especially, we are able to measure non local spin signals in germanium up to room temperature.Finally, we study the spin Hall effect in gallium arsenide and germanium substrates. For this propose we induce spin accumulation using the spin Hall effect (i.e spin-orbit coupling) and probe it using muon spectroscopy. We demonstrate, at low temperature the presence of spin accumulation by the coupling between nuclear spins and the electron spin accumulation.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Savoie Mont Blanc (Chambéry-Annecy). Service commun de la documentation et des bibliothèques universitaires. Bibliothèque électronique.
  • Bibliothèque : Service Interétablissement de Documentation. LLSH Collections numériques.
  • Bibliothèque : Service interétablissements de Documentation. STM. Collections numériques.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.