Communaute
E UNIVERSITE Grenoble Alpes

THESE

Pour obtenir le grade de

DOCTEUR DE LA COMMUNAUTE UNIVERSITE
GRENOBLE ALPES

Spécialité : Physique / Physique de la matiére condensée et du
rayonnement

Arrété ministériel : 7 aoat 2006

Présentée par

Hoai Anh NGUYEN

Thése dirigée par Jean-Philippe POIZAT

préparée au sein de I'Institut Néel
dans I'Ecole Doctorale de Physique de Grenoble

Two-mode giant optical non-
linearity with a single quantum
dot in a photonic waveguide

Thése soutenue publiquement le 12 Mai 2016,
devant le jury composé de :

Dr. Bernhard URBASZEK

Directeur de Recherche au Laboratoire de Physique et Chimie des Nano-
Objets (Rapporteur)

Prof. Brahim LOUNIS

Professeur au Laboratoire Photonique, Numérique et Nanosciences
(Rapporteur)

Dr. Philippe GRANGIER

Directeur de Recherche au Laboratoire Charles Fabry (Président)
Prof. Darrick CHANG

Professeur au Instituto de Ciencias Fotdnicas (Membre)

Dr. Jean-Michel GERARD

Directeur de Recherche au CEA/INAC/PHELIQS (Membre)

Dr. Jean-Philippe POIZAT

Directeur de Recherche a I'lnstitut Néel (Directeur)







Acknowledgement

Over the last three years and two months, I have had a privilege of working along-side
great colleagues and scientists. This thesis would not be possible without all the contri-
bution of my colleagues in NPSC joint team between Institut Néel and CEA Grenoble.

I would like to acknowledge most importantly my supervisor, Dr. Jean-Philippe Poizat,
for all of his supports, his advices and his enthusiasm in every single step of my PhD. We
have met and discussed for almost every working day during my PhD, which has made
the work much more easier. Thank to his knowledge and expertise, every problem and
difficulty in the measurement and in the theory was pointed out and solved efficiently. 1
appriciate also all the 'non-scientific’ discussions and activities that we have had.

I would also like to acknowledge Dr. Julien Claudon, Dr. Jean-Michel Gérard and
their team, first of all for fabricating such amazing trumpets and second of all, for all the
valuable insightful discussions and meetings that we had.

I would like to thank Dr. Thomas Grange for his theoretical support. The model
that he developed has helped us a lot in verifying the experimental results as well as in
understanding better the system.

The experimental results I obtained could have been much more challenging without
the wonderful Labview program made by Edouard Wagner. I appreciate all the time and
efforts that he spent on making such a big and sophisticated program to run smoothly
with his amazing programing skill.

I would like to thank Dr. Pierre-Louis de Assis, who taught me a lot when I first
arrived here. I spent the my initial PhD period with him in the laboratory, to build and
improve the giant non-linearity set up. His guidance helped me a lot to overcome many
difficulties at the first stages of the measurement.

I want to thank Dmitrii Tumanov, my lab-mate, for all the measurements that we
have done together. He has been always a great working partner with his skills and also
his kindness. I would also like to thank all of my colleagues in NPSC team and my PhD
friends in the open space for the fruitful scientific discussion, extensive help, friendship

and enjoyable moments during my time in Grenoble.



I would like to thank Prof. Nguyen Van Hieu, for his support over the years of my
study. His enthusiasm has always been a big motivation for me. I would also like to
express my grateful to Dr. Le Si Dang, for bringing me the opportunity to work in one
of the best scientific institutions in the world. It has been a great pleasure to know such
a very nice human being and also a great scientist like him. I thank him for his advice,
encouragement and for everything that he has done for me.

My PhD could not have been done successfully without the help from the administra-
tive office of PLUM (Nano) department, as well as all the engineers and the service staff
of Institut Néel.

I would like to thank all of my Vietnamese friends in Grenoble, my football teammates
and my tennis partners. I appreciate every joyful and also ’painful’ moment that we have
spent together.

Finally, 1 extremely grateful to my little family and my parents. Their countless,
continuous love and support have kept me on track and pushed me forward over the years
of my PhD.



i

Contents

Contents

Contents ii
List of Figures viii
1 Introduction 1
1.1 Context . . . . . 1

1.2 One-dimensional optical system . . . . . . . .. ... ... ... ....... 2
1.3 Single-photon source . . . . . .. . ..o 2
1.4 Optical giant non-linearity and all-optical switch . . . .. ... ... .. .. 4
1.4.1 Single-mode giant non-linearity . . . . . . . .. ... ... 4

1.4.2 Two-mode giant non-linearity: all-optical transistor and switch . . . 4

1.5 Motivation of this Thesis . . . . . . . . . .. ... . 6
1.6 Thesisoutline . . . . . . . . . L 6

2 A quantum dot embedded in a photonic wire 9
2.1 Self-Assembled InAs quantum dots . . . . . . . .. ... .. ... ... ... 10
2.1.1 Overview . . . . . . .. 10

2.1.2  Quantum dot discrete energy levels and optical excitation methods . 11

2.1.3 Multi-excitonic states in a quantum dot . . . . . . . . ... ... .. 14

2.1.3.1 Fine-structure splitting . . . . . ... ... ... ... ... 15

2.2 Interaction of a quantum dot with light in a photonic wire . . . . . . . . .. 16
2.2.1 Quantum emitter coupled to a photonic nanostructure . . . . . . .. 16

2.2.2 Resonant structures . . . . .. ... ... L oo 17

2.2.2.1 Pillar micro-cavity . . . . . ... 18

2.2.2.2 Photonic crystal cavity . . ... ... 0oL 19

2.2.3 Non-resonant waveguide structures . . . . . . . ... .. ... .. 20

2.2.3.1 Photonic crystal waveguide . . . . . . ... ..o 20

2.2.4 Fiber-like photonic wire . . . . . . . . . .. .. ... ... ..., 21

2.2.4.1  An infinite cylindrical photonic wire . . . . . . . .. .. .. 22

2.2.4.2 Influence of quantum dot lateral position on g factor . .. 24



Contents iii

2.2.5 Extraction efficiency enhancement in a finite photonic wire . . . . . 25
2.2.5.1 Tapering of the photonic wire top facet . . . . .. ... .. 26
2.2.6 Photonic trumpet . . . . . ... 28
2.2.6.1 Fabrication process . . . . . ... ... o 28
2.2.6.2 Sample summary . . . . . . . ... 29
2.3 Chapter summary . . . . . . . . . o i e e e e 30
3 Photoluminescence spectroscopy 31
3.1 Experimental setup . . . . . . . ... 32
3.1.1 Optical source . . . . . . . . .. 33
3.1.2  Cryogenics . . . . . . i 33
3.1.3 Spectrometer . . . . . .. 33
3.2 Photoluminescence spectroscopy . . . . .. ..o 34
3.2.1 Photoluminescence spectra . . . . . . .. ... ... ..., 34
3.2.2 Photoluminescence power dependence . . . . .. ... ... ..... 35
3.2.2.1 Identification of exciton and biexciton from the same quan-
tumdot . ... 37
3.2.2.2 Biexciton binding energy . . . . .. ... ... oL 42
3.2.3 Spectraldrift . . . .. ... 43
3.2.4 Time-resolved photoluminescence measurement . . . . . . . ... .. 45
3.2.4.1 Experimental setup . . . ... ... ... .. 45
3.2.4.2 Time-resolved photoluminescence spectroscopy . . . . . . . 46
3.3 Chapter summary . . . . . . . . ... 47
4 Single-mode giant non-linearity 49
4.1 Giant non-linearity of a one-dimensional atom . . . . . . . . .. ... .. .. 50
4.1.1 Imntroduction . . . .. . . . . . ... ... 50
4.1.2 Bloch equation of a coherent field interacting with a one-dimensional
atom ... L 51
4.1.2.1 Evolution of the fields and the interference between incom-
ing and scattering fields . . . . . ... ... 52
4.1.2.2 Impact of § factor and spectral broadening on the reflec-
tivity of the one-dimensional two-level system . . . .. .. 56
4.1.2.3 Effect of spectral diffusion . . . ... ... ... ... ... 56
4.1.2.4 Coherent and incoherent scatterings of a two-level atom . . 58
4.2 Resonant excitation spectroscopy . . . . . .. ... 60
4.2.1 Experimental setup. . . . . .. ..o 61
4.2.2 Cross-polarized detection . . . . . ... ... ... ... ....... 62

4.2.2.1 Quarter-wave plate . . . . .. .. ... L. 65



iv Contents
4.2.2.2 Laser extinction ratio . . . . . ... ... ... 66
4.2.2.3 Optical sources . . . . . .. .. ... 66
4.2.2.4 Experimental procedure . ... ... ... ... ... ... 67
4.2.2.5  Reflectivity in cross-polarization scheme . . . . . . . . . .. 69
4.2.3 Resonant excitation spectroscopy . . . . . . . .. ..o 70
4.2.3.1 The effect of an additional ultra-weak non-resonant laser
on resonant excitation spectra . . . . . .. ... ... 71
4.2.3.2 Saturation of a two-level system . . . ... ... ... ... 73
4.2.3.3 Calibration of input and output powers . . . . . ... ... 75
4.3 Ultra-low power single-mode giant non-linearity . . . . . . . . . . ... ... 76
4.3.1 A quantitative evaluation of all experimental parameters. . . . . . . 76
4.3.1.1 A non-circular symmetry at the waist where the quantum
dotslocate . . . . . . ... ... 78
4.3.1.2 Polarizations of the excitonic dipoles with respect to the
sample axes . . . . . . ... e 79
4.3.2 Single-mode giant non-linearity . . . . . . . ... ... 0L 80
4.3.2.1 Broad-band operation properties in single-mode giant non-
linearity . . . . . . . . ... 81
4.3.2.2  Single-mode giant non-linearity of an ideal system in cross-
polarization scheme . . . . . .. ... ... ... ... 82
4.3.2.3 Coherent versus incoherent scattering . . . . ... .. ... 83
4.4 Chapter sUmMmary . . . . . . . . . . ot 84
5 Two-mode giant non-linearity 85
5.1 Imtroduction . . . . . . . . . . . . . 87
5.1.1 Dressed states . . . . . . . . ... 87
5.1.1.1 Rabi oscillations of the atomic system . . . . . . ... ... 87
5.1.1.2 A two-level atom interacts with a quantized field: Dressed
states approach . . . . .. ... oo 88
5.1.2 Observation of dressed states . . . . . ... ... ... ... ..... 90
5.1.2.1 Mollow triplet . . . . . . . . ... L 91
5.1.2.2 Autler-Townes doublet . . . . . ... ... ... ...... 92
5.1.3 Dressed states of a three-level system via Bloch equations . . . . . . 93
5.1.4 Two-mode giant non-linearity with a quantum dot three-level system
- Autler-Townes splitting approach . . . . . . .. ... . ... ... 99
5.1.5 Two-mode giant non-linearity with a quantum dot three-level system
- population switch approach . . . . .. .. ... ... 0oL, 100
5.1.6 Evaluation of all-optical switch performances . . . .. ... ... .. 101



Contents v

5.1.7  Electromagnetically induced transparency versus Autler-Townes split-

tIng . .. e 102
5.2 Experimental setup . . . . . . . .. Lo 105
5.2.1 Experimental procedure . . . . . .. ... Lo oL 106
5.3 Two-mode giant-nonlinearity: Autler-Townes splitting approach . . . . . . 107
5.3.1 Autler-Townes splitting . . . . . . .. ... .. ... ... ...... 107
5.3.2 Autler-Townes splitting as a function of control laser power . . . . . 109
5.3.3 A full scan over two excitonic fine-structure dipoles . . . . . . . . .. 112
5.3.4 Autler-Townes optical switch . . . . . . ... ... ... ....... 115
5.3.4.1 Probe reflection as a function of control power . . . . . .. 115
5.3.4.2 Enhancement of probe reflection . . . . . .. ... ... .. 116
5.3.4.3 Probe laser switching contrast . . . . .. ... ... .... 119

5.3.4.4  Probe reflectivity for an ideal system in Autler-Townes ap-
proach . . . . . . .. 120
Ideal probe reflectivity in co-polarized excitation scheme . . . 121
5.3.4.5 Optical switch with laser background . . . ... ... ... 122
5.4 Two-mode giant non-linearity: Population switch approach . . .. . .. .. 123
5.4.1 Reflection measurement . . . . . .. ... ... ... ... ... 124
5.4.2 Ultra-low power optical witch . . . . . . . ... ... ... ... ... 125
Probe reflectivity for different probe laser powers . . . . . . . 127

5.4.2.1 Observation of Autler-Townes splitting at high control laser

POWEL . . . . . . . oo e e e e e e e e 128

5.4.2.2 Probe reflectivity with optimum parameters . . ... . .. 131

Ideal reflectivity in cross-polarized excitation . . . .. .. .. 132

Ideal reflectivity in co-polarized excitation . . . . .. .. .. 132

5.5 Contributions of coherence and incoherence in total probe reflectivity . . . . 133
5.5.1 Autler-Townes splitting approach . . . . . . ... ... ... ... ... 134
5.5.2 Population switch approach . . . . .. ... ... ... L. 135

5.6 Switching time . . . . . . .. L L L 135
5.7 A comparison with state of the art giant non-linearity . . ... .. ... .. 136
5.7.1 Single-mode giant non-linearity . . . . . . . ... ... ... ... .. 136
5.7.2 Two-mode giant non-linearity . . . . . . . . . ... ... ... ... 137

5.8 Chapter summary . . . . . . . . . . . 0 e e 140
6 Summary and Perspectives 141

Appendix A Fitting method for the unknown parameters of the quantum

dot-waveguide system 145



Contents

vi
Appendix B Observation of suspended and giant trumpets 149
B.1 Suspended trumpet . . . . . ... 149
B.2 Giant trumpet . . . . . . ... 150
B.3 Photoluminescence spectra of quantum dots embedded in a suspended trum-
Pet . . 150
B.4 Resonant excitation spectra of suspended trumpet . . .. .. ... .. ... 152

Appendix C An alternative to counteract the temporal spectral drift 155

References 159






Viii

List of Figures

List of Figures

1.1

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12

2.13

2.14
2.15
2.16
2.17
2.18
2.19

3.1
3.2
3.3
3.4
3.5
3.6

Illustration of a one-dimensional atom . . . . . . ... ... ... ...... 3
Conduction and valence band energies in a quantum dot . . . . . . .. ... 10
TEM image of the cross section of the quantum dot structure . . . . . . .. 11
Schematic of energy levels for a InAs/GaAs quantum dot . . . . . .. ... 11
A Schematic of non-resonant excitation strategies . . . . . . . ... ... .. 12
Schematics of resonant excitation methods . . . . . . . . ... ... ... .. 13
Schematic multi-particle states of a single QD . . . . . ... ... ... .. 14
Fine-structure splitting illustration . . . . . . . .. .. .. ... ... 15
Illustrations of the structure of a pillar micro-cavity . . . . ... ... ... 18
Illustrations of the structure of photonic crystal cavity . . . . . .. ... .. 19
Illustration of Photonic crystal waveguide . . . . . . .. ... ... ..... 21
Scanning electron microscope images of fiber-like photonic wire . . . . . . . 21

Schematic guided modes for for an emitter embedded into a cylindrical
photonic wire . . . . . . . L. L 22

Dependence of spontaneous emission rate on the diameter of the photonic

WITE . o o v o o e e e e e 23
Sketch that describes a QD at an random position . . . . .. ... ... .. 24
B for different cylindrical wire diameters . . . . . . . . . ... ... ... .. 24
Sketch of photon collection from a finite photonic wire . . . . . . . . . . .. 25
Schematics of two approaches for the top facet of the photonic wire . . . . . 26
Trumpet fabrication process . . . . . . . . . . .. ... .. o 28
Scanning electron microscope images of the trumpets . . . . . . . ... ... 29
Photoluminescence experimental setup . . . . . . . ... ... ... ... .. 32
PL spectra of a single InAs QD embedded in GaAs photonic wire . . . . . . 34
Power dependence of exciton and biexciton spectra . . . . . . . .. ... .. 36
Radiative biexciton-exciton decay cascade . . . . . . . . ... ... ... .. 38
PL spectra of X and XX fitted with two Gaussian functions . . . . . . . .. 38

Half-wave plate . . . . . . . . . . . . . 39



List of Figures ix

3.7
3.8

3.9

3.10
3.11
3.12
3.13
3.14
3.15

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26

5.1

Polarization dependence PL spectra . . . . . . . . ... ... ... ..... 40

The evolution of H and V polarization dipoles as a function of the half-wave

plate’sangle . . . . . . ... 40
Photoluminescence spectra showing charged exciton . . . .. ... .. ... 41
Photoluminescence spectra of the other quantum dots . . . . . .. ... .. 42
Biexciton binding energy for free-standing trumpets . . . . ... ... ... 43
PL spectra of a pair of X and XX lines taken at different time scales . . . . 44
Emission energy drift as a function of time . . . . . ... ... ... .... 44
Time-resolved PL experimental setup . . . . . . . .. . ... ... ... ... 45
Time-resolved PL spectra . . . . . . . . . . . .. ... ... ... ... 46
Scheme of an atom-one dimensional continuum system . . . . . . ... ... 50
Scheme of field propagations inside a one-dimensional waveguide . . . . . . 52
Calculated reflection power and reflectivity . . . . .. ... ... ... ... 56
Illustration of spectral diffusion . . . . . . . . . ... ... ... ..., . 57
Coherent and incoherent scattering rate . . . . . . . ... ... ... .... 60
Resonant excitation experimental setup . . . . ... ... ... ... .... 61
Illustration of cross-polarized detection . . . . . . . . ... ... ... .... 63
Simple sketches of cross-polarized detection configurations- . . . . . . . .. 64
Configuration of the resonant excitation in cross-polarization scheme . . . . 65
A picture of the setup . . . . . . . . .. 66
Resonant excitation scheme . . . . . . . ... ... ... ... .. ... ... 67
Data collection procedure . . . . . . . . . ... o 68
Resonant excitation spectrum with a single resonant laser . . . . . . . . .. 71
Resonant excitation spectra with and without a non-resonant laser. . . . . . 72
Dependence of resonance intensity on the non-resonant laser power . . . . . 73
Typical resonant excitation spectra for both two excitonic dipoles . . . . . . 74
Resonant excitation as a function of resonant laser . . . . . . .. ... ... 74
Calibration of the incoming and reflected powers . . . . .. ... ... ... 76
The trumpet used in thisstudy . . . . . .. ... ... ... ... .. ..., 7
SEM images of the sample . . . . . . . . .. ... ... 78
Cross-section of the waist diameter of the trumpet . . . . . ... ... ... 79
Polarizations of excitonic dipoles . . . . . . . . . . ... ... ... .. 80
Reflection intensity and reflectivity of the system . . . . . .. ... .. ... 81
Reflection and reflectivity for both two exciton dipoles . . . . . . . . .. .. 82
Calculated reflectivity for a perfect system . . . . . . .. .. ... ... ... 83
Coherent versus incoherent scattering . . . . . . .. .. .. ... ... ... 84

Simple sketches describing the goal of this chapter . . . .. .. .. .. ... 87



List of Figures

5.2
5.3
5.4

5.5
5.6

5.7
5.8
5.9
5.10

5.11
0.12

5.13
5.14
5.15
0.16
5.17
5.18
5.19
5.20
5.21
0.22
5.23
5.24

5.25

5.26
5.27

5.28
5.29
5.30
5.31
5.32

An electromagnetic field coupled to a two-level quantum emitter . . . . . . 89
Scheme of the dressed states of the atom and excitation field system . . . . 91

The second laser beam couples the transition and leads to the formation of

the Mollow triplet. . . . . . . . . . . . . 91
Pump-Probe experiment of a three-level system,AT doublet. . . .. .. .. 92
Energy evolution of the dressed states as a function of the pump laser

detuning dc. . . . . . 93
A cascade three-level system coupled with two different fields . . . . . . .. 94
Absorption as a function of detuning . . . . . . .. ... oL L. 98

A scheme of two-mode giant non-linearity for a QD three-level cascade system 99
A scheme of two-mode giant non-linearity for a QD three-level cascade

system in a reversed approach . . . . . . . .. ... Lo oo 100
Electromagnetically induce transparency . . . . . . . . .. .. .. ... ... 102

Absorption spectra of transition |1) «— |2) at zero detuning of the control

fleld . . . . 103
Experimental setup of the two-mode giant non-linearity measurement . . . 105
Illustration of two-laser scan process . . . . . . . . . . . .. ... ... 106
Probe laser scans over X, state . . . . . . . . .. ... ... ... 107
Two-dimensional map showing Autler-Townes splitting . . . . . ... ... 108
Probe reflectivity at different detunings of the control laser . . . . . .. .. 109
Two-laser scan with different powers of control laser powers . . . . . . . .. 110
Probe reflected intensity at zero detuning of control laser . . . . ... ... 111
Probe reflection of X transitions, theory and experimental plots - 1. . . . . 113
Probe reflection of X transitions, theory and experimental plots -2 . . . . . 114
Probe laser reflectivity when the control laser is ON and OFF . . . . . . .. 115
Probe reflection intensity as a function of the control laser. . . . . ... .. 116

Schema of a four level system that explains the enhancement in probe re-

flection . . . . . . . L 117
Calculated probe reflection intensity as a function of control power, for

different angle 8 . . . . . ... 118
Probe laser switching contrast as a function of control laser power . . . . . 119

Probe reflectivity for optimized parameters of the system in cross-polarized

configuration . . . . . . ... L L 120
Ideal probe reflectivity in co-polarized excitation configuration . . . .. . . 121
Probe reflection and switching contrast as the presence of laser background 122
Configuration of the population switch geometry . . . . .. ... ... ... 123
Two-laser scan in the population switch experiment . . . .. ... ... .. 124

Probe reflected intensity as a function of the control laser power . . . . .. 125



List of Figures xi

5.33

5.34
5.35

5.36
5.37
5.38
5.39
5.40

5.41

Al

A2

B.1
B.2
B.3
BA4
B.5
B.6
B.7

B.8

C.1
C.2
C.3

Reflectivity of the probe laser in 4 orders of magnitude of the control laser
POWEL . . . o v vt it e e e e e e e 126
Calculated probe reflectivity for different probe powers . . .. .. .. ... 128
Two-dimensional map of the Autler-Townes splitting obtained in the re-
versed situation (population switch) . . . ... ... ... .. L. 129
Autler-Townes splitting for different control laser power in reversed approach130
Illustration of the population switch in cross-polarized detection scheme . . 131
Calculated probe reflectivity in co-polarized excitation . . . . . .. .. ... 132
Calculated probe reflectivity in co-polarized excitation . . . . . .. .. ... 133
Calculated coherent and incoherent contribution in the total probe reflec-
tivity in Autler-Townes splitting approach . . . . . . . . .. ... ... ... 134
Calculated coherent and incoherent contribution in the total probe reflec-

tivity in population switch approach . . . . . . . .. ... ... .. 135

Two-laser scan in Autler-Townes approach with a probe beam coupled to

0+— X transition . . . . . . .. . L L 147
Calculated probe reflectivity for different homogeneous broadenings . . . . . 148
Scanning electron microscope views of suspended trumpets . . . . .. ... 149
SEM images of giant trumpets . . . . . . .. ..o L oo 150
PL spectra from QDs embedded in a suspended photonic wire . . . . . . . . 151
Exciton and biexciton lines of a quantum dot embedded in suspended trumpet151
Exciton and biexciton power dependence of QD in suspended trumpet . . . 151
Biexciton Binding energy as a function of exciton energy for both two samples152

Photoluminescence spectrum of a quantum dot embedded in a suspended

trumpet . . . ..o 153
Resonant excitation spectra of the quantum dot embedded in a suspended

trumpet and a giant trumpet . . . . ... ... L 154
Experimental setup with the presence of an intense fiber laser . . . . . . . . 155

Resonant spectra without and with the presence of the intense fiber laser . 156

Fitted resonant spectra with the presence of the intense fiber laser . . . . . 157



Chapter 1

Introduction

1.1 Context

Tremendous progress in semiconductor optics has opened up various types of potential
applications over the past decades. In the domain of quantum information science, one
way to encode information is in the quantum state of single photons. Photons are the
elementary constituents of light [1]. A single photon is a clean quantum system in which
quantum information can be encoded in many ways and transported over long distances.
A single photon is a non-classical state of light and it can not be described in term of
classical electric field. Realizing bright sources of non-classical light states is one of the
critical issues for quantum communication [2] and quantum information processing [3, 4]

potential applications.

From the classical point of view, for decades, optics have been proved to be the most
efficient method of conveying information from one point to another, since light beams
can be easily transmitted in parallel in free space or and do not suffer from crosstalk. In
optical fiber, multiple independent optical signals can be carried using frequency-division
multiplexing technique. Nowadays, the high-bandwidth internet connections also operate
optically.

In the field of computing, the fundamental component of a computing circuit is a
transistor. The present-day computers possess electronic transistors. Those transistors are
reaching the bandwidth limitations of silicon electronics and printed metallic tracks [5].
That has raised up the demands for an alternative advanced solution. A all-optical switch
is such a promising candidate. An optical switch is the optical analog of a transistor,
allowing light to govern the transmission of light. Such technology has the potential to
exceed the speed of electronics, while consuming less power. That brings the opportunity
for optical technology to go beyond being not only a way for ultrafast data transmission,

but also capable of performing data processing. Thus, it may give rises to the design



2 1.2. One-dimensional optical system

of a all-optical or a electro-optical hybrid computer. Since photons do not interact in
vacuum, an optical transistor must employ an operating non-linear medium to mediate
photon-photon interactions. The biggest challenge in this technology is the strength of the
optical nonlinearities that couple optical fields. Strong light-matter interaction is required
to realize a switch at a ultra-low level of power. The ultimate power limit for an ideal
switch is a single photon and achieving this limit has been an important object in the field

of optical and quantum computing.

1.2 One-dimensional optical system

As stated above, a ultra-low switching power is the critical issue in investigating any
optical transistor device. An optimum device should possess optimum light input-coupling
and output-collection efficiencies. In this case, techniques must be developed so that a
single photon sent into the system has 100% possibility to interact with the non-linear
quantum emitter and at the same time, every photon emitted by the emitter has to be
successfully collected at the output of the device. Such a device can be realized using a one-
dimensional structure. One-dimensional optical system is a system where the propagation
of an electromagnetic field inside it is confined in a single dimension, as described in Fig.
1.1. A quantum emitter placed inside that structure has the highest probability to couple
with the single spatial mode of the field. That concept was proposed by Kimble in 1995 [6]
and is called “one-dimensional atom”. One dimensional system is one of the key features
in many fields of semiconductor optics for quantum information science. Such a system
increases not only the coupling of a light source with a quantum emitter, but also the
collection of the light emitted from the emitter with optimum efficiency. Various types
of one-dimensional system have been conducted in the last ten years. The most common

systems will be discussed later in this thesis.

1.3 Single-photon source

One of the most attracting fields in quantum optics in the last years is the development
of single-photon sources. Single-photon sources are light sources that emit light as single
photons and they are capable of emitting only one photon after each triggering signal. The
realization of “on-demand” single-photon devices have brought a huge impact and would
revolutionize the field of quantum information processing [7, 8], quantum computation
[3] and quantum cryptography [9]. The first single-photon device was demonstrated by
Kimble et. al. in 1977 [10] via sodium atoms. Other schemes have also been reported
using single molecules [11] or nitrogen vacancy (NV) centers in diamond [12]. Among

these sources, semiconductor quantum dots (QDs) show particular properties suitable for
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Figure 1.1 — Illustration of a one-dimensional atom: an atom as a two-level quantum
emitter is placed inside a one-dimensional photonic structure. The light propagation is re-
stricted to this one-dimensional geometry where the photons can scatter only back or forth.
As a result, the light-matter interaction is optimized.

realizations of single-photon sources and also non-linear quantum optics applications [13,
14]. A semiconductor QD can be considered as an artificial atom [15], a strong confinement
of the carriers in all three directions of space results in discrete energy levels. Like real
atoms, QDs can emit single photons [16] or entangled-photon pairs [17]. These properties
make semiconductor QDs very promising to implement quantum functionalities in a solid
state system. As mentioned above, for any potential QD based single-photon source,
the efficiency of the source, which is defined as the probability to collect a photon when
the QD is excited is the key figure of merit. For quantum communication and quantum

information applications, a near-unity efficiency is desired [18].

Unfortunately, QDs inside a bulk semiconductor material emit light in all directions. In
addition, the QD is surrounded by a high refractive index material, which causes internal
reflections at the semiconductor-air interface. All that results in a probability to collect
photons emitted from a single QD of just a few percents. Therefore, techniques must be

developed to enable an efficient photon collection.

To overcome that issue, the general idea is to couple the quantum emitter to a well-
defined optical channel in a one-dimensional structure to optimize the coupling. Several
approaches have been proposed over the last years. The most common approach is insert-
ing the QDs in a photonic structure like photonic wires [19, 20], photonic crystals [21] or
micro-cavities [22]). J. Claudon and his co-workers demonstrated an efficient, on-demand
and pure single-photon source based on an InAs QD embedded in a GaAs photonic wire,
with an extraction efficiency up to 0.75 [23]. In [22], the authors reported a single-photon
source with a collection of 0.79 photon per excitation pulse. The detailed explanations of

those structures will be given in the next chapter.
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1.4 Optical giant non-linearity and all-optical switch

It turns out that these one-dimensional single-photon sources can be used as well the other
way around to couple a propagating electromagnetic field to a single quantum emitter
with optimal efficiency. In this situation, the probability for the single quantum object
to absorb a photon fed into the structure is maximal. A single quantum emitter is a
non-linear optical medium [24], where the interaction of one photon with the medium can
block the reflection of a second incoming photon, owing to the saturation effect of the
two-level system [25]. One can then take advantage of the one-dimensional property of
a photonic structure to achieve giant non-linearity. The non-linearity is giant because
ideally, only a single-photon is needed to saturate a single two-level emitter. Optical giant
non-linearity at the single-photon level can be applied in various types of applications in
quantum information and computation [26,27]. It can also enable all-optical gates and
switches for classical optical signal processing [28,29]. Therefore, single-photon giant non-
linearity has been the subject studied by several groups in photonic engineering. The main

goal is to achieve a non-linearity signature at the lowest possible excitation power level.

1.4.1 Single-mode giant non-linearity

Single-mode giant non-linearity is obtained using a non-linear quantum medium to control
and modify the reflectivity (or transmissivity) of an incoming electromagnetic field. In
2007, D. Englund et.al. demonstrated a giant optical non-linearity from QDs in photonic
crystal cavities with a few average cavity photon numbers [30], but the input coupling
efficiency into the cavity was reported to be only 1.8%. V. Loo et.al. reported a giant
non-linearity on a system with a single QD embedded in a micro-cavity [14], where only
8 photons per excitation pulse were needed at the entrance of the structure to achieve
the non-linear threshold. Recently, A. Javadi and coworkers demonstrated the giant non-
linearity of a QD in a photonic-crystal waveguide at the level of less than one photon per
lifetime [31], although the coupling efficiency of the excitation beam and the waveguide
was 23% in this report. Apart form semiconductor QDs, strong light-matter non-linear
interaction has also been reported with superconducting transmon qubit [32], ultra-cold
atom gas [33,34].

1.4.2 Two-mode giant non-linearity: all-optical transistor and switch

The ideal of investigating two-mode giant non-linearity is to be able to control light by
only light at single-photon level. Among various possible applications, a realization of
single-photon all-optical transistor has been a subject that attracted many interests. Op-
tical transistor is a device that switches or amplifies optical signals [35]. This device is

an optical analog of the electronics transistor that forms the basis of modern electronic
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devices. An optical transistor provides a significant advantage that it can help reduce
the power consumption compared with electronics transistor because of the absence of
capacitance in the connections between individual optical logic gates. In electronics, the
transmission lines need to be charged to the signal voltage. The capacitance of a trans-
mission line is proportional to its length and it is the one of the main energy losses in
electronic logic. In optical communication, this loss can be avoided. In addition, optical
transistor can be directly linked to fiber-optics cables whereas electronics requires coupling

via photodetectors and light emitting diodes (LEDs) or lasers.

Photons inherently do not interact with each other, thus in vacuum, direct photon-
photon interactions are absent. Nonetheless, optical signals can influence each other in
non-linear media. One of the fundamental issues that has limited this technology is the
strength of the optical non-linearity that couple the signal and the control fields. The
question is how to achieve this non-linearity at the level of a single photon. The main
difficulty is to ensure that the coupling field will interact with the emitter with a close
to unity probability. The ultimate optical transistor is a single-photon transistor: it is
a device in which the propagation of a single signal photon is under the control of the
presence or absence of a single gate photon. All-optical switches and transistors have been
proposed to be the basic requirements for both classical and quantum optical information

processing and quantum networking [4,7,36] .

Several schemes have been proposed to implement all-optical transistors. Two-mode gi-
ant non-linearity has been efficiently realized using ultra-cold atom, most of the approached
have relied on electromagnetically induced transparency (EIT) [37-39] and Rydberg block-
ade to create large nonlinearities [33,40]. Such a system demonstrated a all-optical switch
with a gate pulse that contains only one incoming photon on average to reduce the trans-
mission of a subsequent target pulse [33]. The non-linearity have been obtained at the
single-photon level. However, in this type of approach, a strong control field is always

required to provide EIT effect.

Another promising method to reduce optical switching energies is to exploit the strong
atom-light interactions between a QD and a photonic crystal cavity. In the strong coupling
regime, the cavity-QD system can exhibit a large non-linear optical response at low optical
powers [25,41-43].

To-Chun Hoi et.al. demonstrated an efficient interaction between two microwave fields
using a superconducting transmon qubit, strongly coupled to an open transmission line
[32]. Alternatively, a single-photon transistor can also be realized by coupling emitters
and propagating surface plasmons confined to a conducting nanowire. Ideas and concepts

have been proposed in [44-46].

All of those approaches will be discussed in detail in the last chapter of this thesis.
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1.5 Motivation of this Thesis

Technical methods enabling efficient interaction between single photons and a quantum
emitter have been emerging as one of the fundamental investigation fields of modern
quantum optics. Among several proposals that have been demonstrated in the photonic
engineering community, two-mode optical giant-nonlinearity has not been done efficiently
in optics, especially with semiconductor QDs. Therefore, this thesis aims at an experi-
mental realization of two-mode giant non-linearity, using a one-dimensional atom with an
InAs QD embedded in a GaAs photonic wire. Photonic wire represents the combination
of efficient, broadband spontaneous emission control and good coupling to standard optics
in the far-field. Those excellent features pave a way to obtain a ultra-low power all-optical

switch.

1.6 Thesis outline

Followed by this introduction, this thesis is organized in 4 upcoming main chapters:

Chapter 2 describes in details the system under study with InAs QDs embedded in a
vertical GaAs trumpet-like photonic wire (PW). This chapter begins with general descrip-
tions of the fabrication, structures and properties of self-assembled InAs QDs, including the
fine structure splitting of an excitonic transition. The chapter continues with discussing
the enhancement of light-matter interaction by coupling the QDs inside a one-dimensional
photonic structure. The most common structures will be presented and discussed, includ-
ing the one using in this thesis.

Chapter 3 presents the experimental results of basic optical characterizations of self-
assembled InAs QDs embedded in a PW. The high resolution micro-photoluminescence
experimental setup is described. The identification of the different emission transitions
from the same QD is then demonstrated. This chapter also presents a time-resolved
photoluminescence measurement, which gives the information of the lifetime of the single
QD embedded in the PW environment.

Chapter 4 demonstrates the single-mode giant non-linearity results. The non-linearity
effect is based on the saturation of a QD two-level system. The chapter begins with a the-
oretical model considering a two-level system placed inside a one-dimensional waveguide.
The model includes also the imperfections of the system. The chapter then continues with
explaining the experimental setup and procedure. The non-linearity is realized based on
reflectivity measurement. The resonant fluorescence measurement is carried out by scan-
ning a laser across the excitonic frequency of the QD. The power dependence plot shows
the non-linearity behavior in which the reflectivity drops down towards above saturation

of the two-level system. This giant-nonlinearity is observed at the level of very few photons
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per lifetime.

Chapter 5 presents the main result of this thesis on two-mode giant non-linearity,
realizing a all-optical switch. The measurements are carried out by considering a QD three-
level system, where the biexciton transition is taken into account together with the exciton
transition to form a cascade scheme. In this experiment, two transitions of the three-level
system are coupled two different laser beams. One beam plays the role of a probe beam
while the other plays the role of a control beam. We study how the transmission of the
probe beam on one transition is modified when the control beam is introduced to the other
transition. Two different approaches are considered, by coupling the probe beam either
with the lower or upper transitionThe first case is based on dressed approach, whereas the
second one is based on population effect. The chapter firstly introduces an ideal three-
level model to theoretically describe two-mode giant non-linearity. Then it is followed by
the detailed experimental methods and results. The results indicate that two-mode giant
non-linearity is achieved at the level of just a few tens of photons per emitter lifetime,
realizing an ultra-low power all-optical switch.

Chapter 6 concludes the thesis and discusses future perspectives.
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Chapter 2

A quantum dot embedded in a

photonic wire

This chapter will give a detailed presentation of the sample studied in this thesis. The
first section will give an overview, fabrication and properties of semiconductor quantum
dot (QD) in general and for InAs QD in particular. The following section will discuss
the enhancement of the light-emitter interaction efficiency by coupling the QD inside a
photonic nanostructure. Different coupling approaches will be summarized and discussed

before going into details of the QD-photonic waveguide system using in this thesis.
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2.1 Self-Assembled InAs quantum dots
2.1.1 Overview

Conduction band

Electron discrete levels

Hole discrete levels

Valence band

Figure 2.1 — Conduction and valence band energies in a QD - The confinement
potential energy in the growth direction results in a series of quantized energy levels. A ladder
of discrete energy levels in the QD are labeled as s, p, d... similar to the classification of
atomic states.

A semiconductor quantum dot (QD) is a droplet of a semiconductor material embed-
ded in a matrix of another semiconductor material of larger band gap. The most basic
property of the QDs is that electrons and holes in QDs are confined in all three dimen-
sions. This property makes QDs being considered as zero-dimensional (“0D”) structures.
A result of confinement is the complete quantization or discretization of a confined charge
carrier energy spectrum. A QD is able to sustain trapped states for both electrons in the
conduction band and holes in the valence band at cryogenic temperature (Fig. 2.1). The
properties of quantized energy spectrum and complete localization resemble the behaviors
of electrons in an atom. Although each QD consists of tens of thousands of atoms, it still
has optical properties similar to single atoms due to the quantum confinement of electrons
to a nanometer length scale. For this reason, a QD can be considered as a semiconductor
“artificial atom”. Excitons are quasi particles composed of a negatively charged electron
and a positively charged hole. Owing to attractive Coulomb force, an electron and a hole
form an exciton which can be spatially confined inside the QD. Excitons can recombine
either radiatively or non-radiatively. When an electron and a hole are trapped in the
ground states of respectively the conduction and the valence band of the QD, the decay
mode is mainly a radiative recombination.

The QDs used in this study are self-assembled InAs QDs embedded in GaAs (Fig.
2.2). These InAs QDs are grown by molecular beam epitaxy (MBE), using a strain-
induced self-assembly method (“Stranski-Krastanov” growth mode). This method uses
the relief of elastic energy when two materials with a large lattice mismatch form an

epitaxial structure. A monolayer of InAs is first deposited on a GaAs substrate. The
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Figure 2.2 - TEM image of the cross section of the quantum dot structure - Self-
assembled InAs/GaAs QDs are grown by Stranski-Krastanov method, strained InAs islands
based on the wetting layer in GaAs matrix [47].

growth mode is two-dimensional and coherent with GaAs substrate, which is referred as
the “wetting layer”. The InAs crystal has a lattice parameter 7% larger than the one of
GaAs. When the thickness of the wetting layer is further increased to a certain value,
the strain accumulated in the InAs layer is elastically relaxed through the generation of
three-dimensional InAs islands, which are the QDs. Their dimensions are about a few tens
of nanometer (20 ~ 30 nm) in diameter and 2 ~ 3 nm in height. In order to protect the
QDs from oxidation and to prevent interactions with surface states, the QDs are finally
capped with a GaAs layer. In this manner, we have self-assembled QDs on the top of a
thin InAs wetting layer [48].

2.1.2 Quantum dot discrete energy levels and optical excitation methods

___Conduction band

-
e --p
-KkF-----1 --'s
1.52eV ~1.46eV| ~1.37eV
(817nm) (840nm), (900nm)
il --s
il piniai --Pp

Valence band

Figure 2.3 — Schematic of energy levels for a InAs/GaAs quantum dot - The band
gap of GaAs at liquid helium temperature is about 1.52 eV, the energy of the wetting layer is
below the GaAs band gap energy at about 1.46 eV, the s-shell recombination energy is around
1.37 eV.

Fig. 2.3 illustrates the energy levels of conduction and valence bands in a InAs/GaAs

QD. Optical excitation of a QD can be performed in several ways. The first way is
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above-band excitation. In this case, the excitation energy is above the band gap of the
material surrounding the QD. The band gap of GaAs at low temperature is 1.52 eV,
corresponding to a wavelength of 817 nm. This excitation generates electrons and holes in
the regions surrounding the QD. Some fractions of these charge carriers are captured by
the wetting layer, which is a two-dimensional quantum well. The carriers then relax into
QD excited states via emission of phonons. When an electron reaches its ground state
within the conduction band, the only remaining decay path is the inter-band transition to
the valence band. A transition can occur only if the valence band has a un-occupied state
(a hole). This transition is primarily radiative with a lifetime in the order of 1 ns [49].
This process is called “photoluminescence” (PL) of the QD.

The second method is wetting layer excitation. In this method, the excitation laser
energy is chosen slightly below the band gap of the surrounding material (GaAs in our
case), within the wetting layer continuum. This excitation can create the carriers directly
in the wetting layer. Such excitation is still non-resonant and does not depend highly on
the particular wavelength used, but it helps decreasing the time required for particles to
relax within the conduction and valence band (a few 10 ps time scale [50,51]). In the case
of excitation of a QD placed inside a GaAs photonic waveguide, wetting layer excitation
also has an important advantage of preventing unwanted heatings of GaAs and allowing
the exciting light to propagate within the photonic wire without being absorbed. In our

study, we will use this approach when performing non-resonant excitation experiments.
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Figure 2.4 — A Schematic of non-resonant excitation methods - (i) Above band gap
excitation. (ii) Wetting layer excitation. After the excitation, the generated electrons and holes
are trapped by the QD potential well. Once inside the QD, the carriers then relax quickly
from excited states to the ground states of the QD via phonon emission. The carriers at their
ground states then recombine via inter-band transition from conduction band to valence band
and emit a photon after a characteristic lifetime of about 1 ns.
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Figure 2.5 — Schematics of resonant excitation methods - (a) p-shell quasi-resonant
excitation: the excitation source is turned to higher excited states of the QD. A single electron-
hole pair is created directly inside the QD, and can relax to the ground state with 10 ps. (b)
s-shell resonant excitation: the excitonic ground state is directly probed. Thus, it requires
less pump power compared with p-shell excitation.

Together with non-resonant excitation, a QD can be excited by quasi-resonant and
resonant excitations. Quasi-resonant excitation can be performed by tuning the laser
on resonance with a higher excited state of the QD (electron and hole in their p-shell
levels), which is described in Fig. 2.5(a). This way, a single electron-hole pair is generated
directly inside the QD. Due to the nature of this process, only fast carrier relaxation from
higher shells into the s-shell has to be considered. Quasi-resonant excitation can also
be proceeded through excitation of an longitudinal optical (LO) phonon above the QD
fundamental transition energy. In this approach, it is not so difficult to spectrally filter the
excitonic ground-state emission with the scattered laser light (the bulk GaAs LO phonon
energy for the same system under this study was reported to be Fro = 36 meV [52]). The
excited state has rapid relaxation time, therefore it is expected to have a broad emission
linewidth. Quasi-resonant excitation also requires higher excitation power compared with
above-band and wetting layer excitations since the absorption cross-section of a single
QD is small. After relaxation into the s-shell, each generated electron-hole pair delivers a
single photon. Thus, quasi-resonant excitation features a reduced perturbation of the QD
environment and can therefore enhance the coherent properties of emission [53]. In general,
this kind of excitation is used commonly in realization of indistinguishable photons [22].
In practice, to perform a quasi-resonant excitation, photoluminescence excitation (PLE)

is normally carried out. [52].

The ultimate pumping process is a direct resonant excitation into the s-shell of the
QD, in which excitonic ground states are directly probed (see Fig. 2.5(b)). This scheme
possesses the same advantages as the quasi-resonant excitation, that it creates a single
electron-hole pair. However, in this case, no additional relaxation process is needed before
the radiative recombination process. In other words, only photon emission process occurs.

In s-shell resonant excitation, the excitation laser frequency has to be exactly the same
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as the emission frequency. That is the reason why this scheme has not been commonly
used for implementation of single photon sources. The scattered light from the laser is
a serious problem in this type of experiment. In our study, to overcome this problem,
we will perform this strict resonant excitation using the cross-polarization technique to

suppress the back-scattered laser background, which will be shown in chapter 4.

2.1.3 Multi-excitonic states in a quantum dot
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Figure 2.6 — Schematic multi particle states of a single quantum dot - Considering
the s-shell radiative recombination, four types of excitonic quasiparticles exist due to Pauli
exclusion principle.

QDs can contain multiple electrons and/or holes, which leads to additional transitions
besides the single neutral excitons. The occupation of the QD shells follows Pauli’s prin-
ciple, the ground state of a QD can be occupied by only a maximum of two electrons
or two holes of opposite spins. That creates four types of excitonic quasi-particles that
are described in Fig. 2.6: the neutral exciton (one electron and one hole), the biexciton
(two electrons and two holes), the negative trion (two electrons and one hole) and the
positive trion (one electron and two holes), the two last quasi-particles are called charged
excitons. In the first case, one single exciton (X) occupies the QD and its recombination
generates a photon at energy hwx. This emission energy depends on the discrete levels
of the electron and the hole. In the second case, two pairs of electron-hole occupy the
QD, this state is called biexciton (XX ). Its emission frequency wxx corresponds to the
transition from X X to X. It is shifted by Coulomb and exchange interactions with respect
to wy. In the two first cases (Fig. 2.6(a)-(b)), it is possible to observe two luminescence
lines corresponding to exciton and biexciton. The energy difference is called biexciton
binding energy, this binding energy changes between different QDs depending on the de-
gree of carrier confinement. The binding energy can be positive or negative (see section
3.2.2.2 for an experimental demonstration) and its amplitude can vary from a few meV
to a few tens of meV [54]. The two last cases (Fig. 2.6(c)-(d)) consist of one exciton plus
an additional charge (electron or hole to form respectively either negative trion (X ) or
positive trion (XT)). As for the XX, the presence of the additional charge makes the

emission energies of charged excitons different from the neutral X. Therefore it is possible
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to observe spectrally a PL spectrum which corresponds to the recombination of a charged

exciton.

2.1.3.1 Fine-structure splitting

Each of the excitonic levels consists of a multiplet of states corresponding to different spin
configurations of the carriers. The electron and hole may have either parallel or anti-
parallel spins. The spins are coupled by the anisotropic exchange interaction, giving rise
to the fine structure [55].

The lowest energy exciton is composed of the electron spin (s = :l:%) and the heavy-
hole angular momentum (j = i%), consequently producing four exciton states M = 42
and M = +1 [56]. States with M = +2 can not couple to the light field, therefore they are
optically inactive and denoted dark excitons. States with M = %1 couple to the light field
and are denoted bright excitons. Independent of the given confinement symmetry electron-
hole exchange interaction causes a dark-bright splitting. The exchange interaction mixes
the dark states forming a dark doublet (|2) £|—2). Additional lowering of the confinement
symmetry produces a non-degenerate bright doublet (|1) 4+ |—1)). While emission lines
involving pure states are circularly polarized, the two bright states usually produce linear
polarization lines along the crystal directions are thus directly observable in a luminescence
experiment [56]. The energy difference between these lines is called exciton fine-structure
splitting (F'SS).
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Figure 2.7 — Illustration of biexciton-exciton cascade. At high confinement potential
symmetry, the exciton bright state is a pure state and emits circularly polarized light o+.
When the confinement potential symmetry is lowered, the exciton bright states are mixed and
produce a bright doublet with linear polarizations.

For the negatively charged trion X ~, the two s-electrons must have opposite spins due
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to the Pauli exclusion principle, whereas both spin orientations are allowed for the hole. As
a consequence, there is no FSS. The situation is the same for the positively charged trion
X ™. The transient matrix elements for the decay of a trion to a single electron or hole are
circularly polarized with the helicity depending on the spin of the additional carrier, they
have no corresponding dark states. The additional carrier in trions may be prepared in a
spin eigenstate, and therefore trions are particularly relevant for spin physics. The X X
ground state is not split by the exchange interaction, since the net spin of the involved
electrons and holes is 0. However, the X X to X decay involves two allowed transitions
with the final states being the bright states of the X. Therefore, the FSS is reproduced
in the biexciton to exciton decay. The XX — X radiative decay cascade is described in
Fig. 2.7. Several experimental reports have been made on In(Ga)As/(Al)GaAs showing
different values of FSS [57—64]. The typical FSS of InAs/GaAs QDs is in the range from
a few tens of peV to about 200 peV [57-59].

It has been shown that the FSS can be reduced by annealing process [60,61], by apply
external electric fields [65], or by growing QDs in the higher symmetry (111) substrates
[66,67]. The XX — X radiative cascade in a QD therefore has been proposed as a source
of triggered polarization-entangled photon pairs. The suppression of FSS is the critical
issue in realizing polarization entangled photon pairs, which are an important resource
in quantum optics and quantum information applications [7,17,68-70]. Entanglement
requires two indistinguishable decay paths with different polarizations. This is only be

possible for vanishing FSS.

2.2 Interaction of a quantum dot with light in a photonic

wire
2.2.1 Quantum emitter coupled to a photonic nanostructure

The first chapter has presented various potential applications using semiconductor QD as
a quantum emitter, such as single-photon sources or all-optical transistors. The efficiency
of the device is the key figure of merit. The crucial challenge is to maximize the coupling
of an incoming light to the emitter as well as the efficient collection of the emission.
Therefore, optimizing the interaction between light and matter has been an essential task
in quantum optics. For a bulk InAs QD, the size of the QD is much smaller than the
emitter wavelength, thus, it emits light in all directions. In addition, the large refractive
index of GaAs causes internal reflections at the semiconductor-air interface. As a result,
a very small fraction of light can be finally extracted (just a few percent). To enhance
light-matter interaction, one can couple the emitter to a well-defined mode of an optical

field. In this approach, photonic nanostructure appears to be a suitable candidate. Such
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kind of structure has the ability to tailor an electromagnetic field on a length scale that
is a fraction of the optical wavelength. Moreover, photonic nanostructures with excellent
optical properties can be fabricated with modern nano-fabrication techniques [71]. An
ideal light-matter interface requires that a single atom interacts only with a single optical
channel. Such an “one-dimensional atom” can be achieved by controlling the spontaneous
emission (SE) of the atom. In general, the main factor that characterizes the performance
of a quantum emitter embedded in a photonic structure is the SE rate of the emitter into
a given mode of the structure, normalized by the total SE rate, namely the g-factor. [
represents the fraction of the emitted photons coupled into the given mode compared to
the total emission into all available modes.

For the realization of a real source of single-photon, one has to take into account
a second factor which is the extraction efficiency e¢. It corresponds to the probability
of a photon to escape from the structures. Similarly, concerning the giant non-linearity
experiment, the input-coupling efficiency, which is the coupling rate of an incoming photon
into the structure, is also a critical parameter.

Several approaches have been proposed and demonstrated experimentally to enhance
the controlling of SE by using a photonic structure. The following sections will give a brief
overview of the two commonly used structures and then present the one that is used in
this thesis.

2.2.2 Resonant structures

The first strategy is to use a resonant optical microcavity [72]. The light-matter interaction
can be improved by placing the emitter inside a high quality microcavity and taking
advantage of cavity quantum electrodynamics to control SE of the QD. Resonating light
in a cavity provides a way of increasing light-matter interaction since the coupling to one
localized mode can be strongly enhanced compared to all other modes. The cavities can
have very small mode volumes, which enhances the interaction strength [71]. Resonant
SE control is based on Purcell effect [73], in which the enhancement of SE rate into the
cavity mode is governed by the Purcell factor,
Q

F x v (2.1)
with @ is the quality factor of the mode and V is the mode volume. @ and V are the
two figures of merit that define the performance of a emitter-cavity system. Achieving a
high Purcell factor thus requires a cavity able to confine electromagnetic field over small
volumes V' and at the same time having a high @ (which means long photon-storage
time) [74-76]. Given the Purcell factor F, the fraction of photons emitted in the mode
is [77],
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F
8= il (2.2)
thus a cavity with large Purcell factor will have a close to unity 5.

One important physical quantity is the QD-cavity coupling strength g, it describes
the coherent interaction between the QD optical transition and the confined cavity mode.
Thus, the objective for a QD-cavity device is to increase the coupling strength. A system
is in the strong-coupling regime if the amplitude of ¢ is higher than both /4 and ~/4,
with « is the cavity damping rate and + is the dephasing rate (including ygp the SE rate
of the QD outside the cavity mode and v* the pure dephasing rate) [77].

In general, Purcell effect leads to an acceleration of SE rate. It basically reduces
the QD excited state lifetime hence its sensitivity to pure dephasing is reduced. Purcell

factor can also be defined as F' = 78], where I = % is the emission rate in the

r
757 |
cavity mode. A large Purcell factor is usually required to obtain g > ~v* [77], so that the
contribution of pure dephasing can be negligible. This is a favorable condition for emitting

indistinguishable single photons [22].

2.2.2.1 Pillar micro-cavity

InAs/GaAs
b quantum dot
GaAs/AlGaAs
Bragg mirrors \
\ Optical mode

g =5 5

Figure 2.8 — Illustrations of the structure of a pillar microcavity - (a) SEM image of
the pillar microcavity described in [79]. (b) Sketch of a typical Qd-Pillar cavity system [80],
a layer of self-assembled InGaAs QDs is embedded into a cavity and is sandwiched between
two-distributed Bragg mirrors, inducing the confinement in lateral and vertical directions.

In this context of resonant cavity, one popular approach is to use pillar micro-cavities
[81]. A pillar microcavity consists of two Bragg mirrors made of many alternating layers.
Two Bragg mirrors have different refractive indices n; and ng, with the thickness \/4n; (i
= 1,2). A space between such two Bragg mirrors creates a highly localized cavity mode,
where the QDs are located (Fig. 2.8). This cavity mode induces the confinement of light
in the vertical direction. The lateral confinement can be obtained by etching a cylindrical
micropillar with a typical diameter of a few pm [80]. A maximal light-matter interaction

is achieved when the QD is located at a maximum of the cavity mode intensity and the
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QD transition frequency matches the cavity frequency wgp = Weavity-

The fabrication of such a system can be carried out using far-field in-situ optical
lithography to position a single QD in a spectrally resonant pillar microcavity with an
accuracy as high as 50 nm [81]. In particular, this technique firstly maps the QD of
desired energy and possesses large emission intensity from a layer of many QDs. Then
the pillar microcavity is defined around the chosen QD and the position of the QD is
ensured to be at the maximum of the pillar fundamental mode. This step is repeated as
many times as desired for different QDs, so that one can fabricate many optimally coupled
QD-pillar cavities on a single wafer [80].

Regarding this pillar microcavity approach, O. Gazzano and co-workers at LPN/CNRS
in Paris reported a very bright single-photon source with a QD embedded in a pillar
microcavity [22] with a collection efficiency up to 0.79 photon per excitation pulse. Also
from the same group, V. Loo and coworkers demonstrated single-mode giant non-linearity
using a similar structure [14]. The quality factor @) and the input-coupling rate reported

in this worked were respectively 3.10* and 95%.

2.2.2.2 Photonic crystal cavity

2um

Figure 2.9 — Illustrations of the structure of photonic crystal cavity. (a) Scanning
electron micrograph of the photonic crystal cavity in [82] showing a three-hole (L3) structure.
(b) Simulated electric field intensity of the photonic crystal cavity [30].

Another approach to confine light in a cavity is to use photonic crystal [83]. Highly
localized cavity modes can be obtained by introducing defects in photonic crystal (PC)
membranes to induce light confinement. A design of a high-Q PC cavity is plotted in Fig.
2.9(a). The base structure is composed of a triangular lattice of air “rods”. The structure
of the cavity is made with three missing air rods in a line. As a result, light can be
confined by Bragg reflection for the in-plain direction, the z direction is confined by total
internal reflection [82,83]. Such a structure is one of the most successful PC cavity designs
and is called three-hole defect cavity or L3 cavity. The electric field of the fundamental
mode of a L3 cavity is shown in Fig. 2.9(b) [30]. Experimental result of single-mode giant
non-linearity using a single QD embedded in a L3 PC cavity has been reported in [30]



20 2.2. Interaction of a quantum dot with light in a photonic wire

where the authors demonstrated a cavity with quality factor @ ~ 10%. The non-linearity
in reflection can be obtained at the level of less than 1 intracavity photon number inside

the cavity. However, the input-coupling rate of the system is just less than 2%.

2.2.3 Non-resonant waveguide structures

In the approach using a resonant structure, it has been shown that Purcell effect is a
resonant effect, the associated drawback is the requirement of an energy matching between
the cavity mode and the quantum emitter emission line. The operation bandwidth of the
cavity is therefore limited (below 1nm for a cavity with @ > 10% operating at the 1 ym
wavelength range on resonance). Thus resonant structures are restricted to monochromatic
emitters.

Apart from Purcell factor enhancement, the non-resonant SE control approach pro-
vided by a one-dimensional photonic waveguide appears as an appealing alternative [84—
86].

2.2.3.1 Photonic crystal waveguide

To overcome the fact that the QD-cavity system can only operate within a narrow band-
width, PC waveguide was proposed as a candidate. In this structure, an efficient mode
guiding is ensured by a tight lateral confinement of this mode by photonic bandgaps.
The photonic waveguide can be highly dispersive which may be employed for enhancing
light-matter interaction by taking advantage of slow light propagation [86]. The difference
between a high-() cavity and a waveguide is that in this case, photons are transferred
directly to the propagating mode of the waveguide, which potentially gives rise to a larger
overall efficiency of the source. Importantly, the coupling enhancement is not limited to a
narrow spectral bandwidth as in a cavity.

A waveguide can be defined in a PC membrane [86,87] as shown in Fig. 2.10. It
is composed of a slow-light section, which is coupled on both sides to weakly dispersive
sections. The slow-light section features a low group velocity in order to increase light-
matter interaction. This enhanced coupling will allow the efficient channeling of single
photons from a QD into the PC waveguide mode.

In [31], A. Javadi et.al. reported a single-photon giant non-linearity with a quantum
dot in a PC waveguide with the inferred coupling efficiency 8 ~ 96%. An operation
bandwidth of A\ = 20 nm was demonstrated in [86], which already outperformed the
structures based on narrow bandwidth cavities. Concerning the input coupling efficiency,
this PC waveguide possessed an efficiency of 23% [31].

In the following part of this section, we will demonstrate another non-resonant ap-

proach to control SE: a fiber-like, vertical photonic nanowire. This approach has been
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Slow-light section

Figure 2.10 — Illustration of Photonic crystal waveguide. Scanning-electron micro-
graph of the photonic crystal waveguide [31]. A QD is placed in the central part of the
slow-light section. Each end of the structure is coupled to regular bridge waveguides and
out-coupling gratings.

chosen for giant non-linearity realization in this thesis.

2.2.4 Fiber-like photonic wire

(a) (b)

et e s e I

Figure 2.11 — (a) scanning electron microscope images of fiber-like GaAs photonic wire [88];

(b) a single-photon source based on needle-like photonic wire made of GaAs embedding InAs
QDs [19].

In the last ten years, single-photon sources relying on a InAs QD embedded in a GaAs
photonic nanowire have been proposed [19,88,89] (Fig. 2.11). The photonic nanowire
geometry is well adapted to efficient collection of light. This structure features no cavity
and relies on a geometrical screening of radiation modes rather than resonant effects to
ensure a large coupling between the QD and the guided mode [89]. Photonic nanowires are
relatively simple dielectric structures, made of a high refractive index material, surrounded
by a cladding with a low refractive index. They were pointed out to have a broadband
and efficient SE control [88,90,91]. In practice, this geometry was reported to feature a
B factor up to 96% and exceeds 90% over a A\ = 250 nm broad operation bandwidth
around A = 900 nm and a first lens external coupling efficiency of 75% [23].
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2.2.4.1 An infinite cylindrical photonic wire
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Figure 2.12 — Schematic guided modes for an emitter embedded into a cylindri-
cal photonic wire - (a) Depending on the diameter d of the photonic wire, the emitter is
supported by various optical guided modes. I'p; is the fraction of the guided modes and
corresponds to the unguided modes. (b) effective index as a function of reduced diameter
calculated for the first guided modes [47].

We firstly consider the case in which a QD is embedded in an infinite cylindrical
photonic wire (PW) with diameter d as displayed in Fig. 2.12(a). The PW is made of
GaAs (refractive index n=3.45) and surrounded by air or vacuum (n=1). The structure
provides a confinement of the optical field inside the PW in the two lateral dimensions (x
and y) and therefore the mode propagates freely in the third direction (z). Depending on
the diameter of the PW, the emitter is coupled to one or several guided modes that are
supported by the structures (HEu,, EHpn, TEnn, TMpyy). At the same time, it is also

coupled to a continuum of free-space modes that are called radiative mode.

To define the SE coupling rate of the waveguide, as shown in Fig. 2.12(a), we denote
I'3s the decay rate into the target guided mode and ~ the decay rate into all other modes
(the radiative mode and other possible guided modes). We thus have T'p,e = T'pp + 7 is
the total decay rate of the emitter. The desired mode in this case is the vertical mode
at the center of the wire axis and the QD is assumed to locate at this center position.
The relevant figure of merit of the one-dimensional photonic waveguide is the § factor

describing the SE rate into the desired mode over the total emission rate,

Iy Ty
B

p— p— 2.3
Iroe T'm+7 (2:3)
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Figure 2.13 — Dependence of spontaneous emission rate on the diameter of the
photonic wire - The case is considered for a QD located at the center of the wire. Blue-solid
curve shoes the emission I'y; into the fundamental mode HE ;. Dark-red curve represents
the amount of leaky modes. Dash-dotted curve indicate the evolution of + factor for the
fundamental mode when the diameter changes [47].

Therefore, for the waveguide to a have high § factor, the decay rate into all the
unwanted modes 7 has to be minimized. Fig. 2.12(b) shows a plot of the effective refractive
index neys of the system as a function of reduced diameter d/X (A is the wavelength of the
emitter, which is 950 nm in this case) [47]. In the small diameter range (d< 0.18)\), the
effective index of the dielectric wire is close to 1, indicating that the mode is completely
deconfined in the surrounding air. Increasing the diameter, n.s¢ increases rapidly for the
fundamental guided mode HE1;. At the diameter d> 0.23X, new guided mode starts to
show up (TEg;). However, as shown in Fig. 2.12(a), it features zero amplitude on the wire
central axis and can be neglected for a on-axis emitter. For a diameter larger than 0.338\,
other modes with non-zero components on the wire axis appear (HE2;, HE12, HE3y, ...)
and their effective indices tend toward the refractive index of GaAs (n = 3.45) (see the
thesis of Nitin Malik [47] for more details).

Here, we consider I'j; is the decay rate into the fundamental guided mode HE;;. By
choosing a proper wire diameter, one could optimize spontaneous emission coupling rate
into this mode. Fig. 2.13 [47] describes the evolution of SE rates as a function of the wire
diameter, for a QD at the center of the wire. The fraction 8 exceeds 90% when the wire
diameter d is in the range 0.2X - 0.29, which is about 200-300 nm for a QD emits at A =
950nm. The coupling reaches the maximum value 95% for d = 0.24\. The large tolerance

for the high SE coupling rate indicates that broadband operation control can be achieved
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for that one-dimensional structure.

2.2.4.2 Influence of quantum dot lateral position on S factor

L.

X

Figure 2.14 — Sketch that describes the situation for a QD at an random position
inside the wire: considering a QD located at a position p away from the center axis of the
PW. The calculation of SE coupling rate £ as a function of p is carried out for two orthogonal
directions ¢ and r.
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Figure 2.15 — Calculating results for the SE rate into HE;; guided mode for three
different diameters of a cylindrical photonic wire: (a) dpy =160 nm, the wire diameter
is too small to obtain a good 3 even for an on-axis QD. For the off-axis QD, different behaviors
of B factor are observed for two orthogonal directions pointing out in Fig. 2.14 ; (b) dpw=
260 nm, S > 0.9 is predicted for QDs locating at the center of the PW; (¢) dpy =480 nm,
increasing the diameter of the PW results in the appearance of other guided modes, therefore
[ factor into HE{; mode decreases.

So far, we have just considered S-factor for the case of a QD located on the central axis
of the PW. This section will briefly give the calculation results of the SE coupling rate for
a QD located in a off-axis position. The calculation was done by Niels Gregersen (DTU
Fo- tonik, Denmark). The situation is described in Fig. 2.14, the QD is located at the
position p from the center of the wire. The results of 5 for three different wire diameters
are shown in Fig. 2.15, where [ is plotted as a function of the ratio between the distance

of the QD from the axis and the wire radius. p/r = 0 correspond to an on-axis QD. One
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can see that § changes drastically when a QD is located off-axis. And the behaviors are
different for two orthogonal-oriented dipoles ¢ and r. It should be noted that a QD inside
the PW with a waist diameter around 500 nm (Fig. 2.15(c)) approximately corresponds
to the case that will be studied in this thesis.

2.2.5 Extraction efficiency enhancement in a finite photonic wire
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Figure 2.16 — Sketch of photon collection from quantum emitter embedded inside
a finite photonic wire: A mirror is integrated at the bottom to reflect upward the emission
going to the bottom of the wire. The light exiting the top of the wire will be collected by an
optical lens.

Substrate

We have seen in the previous section that g factor into the fundamental guided mode
can reach values close to unity. In practice, we have to consider a finite PW which stands
on a substrate (Fig. 2.16). The photons emitted from the QD are collected at the top
facet. To realize a real single-photon source, all the guided photons must be collected at
one output of the PW. In principle, there are two main factors that could affect the global
extraction efficiency.

Firstly, since the photons are guided equally into upward and downward directions
of the mode, the collection efficiency will be reduced by a factor of 2. We assume that
the PW has a “semi-open” symmetry, which means the reflectivity of the upper facet is
suppressed and only the reflection of the bottom is taken into account. Therefore, if we
place a mirror at the bottom of the PW and set the position of the QD in a way to obtain
the interference between the field reflected back and the field emitted upward [47], the
fraction of emitted light traveling to the top facet can be maximized. It has been shown

that by putting a planar gold-silica mirror at the bottom of the PW, the modal reflectivity



26 2.2. Interaction of a quantum dot with light in a photonic wire

can be reached more than 95% [23].

The second factor which affects the global efficiency is the fraction of the light exiting
the wire that is collected by a first lens, which is denoted as e¢ (see Fig. 2.16). According
to [23,47], the first lens external efficiency e, has the form

B+l
21+ 7]

The parameter € is the figure of merit for the global efficiency of the one-dimensional

ec (2.4)

system. To have a large ¢, high ¢ is required, which means that a low divergence of the
output beam is necessary. However, for the PW with small diameter, the fundamental
mode waist is narrow. As a result, the tightly confined HE{; photons leaving a real,
finite wire through a flat top facet are diffracted with a high angle into free space. That
leads to a wide far-field radiation pattern. It prevents an efficient collection of light with
standard optics. In order to increase the collection rate, one has to reduce the output
beam divergence by expanding the mode waist [92]. There are two possibilities to achieve

this mode expansion, by either decreasing or increasing the top diameter of the PW.

2.2.5.1 Tapering of the photonic wire top facet
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Figure 2.17 — Schematics of two approaches for the top facet of the photonic wire -
(a) Sketch of a needle-like taper design photonic wire. (b) Schematic of the inverted trumpet-
like taper design photonic wire. The diameter of the cylindrical part in both two cases is d.
TH E,, denotes the modal transmission along the taper section.
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The first approach decreases the diameter of the PW at the upper end, thus featuring
a conical tapering of opening angle o [19,88,89,93,94] (Fig. 2.17(a)). As the fundamental
mode propagates forward, the radius of the PW decreases and forms a needle-like taper
PW. For a small angle «, this ensures the adiabatic conversion of the HE;; mode into a
strongly deconfined mode, which represents a narrower and less diffraction output mode.
T HE,, represents the modal transmission, which corresponds to the propagation of HE;;
along the tapered section. It has been shown in [23] that T g,, depends drastically on the
angle « in this needle type taper (T gg,, ~ 60% for o = 5° and ~ 50% for a = 7.5°). This
device features a measured efficiency of 0.72 combined with a very clean single photon
emission with ¢ (7=0) of 0.008 [19)].

However, the needle taper design encounters several weaknesses. Firstly, the fabrica-
tion of the regular conical tapering with an opening angle a < 5° is quite challenging using
the top-down approach [19]. Secondly, although such a taper design expands the guided
mode outside the PW to obtain a directive far-field emission, the emission still remains

poorly matched to a Gaussian free-space beam [23].

The limitations of the needle-like design lead us to the second geometry, which is
sketched in Fig. 2.17(b). The bottom part of the structure is similar to the first geometry.
However, the upper part features a trumpet-like taper with an opening angle a. As the
diameter of the PW increases, the lateral size of the mode also increases progressively,
but the mode remains confined inside the structure. Concerning the performance of this
second geometry compared with the needle-like design, according to [23], the needle-like
taper suffers from significant non-adiabatic losses of Ty g,, when increasing the angle «
from 0° to 10°, that results in free-space emission into the surrounding air before reaching
the taper end. Meanwhile, the trumpet-like taper design ensures a nearly perfect adiabatic
expansion of HEq; for a < 5° , leading to Ty g,, > 0.994. The modal transmission Ty g,
is maintained above 0.95 when increasing o up to 15°. Since the far-field emission is
essentially governed by the scattering of HE;;when it reaches the top facet, so the high
value of Ty, is a critical parameter. The figures of merit of the efficiency of the taper
design are the total transmission ¢ into the collection lens and the transmission 7 into a
Gaussian beam. For a PW with a fixed height, it has been calculated that for the trumpet
design PWs, ec and T increase with the angle o and reach the optimal value 7y = 0.97
for a = 11.5°, which corresponds to the top diameter do = 2.6 ym. For the needle-like PW,
ec and T, decrease drastically with o and the maximum value for T} is just 0.43. This
means that the trumpet design of the PW is much more favorable for light propagating
in the mode HE1; to be collected when escaping from the top facet of the PW.
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2.2.6 Photonic trumpet

Because of the outstanding /3 factor and high collection efficiency, trumpet-like PW (trum-
pet for short) is chosen for the giant non-linearity experiment in this study. It should be
noted that the trumpet under study is not integrated with a mirror at the bottom. The
following parts will briefly introduce the sample fabrication process and the description of

sample structure.

2.2.6.1 Fabrication process

Ni hard mask
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Figure 2.18 — An illustration of the trumpet fabrication steps: (a) Deposition of anti-
reflection coating layer SigN4 on top of a planar GaAs wafer, (b) Nickel deposition, which
defines the top shape of the trumpet, (¢) Reactive ion etching (RIE) with Si3Ny layer and (d)
RIE to form the inverted trumpet shape.

The fabrication of the sample was carried out by E. Dupuy and N. S. Malik in the group
of J. Claudon and J-M. Gérard from the same Nanophysics et Semiconductors (NPSC)
joint team, CEA/INAC/SP2M. The main fabrication steps are illustrated in Fig. 2.18.
The device is made out of a planar structure grown by molecular beam epitaxy on a GaAs
wafer, in which a single layer of InAs self-assembled QDs is located in a GaAs matrix. To
make sure all the incoming light could enter the structure with highest efficiency, a layer

of anti-reflection coating made of 115 nm-thick SizNy is deposited on the top facet using
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plasma-enhanced chemical vapor deposition (Fig. 2.18(a)). The inverted trumpet-shape
is then obtained through a top-down approach. Using electron-beam lithography, a Nickel
hard mask is defined and consists in arrays of circular disks with diameter ranging from 1
pm to 4 ym with 10 nm steps (Fig. 2.18(b)). The following step is the reactive ion etching
(RIE) process to transfer the pattern of the mask into firstly the anti-reflection coating
layer (Fig. 2.18(c)) and then into the GaAs wafer. By a careful control of the chemical
recipe of the etching process, the conical shape with high aspect ratio and smooth sidewalls
is formed. Finally, the remaining Ni mask is removed in a diluted nitric acid solution (Fig.
2.18(d)). To suppress spurious surface effects, the wire sidewalls were passivated and
covered with a 20 nm thick SisNy layer [95,96]. This fabrication process is applied for a
non-mirror sample. For a trumpet with integrated metallic mirror at the bottom, a more

sophisticated fabrication is required to deposit the mirror into the structure [23,47].

2.2.6.2 Sample summary

Figure 2.19 — Scanning electron microscope images of the trumpets - The sample
contains several arrays of trumpets with top diameter ranging from 1 ym to 4 ym with the a
step of 10 nm. The opening angle is fixed at 5°.

Fig. 2.19 shows SEM images of the photonic trumpets, a series of trumpets with top
diameters varying by a 10 nm step is obtained. The height of the trumpets is about 17.2
pm, the QD layer locates 0.8 um above the waist, each trumpet is estimated to contain
approximately 100 QDs.
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2.3 Chapter summary

This chapter gave an overview about the samples that are used in this thesis. General prop-
erties, applications, and multi-exciton levels of self-assembled InAs QDs was presented.
Several approaches in addressing efficient coupling between the emitter and photonic en-
vironment have been demonstrated in details. The trumpet-like photonic wire structures
was shown to have several advantages in studying the giant non-linearity for all-optical
switch applications. The last sections discussed the fabrication processes of GaAs photonic

wires embedding InAs QDs and the short summary of the samples was presented.



Chapter 3

Photoluminescence spectroscopy

Photoluminescence (PL) spectroscopy is a fundamental study when investigating semicon-
ductor QDs. This chapter will firstly present the experimental setup, where we perform
a high resolution micro-PL measurement.
will be then presented and discussed, firstly with the PL power dependence, then with
the polarization resolved measurement. Evidences will be shown to identify the exciton
and the biexciton transition from the same QD, based on the fine structure splitting of
the exciton level of the QD. The following section will discuss about the spectral drift of
the QD emission. Finally, time-resolved PL measurement is then performed to study the

relaxation process and measure the lifetime of the single InAs QD embedded in the GaAs

photonic wire.
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3.1 Experimental setup
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Figure 3.1 —- Non-resonant micro-photoluminescence experimental setup - The mea-
surement is performed at 6K. The QDs are excited by a non-resonant laser. The photons
emitted from the QDs are collected by a CCD camera placed at the output of a spectrometer.

Fig. 3.1 shows the experimental setup. The laser excites the sample in one direction,
and the light emitted from the sample is collected in the opposite direction. The sample
is placed on a cold finger in vacuum inside a Helium-flow cryostat. The laser is directed
to pass through a pin hole with a diameter 20 pm. The pin hole helps to spatially filter
the elliptical shape of a laser beam. For that reason, all the lasers that are used in this
study are aligned to pass through that pin hole. The laser beam is then directed to a
polarizing beam splitter (PBS). The purpose of placing a PBS but not a normal beam
splitter is to establish the cross-polarized detection, which will be used and demonstrated
more clearly in the next chapters. The laser beam reflects on the PBS and then passes
through a half-wave plate. With a half-wave plate in front of the sample, we can rotate the
polarization of the incoming beam, as well as the linear polarizations of the light emitted
from the QDs.

The laser beam is focused on top of the trumpet by a microscope objective. We can
choose either an objective with numerical aperture (NA) = 0.4 (Olympus LMPL) or NA
= 0.75 (ZEISS LD Plan NEOFLUAR). The working distances of the NA 0.4 and 0.75
objectives are respectively 8.1 mm and 2.2 mm. Photoluminescence (PL) measurement
is performed by wetting layer excitation method, as explained in section 2.1.2. The laser
wavelength is at 825 nm, which is slightly below the band gap energy of GaAs at 6K (1.52
eV - 817 nm). At this energy, the laser excites the wetting layer of the QD and the light

can propagate within the photonic wire without being absorbed. The beam reaches the
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QD level and is absorbed and re-emitted by the QDs. Part of the light emitted from the
QDs travels toward the top facet of the trumpet, exits the trumpet and is collected by
the same objective. The light then passes through the PBS to the detection system. To
spatially select only the light going out of the trumpet, the top facet of the trumpet is
imaged on a second pin hole. The output of this pin hole is then directed to the 1.5m-
focal-length spectrometer. At the output of the spectrometer, the light is detected by a
charge coupled device (CCD) camera.

To be able to visualize the trumpets and the position of the optical beam, the sample is
illuminated with a LED lamp. The sample is imaged on a small camera (Watek WAT-902)

and is displayed on a screen.

3.1.1 Optical source

The laser used in PL spectroscopy is a continuos-wave (CW) diode laser, controlled by
Thorlabs I'TC 502 controller. To prevent the unwanted back reflection, which may cause a
number of instabilities to the excitation beam (like intensity noise, frequency shifts, mode
hopping or even the possibilities of damaging the laser), an optical isolator is put just
after the laser. Optical isolator is a magneto-optic device that preferentially transmits
light along a single direction and shields upstream optics from back reflections.

To precisely control the focus and the position of the laser beam on the sample, the
microscope objective is mounted on a 3-dimensional translation stage (Nanomax-312D /M).
The Nanomax offers a positioning in three directions, including coarse adjustment of 4 nm
with 10 um precision, plus 300 pm of fine adjustment with 1 um precision. In addition,

it can also be controlled by piezoelectric actuators, with 20 pym travel at 20 nm accuracy.

3.1.2 Cryogenics

Optical properties of QDs are studied at cryogenic temperature. The sample is mounted
on a sample holder, which is kept inside a continuous helium flow cryostat (by Oxford
Instruments). The cryostat is placed on a 2-axis translation stage, with the precision of
10 pum. The stage helps to perform the initial adjustments of the sample position. The
temperature inside the cryostat can be modified by a heater controlled by the temperature
controller ITC 601, which can tune the temperature from 3.5 K up to room temperature

with accuracy of 0.1 K.

3.1.3 Spectrometer

The CCD camera we use is the PIXIS: 100B from Princeton Instruments. It is a fully
integrated, low noise camera with a 1340 x 100 pixels format. The working temperature of

the camera is -70°C. This camera offers very low electronics noise and a very high quantum
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efficiency in the near-infrared region, up to more than 80% at 900nm.The spectrometer
we use is a Jobin-Yvon THR1500, with a focal length of 1.5 m. It has a grating with 1200
grooves/mm, blazed at 750 nm, which offers a spectral resolution of about 0.0088 nm at
930 nm (&~ 12.3 peV'). The movement of the grating can be rotated by a motor controlled

by computer.

3.2 Photoluminescence spectroscopy

3.2.1 Photoluminescence spectra
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Figure 3.2 — PL spectra of a single InAs QD with different excitation powers - The
integration time for every spectrum is 1 s. The spectra of X and XX transitions are shown
when the excitation power increases from low power, where we see only the emission of the
X transition, to higher power, where the intensity of the X transition increases and saturates,
while the XX transition starts to dominate the spectra.

PL measurement is performed at 6K, the temperature can be controlled either by the
temperature controller at a fixed set point, or by adjusting the amount of He flowing
into the cryostat by a needle integrated in the He transfer tube. PL spectra are taken
with Winspec (an integrated spectroscopy package for cameras and spectrographs, by
Princeton Instruments). In addition, PL spectra can also be recorded by a home-made
Labview program (developed by Edouard Wagner), which has integrated all the necessary
functions from Winspec. To select the preferred wavelength range, the grating inside the

spectrometer can be rotated remotely by another Labview program.
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Fig. 3.2 shows a typical PL spectra of a self-assembled InAs QD embedded in the
trumpet. The QD emits photons in the near-infrared region (900-930 nm). Each subgraph
shows a PL spectra with different excitation powers, from 0.08 yW to 2 yW. In the low
excitation limit, the QD occupation probability is low, resulting in an emission spectrum
dominated by a single exciton (X). With increasing the excitation power, the biexciton
XX line starts to show up. The X line saturates when the X X emission begins to
dominate the spectrum. The linewidth of the emission is about 30 peV. Performing the
non-resonant PL on different QDs from the same trumpet or different trumpets gives the

linewidth in the range from a few ten of eV to more than 100 peV.

Chapter 2 has discussed about the g factor, which represent the coupling efficiency
between the QDs and the guided mode of the PW. In fact, one trumpet contains many
QDs. The g factor related to each QD depends strongly on the position of that QD with
respect to the central axis of the trumpet. That is why in the PL spectra, several emission
lines which come from many different QDs can be observed. Normally, the QDs closer to
the central axis of the trumpet exhibit stronger PL than QDs located further away, owing
to a large coupling 8 to the guided mode of the trumpet. In addition, if a QD is located
close to the center, it will be coupled better to the excitation beam, because the laser
beam is also guided to propagate along the central optical axis of the PW and benefits
from the guided mode. As a consequence, it will require less power to saturate the QD
that is closer to the center. In the case in Fig. 3.3, just about a few hundreds nW is
needed to saturate the QD in this wetting layer PL excitation. Although the non-resonant
laser has the wavelength of 825 nm, which is not properly guided by the mode with the
highest efficiency, but the level of excitation power is still significantly smaller than that
in bulk QDs. The power required to excite bulk InAs QDs has been reported to be in a
range from less than 1 mW to a few mW [97-99].

3.2.2 Photoluminescence power dependence

The PL emitted by a QD can be described by a simple model considering a two-level
system consisting of a ground state and an excited state. Due to spin degeneracy, the
excited state can contain up to two excitations. Thus, there are three possibility: an
empty dot, a dot with one excitation (X) and a dot with two excitations (X X). The rate

equations describing the transitions are:

dnxx nxx
=T — 3.1
dt nx XX (3.1)
d
& = F?’Lo — an + 2.0 — FTLX (3.2)

dt TX TXX



36 3.2. Photoluminescence spectroscopy

dno nx
— =-T —= 3.3
dt Mo + TX (3:3)

where ng, nx and nxx are respectively the probabilities that the QD being in ground,
X and X X states. The times 7x and 7x x are respectively the radiative lifetimes of X and
X X . The quantity I' is the pumping rate. Neglecting the possible contribution of higher
levels and the creation of charged excitons allows the assumption ng + nx + nxx = 1.

Hence Eq. 3.2 becomes

dnx nx = nxx

dt TX TXX

—TI'(1—-2nx —nxx) (3.4)

In steady state regime, dg—tx =0 and d”d)ix = 0, we then have

r

ny = 3.5

* i + I +Trxx (3:5)
IMryx

Nyy = 3.6

xx % + T+ Irxx (3.6)

The X and X X emission intensities depend on the pumping rate as followings

nx T

1 — = 3.7

XO(TX 1—|—FTX—{—FZT)(TXX ( )
FQ

IXX X nXX X (38)

XX - 14+Trx +Mryrxx

Intensity (a.u.)

10’ 10° 10°
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Figure 3.3 — Integrated intensity of X and XX as a function of excitation power -
The solid lines show the fitting. At low excitation power, the X emission intensity follows the
linear dependence, while the XX emission intensity follows the quadratic dependence on the
power.
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In the low pumping rate limit (excitation power well below saturation power of the
transition), one could see that X and X X intensities have respectively linear and quadratic
dependences on the pumping rate. The integrated PL intensities of the X and XX
transitions as a function of the excitation power are shown in Fig. 3.3. This dependence
is plotted in log-log scale. The black and red straight lines are the fit lines for X and X X
intensities at low excitation power. The fits show the exponents 0.97 and 1.96 for X and
X X, respectively. This indicates that at low excitation limit, the intensity of the exciton
Ix o P997 and the intensity of the biexciton Ixx o« P19 with P is the excitation power
of the laser.

Taking into account the saturation power for the X and X X transitions, one could see
from Fig. 3.3 that the PL intensity of the X X line is slightly higher than that of the X
line at saturation. This difference is due to the influence of dark X states. Dark X state
has been introduced in section 2.1.3.1. In a QD, X states are split by the electron-hole
exchange interaction into higher-energy bright X states and lower-energy dark X states
with respective angular momentum of J, = +1 and J, = £2 [100, 101]. It has been
demonstrated that if the energy splitting between bright X and dark X states is rather
large (AFE > kpT with kg is the Boltzmann constant and 7' is the temperature), dark X
can not transit back to bright X. Thus dark X is stored until recombining nonradiatively,
leading to a reduced excitonic light emission. By contrast, for X X state, there is no non-
radiative recombination channel. As a result, the PL saturation intensity of X is less than
that of the X X.

3.2.2.1 Identification of exciton and biexciton from the same quantum dot

When studying the PL spectroscopy of a single QD, it is important to identify a pair of
X and XX transitions which are emitted from the same QD. Furthermore, in the next
chapters, the study will be based on a three-level ladder system which involves the X and
X X levels from a single QD. Therefore, among several emission lines in the PL spectra,
it is crucial to be able to point out a pair of X and X X from the same QD.

Firstly, one can rely on the fine structure splitting (FSS) of the X state. Fig. 3.4(a)
shows the X X — X —ground state radiative cascade. X transition contains two orthogonal-
polarized levels X, and X,. Therefore, X X level has two possible recombination channels
through either X, or X,. The presence of AErg leads to distinguishable recombinations
for the XX and X cascades and creates a pair of polarization-correlated photons. As
a result, the PL spectra is composed of two doublets with the two components linearly
polarized along perpendicular directions. Those doublets can be described spectrally by
the energy scheme in Fig. 3.4(b). The PL spectra of X and X X contains two peaks that
are split in energy by AFEpg.

In principle, due to the asymmetry, each QD has its own fine structure and the splitting
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Figure 3.4 — (a) Radiative biexciton-exciton decay cascade - PL are composed of doublets
with the two components linearly polarized along perpendicular directions, and has energy
splitting A Epg, which results from anisotropy in electron-hole pair exchange interaction. (b)
Energy scheme showing the expected emission spectra of X and XX levels. Each spectrum
contains a doublet which are split by AErg. H and V dipole energies in X spectrum are
reversely positioned with respect to those in X X spectrum.
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Figure 3.5 — PL spectra of X and XX lines fitted with two Gaussian functions -
The FSS energy can be defined by the every difference between two fitted peaks, which is 25
eV in this case. the X and X X lines have the same splitting, which is an evidence that they
are originated from the same QD
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AFErpg differs from QD to QD. Taking a closer look at the PL peaks, Fig. 3.5 shows that
each of X and XX lines actually contains two peaks. These peaks can be fitted with
Gaussians functions as the red and blue curves. The peaks in X and XX lines both are
split by the same amount 25 peV. Normally, the FSS is comparable to the inhomogeneous
linewidth of the excitonic emission measured with this non-resonant excitation. The fact
that an emission line contains FSS means that we can identify it to be a neutral QD,
because charged QD do not exhibit FSS [64]. This is the first argument implying that this

X and X X emission lines are originated from the same QD.

Spectrometer

Figure 3.6 — Polarization sensitive measurement - By rotating the half-wave plate (A/2),
the two linear-polarization FSS dipoles of the QD is also rotated. The intensity detected for
each dipole depends on the position of the wave plate.

The second argument is based on polarization-sensitive measurement of the PL emis-
sion. The polarizations of the emission can be rotated by putting a half-wave plate in front
of the sample. It should be noted that the non-resonant wetting layer excitation is not
a polarization sensitive excitation. So that rotating the polarization of an incoming laser
does not affect the QD emission. Fig. 3.6 shows how the output beam propagates. The
beam escaping from the top facet of the trumpet contains two orthogonal dipoles which
have the polarizations H and V. These two dipoles go through the haft-wave plate and
their polarizations are rotated by the same angle 6 (by rotating the half-wave plate an
amount #/2). The two dipoles have the new polarizations H” and V’. The light then goes
through the PBS, where the vertical polarized components of H” and V’ will be reflected,
and the horizontal polarized components will be transmitted.

Fig. 3.7 shows the PL spectra of the X and X X lines at three different angles 6: 0°,
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Figure 3.7 — Polarization dependence PL spectra of X and XX at different angles
of the half wave plate - The PL emission is rotated in the step of 45° (by rotating the
half-wave plate a step of 22.5°), three spectra correspond to three positions of the polarization
dipoles emitted from the QDs, with respect to the vertical axis .
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Figure 3.8 — The evolution of H and V polarization dipoles - By rotating the half-wave
plate under the cross-polarized detection scheme, the PL intensity of the X line is fitted with
two gaussians which represent the H and V fine-structure dipoles. The intensity of each dipole
is then recorded for every position of the wave plate. The evolutions of H and V are then well
fitted with sine functions.
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45° and 90°(by rotating the half-wave plate by: 0°, 22.5° and 45°). It indicates clearly
the mirror effect that is well demonstrated in Fig. 3.4. Fig. 3.8 shows the evolution of
the intensities of the two polarization dipoles of X line when rotating the half-wave plate.
The data is well fitted with sine functions. This result is the second evidence proving
that the two X and X X lines under investigation are coming from the same QD. This
identification process will serve as a basis to operate with a three-level system, as it will

be presented in the following chapters.

The paragraphs above have focused on identifying the X and XX transitions. In
general, PL spectra contain also emission lines which derive from charged exciton (X¥).
Charged exciton can be assigned from the absence of fine-structure splitting. Fig. 3.9
shows the PL spectra for the polarization-sensitive measurement for three different posi-
tions of the half-wave plate. The splitting allows us to attribute the two emission lines
at higher energy to neutral X and XX recombinations. The third line at lower energy
is attributed to the charged exciton (C'X). For this line, the optical asymmetry is not

observed, which is a clear evidence of a charged X line.
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Figure 3.9 — PL spectra showing a charged exciton - A charged X is observed at

1.361 peV. The charged X does not exhibit FSS, so when performing polarization sensitive
measurement by rotating the half-wave plate, the charged X line remains unchanged.
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3.2.2.2 Biexciton binding energy

Biexciton binding energy is defined as the energy difference between 2Ex and Ex x. Bind-
ing energy of XX results from the Coulomb interaction of four fermions (two electrons
and two holes) localized in the confinement potential of the QD, which depends on the
shape, size and strain of the QD. The Coulomb interaction of two localized excitons can
be either attractive or repulsive, leading to either binding or anti-binding of the X X.
For the QD that is shown in Fig. 3.2, the binding energy of -0.6 meV is obtained. Fig.
3.10(a) shows the PL spectra of the second QD (QDs3), which has a slightly higher emis-
sion energy compared to the first one (QD;) presented above. Those two QDs are from
the same trumpet. The X X binding energy for QD2 is about -2.03 meV. Fig. 3.10(b)
shows the PL spectra of the third QD (QD3), which is embedded in another trumpet.
QD3 emits an exciton at rather low energy compared with the other two QDs. This time,
the X X binding energy is positive at 2.2 meV. The fact that a QD emits at higher energy
exhibits larger anti-binding energy is in good agreement with the report [102]. It was
shown in [99, 102, 103] for InAs QD that depending on the recombination energy of X,
the binding energy showed a linear dependence and could be vary from 1 meV to -6 meV

when the X emission energy increased.
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Figure 3.10 — PL spectra of other QDs - (a) PL spectra from QD3, which emits at higher
energy than QDjand features a larger anti-binding energy behavior. (b) PL spectra from QDs,
which emits at lower energy and features a positive binding energy.

The dependence of the X X binding energy on the emission energy of the X is plotted
in Fig. 3.11, where the binding energy for a fourth QD is also taken into account. The plot
indicates a wide variation of X X binding energy, including both binding and anti-binding
behaviors. A clear trend is observed that the binding energy reduces with increasing the
X emission energy. It was attributed in [102] that this decreasing of binding energy is due
to a lower impact of correlation and exchange. That behavior relates to the size of the
QD, the decreasing number of localized excited states in smaller QDs reduces the effect of

exchange and correlation. Therefore decreasing QD size, the X X complex changes from
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Figure 3.11 — Biexciton binding energy as a function of exciton energy - The binding
energy reduces with higher X emission energy. At a certain X energy, the behavior switches
from binding to anti-binding property.

binding to anti-binding.

3.2.3 Spectral drift

This section discusses the spectral drift of the PL, which is crucial in resonant spectroscopy.
When performing optical spectroscopy measurements with the QD-trumpet system, un-
fortunately, a continuous temporal drift of the emission energy of QDs is always observed.
The origin of the drift has been characterized in [95]. It was attributed to the sticking
of oxygen molecules onto the trumpets, which modified the surface charge and hence the
electric field seen by the QD. We observe blue-drift with all the QDs. Fig. 3.12 shows
an example of the evolution of the PL spectra when we keep exciting the PW with times.
Four PL lines are shown at different times.

A QD blue-drift depends on the QD distance from the surface. This can be used to
identify a pair of X and XX from the same QD, because if the X and X X lines are from
the same QD, they will drift with the same speed. Fig. 3.13 plots the energy drift for 4
different PL lines as a function of time. We can clearly identify two pairs of X and XX
from two distinct QDs. The X and X X lines from the same QD drift at exactly the same
speed. Hence, before analyzing in details the PL spectra of a QD, we can have a quick
impression of the X and X X lines coming from the same QD just by checking the spectral
drift.
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Figure 3.12 — PL spectra of a pair of X and X X lines taken at different time scales
- the PW is excited continuously at the same power to see the stability of the spectrum. Both
lines shift with the same speed and same direction toward higher energy region.
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Figure 3.13 — The emission energy drift as a function of time for two pairs of X
and X X from two different QDs - The X and X X from the same QD drift at exactly the
same speed. One can take advantage of this in identifying the pair of X and X X transitions
generated from one single QD.

It is very challenging to suppress this temporal drift problem, a treatment of the
trumpet surface has been done in [95] by passivating the sidewall of the PW with a 20
nm thick SigNy layer. But unfortunately, it could not entirely suppress the drift and the
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emission lines still shift during the measurement. The blue drift of the emission makes
it much more difficult in performing the high precision resonant spectroscopy. In this
study, we propose an alternative approach that may help to counteract the blue-drift, by
introducing a very intense laser, with much lower energy than the band gap of the wetting

layer. More details of this approach will be presented in appendix C.

3.2.4 Time-resolved photoluminescence measurement
3.2.4.1 Experimental setup

Flip
Mirror

m) =] f % »| Spectrometer

APD

® LED illumination
Ti:Sa Laser /

Figure 3.14 — Time-resolved PL experimental setup - the QD is excited by a pulsed
Ti:Sa laser, the emission from the QD is then sent to the spectrometer and collected by a
single-photon photon counting module

T=6K Objective

Camera

To study the lifetime of a QD inside the waveguide, we perform a time-resolved fluo-
rescence measurement. The set up is described in Fig 3.14. The experiment is carried out
at 6K. We use a pulsed source, which is a Tsunami titanium-Sapphire (Ti:Sa) laser (by
Spectraphysics). The laser can operate in the wavelength range between 650n ~980nm.
The pump energy is supplied by a CW solid-state Millennia YAG laser, emitting at 532
nm. The pulsed duration is 1 ps and repetition rate is 80 MHz. The wavelength of the
laser is tuned to be at 825 nm. The signal emitted from the QD is sent to the spectrom-
eter (HORIBA iHR550). The light filtered by the spectrometer is then detected by an
avalanche photodiode (APD) id100-50 (from idquantique). This APD has an active area
diameter of 50 ym. It offers timing resolution of 55 ps, the dark count rate is <200 s™*. Af-
terward, the output pulse of the APD detector is sent to time to amplitude time-correlated
single photon counting (TCSPC) module SPC-630 from Becker Hickl. This module has a

time resolution of 8 ps.
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3.2.4.2 Time-resolved photoluminescence spectroscopy

The measurement of X decay time is performed at very low power. The power used is
at the level of 1% the non-resonant saturation power for the X transition, so that the
population of the X X can be neglected. Fig.3.15 shows the results of the lifetime for X

and X X. The results can be well-fitted with a single exponential decay function

I(£) = Aexp ({) (3.9)

where I(t) is the PL intensity as a function of time ¢. A is the intensity for ¢ = 0, and 7 is
the recombination lifetime. The exponential model results in a lifetime 7x ~1.36 ns for the
exciton and Txx & 0.72 ns for the biexciton. The mono-exponential behavior suggests that
the obtained values correspond to the radiative lifetimes, and the non-radiative process
can be negligible. The X X level decays roughly twice as fast as X (7x ~ 27xx) since
it has twice the number of radiative decay channels to the two bright states of the X.
In the simplest picture, one should have 7x =27xx. However because of the Coulomb
interaction of the X X level, the ratio between the lifetimes of X and XX also depends
on the confinement. The ratio 7x /7xx also depends on the spin structure, the conversion
of dark X to bright X via spin flip process contributes to the decay dynamic of the X
lines [100,101,104]. In addition, it was shown in [105] that the ratio 7x/7xx depends
on the size of the QD, for example for the InGaAs/GaAs QDs, the ratio varies from
approximately 2 down to 1.5, increasing the dot size reduces the recombination ratio.
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Figure 3.15 — Time-resolved PL spectra - (a) Time-resolved PL spectra of X line, which
show the life time is 1.36 ns. (b) Time-resolved PL spectra of X X line, the life time of XX is
0.72 ns

The lifetime of the InAs/GaAs QD embedded inside a PW is comparable to the one
obtained in bulk InAs/GaAs QD, where our colleagues (J. Claudon, J-M. Gérard from
CEA/INAC) measured mean decay times for X and XX of 1.2240.25 ns and 0.76+0.12
ns, respectively [106], the mean value of Tx /7x x was reported to be 1.7. In the particular

QD that is studying in this thesis, the ratio 7x /7x x is found to be 1.89. The information of
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X and X X lifetimes for a particular QD is important, because from that we can estimate

the power of one photon per emitter lifetime, which is important in the next chapters.

3.3 Chapter summary

This chapter presented the basic characterizations of PL spectroscopy of self-assembled
InAs QDs embedded in a GaAs conical shape PW. A detailed description of experimental
configuration and optical elements was presented. Non-resonant PL measurements were
performed. Power dependence analysis, polarization dependence PL measurement have
been taken into account to help identify the neutral X and X X transitions of the same
QD. The identification of X and X X lines paves a way to further investigations of the in-
teresting optical effects based on a QD three-level one-dimensional system in the following
chapters. The time-resolved PL measurement was also performed to study the life-time
of the neutral X and XX in a single QD embedded in a PW. This chapter also briefly
presented the temporal spectral drift of the emission energy of the QDs, which turned out

to be a mean to quickly identify a pair of X and XX from the same QD.
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Chapter 4
Single-mode giant non-linearity

This chapter will present a detailed model and experimental results of single-mode giant-
nonlinearity. Chapter 3 has shown the use of photoluminescence (PL) spectroscopy to
characterize optically active QDs. This chapter will address a study of resonant excitation
and laser spectroscopy. Laser spectroscopy provides a sub-ueV resolution and therefore
leads to the possibility to access the true lineshape of a transition. The chapter will
begin with presenting a theoretical model of the interaction between a coherent driving
field and an atom placed inside a one-dimensional waveguide. The model also includes the
imperfection factors that could appear in the experiment. The chapter then continues with
a presentation of resonant excitation experimental setup, including the establishment of
cross-polarized detection to subtract the unwanted back-scattered laser background. The
last sections will show the experimental results which will lead to the realization of a

single-mode non-linearity at ultra-low power level.
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4.1 Giant non-linearity of a one-dimensional atom

4.1.1 Introduction

Two-level
system
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Figure 4.1 — Scheme of a one-dimensional atom interacts with an electromagnetic
field - A laser field comes from one output of the one-dimensional waveguide. The field
enters the waveguide and has 8 the chance of interacting with the quantum emitter. The
non-linearity is characterized by the mean of a reflectivity measurement. The intensity of the
reflected field Pr (emission of the two-level system propagating in the backward direction)
is recorded. The reflectivity R = Pr/P;, as a function of the incoming laser field power is
expected to exhibit a non-linear behavior due to the saturation of the two-level system.

The optical behavior of a one-dimensional atom for arbitrary intensities of the incoming
field has been theoretically discussed in the work of A. Auffeves et al. [25], based on
the coupling of a two-level system quantum emitter with a one-dimensional continuum,
mediated by a cavity. The giant non-linearity signature is based on the simplest non-linear
effect, related to the saturation of a single two-level system excited by an incident coherent
laser field that is on, or close to, resonance with the two-level transition. The system under
consideration is depicted in Fig. 4.1 with an atom placed inside an optical one-dimensional
waveguide. The transmission property of the driving field is governed by the two-level
system depending on the incoming field power. At a power well below saturation, the
quantum emitter features coherent scattering. Like a classical dipole, the two-level system
oscillates at the incident laser frequency and radiates at the same wavelength with a well
defined phase shift. In this regime, the light radiated by the emitter in the waveguide
interferes with the incident field. This leads to a destructive interference in the field
direction and cancel out the transmission. Therefore, at ultra-low excitation power lower
than saturation, the driving field is entirely reflected. The non-linearity happens when
increasing the incident laser power, the two-level system will be saturated at the power
level of one photon per unit lifetime of the emitter, leading to a non-vanishing transmitted
intensity. Increasing further the power, the laser field is entirely transmitted.

For an ideal one-dimensional system, the waveguide features a perfect coupling, which

means every photon sent from the excitation source will enter, propagate through the
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waveguide and finally interact with the two-level system with an optimum coupling effi-
ciency. At the same time, every photon emitted is successfully coupled to the mode and
collected at the output of the waveguide. However, reaching a perfect 100% efficiency
is very challenging and the waveguide normally features imperfection. The light-matter

coupling efficiency inside a waveguide is denoted as the factor 3,

spontaneous esmission rate coupled to the waveguide mode

8= (4.1)

Total spontaneous emission rate

[ indicates the quality of the one-dimensional waveguide. A perfect waveguide features
8 = 1. It should be noted here that in principle, one has to take into account also the
mode-matching (the rate that an incoming photon could enter the waveguide) and the
output-collection efficiency (the rate that a photon escaping the waveguide is successfully
collected) (see section 2.2.4 for details). For simplicity, we consider these two factors ideal

so that €;, = eout = 5.

4.1.2 Bloch equation of a coherent field interacting with a one-dimensional
atom

In this section, we will derive Bloch equations for the interaction of a coherent input
field and a two-level atom placed inside an optical waveguide. The input field is in a
coherent state |oz) and has a frequency wy,. The input power is Py,=|a|?* and is a unit-
less number representing the incoming photons per unit lifetime of the two-level system,
we have Py, =|al?.

The transition frequency between the ground state |g) and the excited state |e) is
denoted as wg. The coherent incoming field interacts and drives the atomic evolution via

optical Bloch equations [107]. The time evolutions of the atomic operators are,

*

(§)y=is(5) - 1o (s ) +0(s), (4.2)
. 1
(S:) = =1((82) +5) — QRI(S-)],
Where (S_) and (S,) are expectation values of the atomic operators S_ = e™rt |g) (¢]

and S; = Z(le) (e| — |g) (gl), respectively, 6, is the detuning between the QD resonance
and the laser field (07, = wr, —wp < wyp), 7 is the radiative-decay rate due to spontaneous
emission of the two-level system, v* is the pure dephasing rate and 2 is the Rabi frequency

of the excitation field inside the guided mode,

Q:’Y\/BRn

Pure dephasing arises from fast fluctuations of the medium that cause rapid vibrations
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of energy levels in a time scale faster than the recombination time of the emitter. Therefore
this fluctuation is homogeneous and pure dephasing rate v* can appear in Bloch equations
of the field-atom interaction.

In steady-state regime, where <S,> = <5’Z> = 0, we obtain a stationary solution for

the population of the two-level system,

<S_>:_<(7+’y*()2—2i5L) <1—|1-.73> (43)

<SZ>+;_;<14$—$>

where the saturation parameter x is defined as,

B /2 v+
m‘((@*)%(&ﬁ)( v ) (44)

Parameter x can be rewritten as,

L+9"/y (4.5)

t R e @

4.1.2.1 Evolution of the fields and the interference between incoming and

scattering fields

Figure 4.2 — Scheme of field propagations inside a one-dimensional waveguide -
Considering a,, and b,, are the forward and backward propagating modes, respectively. Two
detectors are placed at two outputs of the waveguide to measure the reflected (Pgr) and
transmitted (Pr) powers.

The non-linearity of a one-dimensional atom is realized based on the transmissivity or
reflectivity of the field inside the waveguide. As described in Fig. 4.2, the driving laser
field is assumed to propagate in the mode a,. The evolution of the quantized electric field

in one-dimensional geometry in the Heisenberg picture is written as [108]

E(z,t) = EF)(z,t) + EC) (2, 1) (4.6)
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where E(5)(z,t) = (E)(2,t))! and

EWM(z,t) = ZZ €w {aw(t)eikz + b, (t)e~ k= (4.7)

Parameter ¢, is the electric field per photon. The full electric field is a linear combi-

nation between the free and emitted fields, which is established as,

EN(2,t) = Bo pree(2,) + Ep pree(2,t) + 1 {S_(t — 2/¢)O(2) + S_(t + 2/c)O(—2)} (4.8)

Where @(n) is the Heaviside step function indicating that, for a propagation in the
mode a,,, only the detection at z > 0 contains information about the atomic emitted field
and analogously, detector at z < 0 can only measure the signal from an emitted field
propagating in the opposite mode b,,. Parameter 7 is the proportionality coefficient of the

field, which depends on the atom-waveguide coupling factor 3 as,
N0 = i€y, \/B (4.9)

The reflected field Er(z,t) and transmitted field Ep(z,t) correspond to the quantum

operator,

Er(z,t) = Ep free(z,t) +n[S—(t + 2/c)O(—2)] (4.10)

Er(z,t) = Eq free(2,t) + n[S—(t — 2/c)O(2)] (4.11)

Since the laser is excited from left to right as in Fig. 4.2, we have Ej free(2,t) = 0.
One could see that the transmitted field in Eq. 4.11 features an interference between
the incoming field and the radiated field from the two-level emitter. This interference is
destructive and therefore induces a zero transmission, as will be shown in the following

equations.

The power of the incoming field is [109],

<1§T (Zat)lszree(Zat)> a* t)ed t
P, = a,free _ sm(z, )Em(z, ) _ Oz% (4‘12)

2 2
EwL EwL

The reflection and transmission powers can be written as followings,

Tz Z,
PR_<ER< D ER(z,1)) iy

2
GwL
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(B} 0)EBr(=1)

2
wr,

Pr=

€

The reflection and transmission powers in the unit of photon per lifetime can be ex-

pressed as,

pp=-1"1 (4.14)

2060, (2,0 (52) | 1P (S-)”

Iﬁ’::]%n'+ 2 2
wi, GwL
We then have,
1
Pr=p ((Sz> + 2) (4.15)

Q 1
Pr =P+ 2RS4 5 (452 + 5 )

Eqgs. 4.15 show that both reflection and transmission channels carry the spontaneous
emission. The transmission contains the incoming power P;, and the term %?R[(S_)] is
the interference term between the atom and the driving field. This interference term plays

a key role in this one-dimensional geometry.

From Egs. 4.3, we have,

B x B 1
Pp=" =2 (1- 4.1
R 9o1+z 2 1tz (4.16)
1 =z 8 x 1
Pr =P, — - 2 =P, - Pr(>-1
e P S R R(B )

The reflected and transmitted powers Pr and Pr can be expressed as a function of

incoming power P;, as,

gl P;
P :52< ) . 417
R v+ v* 1+ 2P, (7-!;7 %/7 ( )
() 45
Pr=P,—P (1—1>
T n R 5

Finally, the transmission and reflection coefficients R and T have the the form [109],
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R-pEog (2 ! (4.18)

Py, 'y+’y*) 1+2PmBM
(57) +3)

Pr 1
T=>L—1_R(=-1
P R(B >

At resonance when d; = 0, R and T can be expressed as functions of the incoming

field power,

_n2 g 1
R=p (ww*) (HBM n) (4.19)

Yy 1 + + zn
T =(1— 2 Y+ v+
=5 <7+7*> <1+ﬁ 12D >+ 1+ B—==2Py,

y+v* Y+

For an ideal system with § =1 and v* = 0, Eqgs. 4.19 are simplified as

- 1
1+42P,
1+42P,

(4.20)

Fig. 4.3(a) plots the reflection coefficient (reflectivity) R and transmission coefficient
(transmissivity) 7" as a function of excitation laser detuning in the unit of dz, /7 in the case
of a perfect waveguide. A perfect reflection obtained at low-excitation regime is because
the fluorescence field emitted by the two-level system is phase shifted by an amount of 7
with respect to the driving field. This phenomena was pointed out in [25,109-111]. The
7 phase shift induces a destructive interference between the driving field and the field
emitted by the atom. This destructive interference results in a perfect reflection at very

low driving power (P;, < 1 for an ideal system).

Fig. 4.3(b) plots the dependences of R and T" as functions of excitation power P;,. At
very low excitation power, the scattering fluorescence field interferes with the driving field
in a purely coherent process, the field is therefore entirely reflected. Increasing further
the power, the emitter becomes saturated and therefore induces a non-linearity. The
non-linearity occurs at the power P, ~ 1. An experimental realization of this single-
mode giant non-linearity behavior in reflectivity is the aim of this chapter, which will be

presented in the following sections.
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Figure 4.3 — (a) Reflection (blue curve) and transmission (red dots) coefficients for a vanishing
power of the incoming field (P, < 1) as a function of the field frequency detuning around
resonance. (b) Reflection (blue curve) and transmission (red dots) coefficients as a function
of in coming power P;,.

4.1.2.2 Impact of § factor and spectral broadening on the reflectivity of the

one-dimensional two-level system

Eq. 4.18 shows the influences of the factors 5 and pure dephasing v* on the reflectivity
of the system. At low excitation power P;, < 1, the reflectivity as a function of the laser

frequency will have a Lorentzian distribution as,

v 1
R=3? 4.21
’ <7+7*> 14+ 21 (42)
(v+v*)

One can see that a waveguide with a coupling factor 3 results in a change by 2 in
reflection compared with an ideal case. Regarding the pure dephasing rate ~*, without
pure dephasing, the emission linewidth of an ideal two-level system is broaden just by
the radiative decay rate . The presence of pure dephasing leads to the decreasing of the

resonant fluorescence by a factor of v/(y + 7).

4.1.2.3 Effect of spectral diffusion

We have seen in the last section that the reflection lineshape is dynamically broadened by
radiative lifetime and pure dephasing of the two-level system. This homogeneous lineshape
is characterized by a Lorentzian profile. In practice, the resonant frequency of the emitter
also suffers from fluctuations of the surrounding environment, which causes static random

jumps and fluctuations of the resonant frequency. Such phenomenon is called spectral
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diffusion or spectral wandering [112—114]. The fluctuation rate is in the nanosecond time
scale (normally more than 10 ns, which is higher than the radiative lifetime of the two-
level emitter). This rate is much shorter than the detection time of the usual CCD devices
(which normally have the time resolution in the range of more than a few milliseconds).
Thus, spectral diffusion results in an inhomogeneous broadening of the resonant excitation

spectra.

) No spectral diffusion

b) Spectral diffusion

Figure 4.4 — Illustration of the emission linewidth of a quantum emitter as the
presence of spectral diffusion - (a) Without spectral diffusion, the radiative-limit linewidth
and pure dephasing features a homogeneous broadening, the spectrum is characterized by a
Lorentzian shape. (b) Spectral diffusion: due to fluctuation of the environment surrounding
the emitter, the original spectral fluctuates with the rate higher than the emission rate but
much shorter than the detection limit of the CCD devices. Spectra diffusion induces an
inhomogeneous broadening with a Gaussian shape.

It has been shown that such an inhomogeneous broadening features a Gaussian shape
[113,115]. Fig. 4.4 illustrates the configuration taking into account the presence of spectral
diffusion. Fig. 4.4(a) shows a reflection lineshape when there is no spectral diffusion. The
line is dynamically broadened by rapid variations in the amplitude, phase, or orientation
of the dipoles. Pure dephasing and lifetime contribute to that homogeneous broadening.
When there appears fluctuations in the atomic frequency wg on a time scale larger than the
atomic lifetime, the line features a Gaussian broadening, as shown in Fig. 4.4(b). Due to
spectral diffusion, the quantum emitter has different instantaneous frequencies w;(t),which
evolves in time. The width A of the line represents the distribution of frequencies. The
dependence of reflectivity on spectral diffusion can be expressed as,

R x le ;o% (4.22)
o

where parameter o is the standard deviation of the distribution and is related to the
full width at half maximum (FWHM) A by A = 2/2in20.

Spectral diffusion is an important issue in spectroscopy, because the observed spectral
broadening prevents an access to the intrinsic line properties of the quantum emitter.

Spectral diffusion can be measured based on photon correlations technique to access the
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very short static time of the homogenous line. [112, 114, 116]. In resonant excitation
spectroscopy, reducing the environment fluctuation effect is an important condition to be
able to obtain a narrow lineshape. This issue will be discussed in the following experimental

sections.

4.1.2.4 Coherent and incoherent scatterings of a two-level atom

This section aims at characterizing analytically the contribution of coherent and incoherent
parts of the emission of a two level atom. The total intensity of the light scattered by the

atom can be written as [107]

(I(t)) = n* (St = (2/))) (S—(t = (2/0))) = WPogy(t — (2/c)) (4.23)

Dipole S+ can be written as a sum of the average dipole and the instantaneous differ-

ence of Sy from its average value (S4) [107]

Sx(t = (2/c)) = (S+(t = (2/¢))) + 05+(t — (2/0)) (4.24)

In the steady-state regime, from the above equations, we have

(1) = 1 (S4) (S-) + P (55.,65) (4.25)

The first term of Eq. 4.25 describes the contribution to (I(¢)) of the mean dipole
which represents the coherent part (I.,,). The radiation of the average dipole (S1) is a
radiation of a classical oscillating dipole with a phase that is well defined relative to the
incident laser field. The light radiated by (S1) can then interfere with the incident field,
which is associated with a coherent scattering process. The second term corresponds to
fluctuations of the dipole. Component 45+ radiates a field which does not have a well
defined phase relative to the incident field because it comes from the fluctuating part of
the atomic dipole and is related to spontaneous emission. This process is called incoherent
scattering (Lincon)-

To see how the contributions of the coherent and incoherent scatterings depend on
the incoming filed, Bloch Eqs. 4.2 can be expressed in forms of three components of the
“Bloch vector”,

1
w= (84 +5-) = S(0ge + o) (4.26)

1
V= Z(S.‘.—S_) =

(&ge - &eg)

1 . .
w = 5(066 — Ogg)
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We then have,

U =40Lv— 5 (4.27)
U= —0ru— Quw — gt}
2
. g
= O —yw—
w VoW =g
The steady-state solution for the Bloch Eqgs. 4.27 is [107],
(SL i
== 4.28
Ust Qr+1 ( )
Y @
= 4.2
R TO R (4.29)
1 1 =z
wet + 3 =0l = 57 E1 (4.30)

where x is the saturation parameter which was defined in Eq. 4.4. Eq. 4.30 gives
information about the population of the excited state. At low intensity, the population
increases linearly with xz (or quadratically with the Rabi frequency 2). Increasing x
further, the population tends to reach a limit value equal to % when 2 tends to infinity.
Thus, a very strong excitation power results in the equalization of the populations of
ground and excited states.

We then have,

1 :
) (Teon) = (S)I* = Just — dvsr? (4.31)

an incon) = (S5 — [(S)?

Finally, from Eqs.4.26, 4.25, we have the expressions for coherent and incoherent scat-

terings,
1 1 T
— (1 — 4.32
772 < cah> 25 + (1 —|—I’)2 ( )
b ) =2 &1 " @ (4.33)
2 M T g (T a2 29+ (14 2)2 '

Fig. 4.5 shows the contributions of coherence and incoherence on the total scattering

rate of a two-level atom, as a function of the saturation parameter x. The incident laser
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Figure 4.5 — Coherent and incoherent scattering contributions in total scattering rate as a
function of saturation parameter x - The system is considered as a perfect system with § =1
and v* = 0. The coherence is dominant at the power much less than saturation (z = 1).

intensity P, is proportional to x. For a low laser power (x < 1), coherence scattering is
dominant because the incoherence part is proportional to #2 and can be neglected when
x < 1. Thus, the total scattering is proportional to z. By contrast, for a high laser power
(x> 1), P.op, tends to zero as a consequence of the two-level saturation. Thus, incoherent
scattering dominates the total scattering and becomes almost independent of P;,.

For a non-ideal system, equations 4.31 and 4.33 indicates that at low-excitation regime,
coherent scattering (I.,p,) is proportional to v/(y+~*) and incoherent scattering (Ijcon) is
proportional to v*/(y+~*). Therefore, with the presence of a large pure dephasing (y* >
), the coherent scattering rate is reduced drastically. The impact of these decoherence

sources will be shown and discussed in more details in the following sections.

4.2 Resonant excitation spectroscopy

To have access to the giant non-linearity, one has to obtain the resonant reflection re-
sponse of a two-level system. Therefore, the first step is performing resonant fluorescence
measurement. Resonant fluorescence experiment consists of a two-level quantum emitter
initially prepared in the ground state that is driven by an electromagnetic field. Resonance
excitation spectra has been observed firstly for atom [117], then with dye molecules [118],
superconducting macroscopic two-level system [119]. During the last ten years, resonant
fluorescence of a single semiconductor QD has been intensively studied [120-127]. This
chapter does not aim at characterizing in detail the resonance spectra. The main goal is

to collect efficiently the resonant reflectivity in order to realize the giant non-linearity at
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ultra-low power level.

4.2.1 Experimental setup

Labview

Non Resonant Laser

|

Single-mode
CW Resonant Laser

Pin hole

P(1)

CCD
c:amera."I

M4 N2 PB
S

Figure 4.6 - Resonant excitation experimental setup - A CW laser excites the QDs at
a resonant frequency. The laser back-scattered light on the top surface of the trumpet induces
a strong influence on the total signal detected by the CCD, thus a cross-polarized detection
scheme is established to reject this laser background signal by using a polarizing beam-splitter.

The experimental setup is still based on the one used for non-resonant photolumines-
cence spectroscopy in chapter 3. The lasers are directed to excite from the top of the
trumpet and photons emitted from the QD are collected back in the opposite direction.
One of the difficulties in doing a strict resonant pumping is the back-scattered signal of
the excitation laser. With a non-resonant excitation, there is no difficulty because of the
distinctive wavelengths between the laser and the QD emission. However in resonant exci-
tation, the resonant laser must have the same wavelength as the exciton (X) transition, so
that it would be a problem in resolving the emission light from the QD and the parasitics
back-scattered light from the laser. This parasitics light comes mostly from back-reflection
on top of the trumpets (even with an anti-reflection coating layer, the top facet of a trum-

pet still induces ~ 3% back-reflection) and internal reflections inside the optical elements



62 4.2. Resonant excitation spectroscopy

(such as wave plates, objective, beam splitters, ...). This unwanted laser background may
cover up the resonant signal emitted by the QDs. Therefore, it is highly important to sup-
press as much as possible that back-scattered laser background on the resonant excitation
spectra. This problem can be overcome by using a polarizing beam-splitter (PBS) to form
a cross-polarized detection scheme, together with spatial filtering (by using a pin hole) to

select only the light emitted from the QD to reach the spectrometer.

4.2.2 Cross-polarized detection

The principle of the laser rejection process is based on an orthogonal excitation/collection
polarization. In this configuration, the PBS defines a linear vertical polarization for ex-
citation and a linear horizontal polarization for detection. Therefore, the back-reflected
laser signal on top of the trumpet is perpendicularly reflected by the PBS and is filtered
out from the path to the spectrometer. To optimize the rejection rate, two linear film
polarizers are placed at the input and output of the PBS (see Fig. 4.7). A polarizer
is an optical filter that passes light of a specific polarization and blocks light of other
polarizations. Two polarizers are mounted on high-precision rotation mounts PRM1/M
from Thorlabs. This rotation mount is functioned with a locking screw, which engages
micrometer for fine adjustment. When locked, the micrometer provides +7° of rotation
at the accuracy approximately 2.4 arcmin (0.04°) per micrometer division.

Fig. 4.7(a) describes the input configuration. The first polarizer placed before the
input of the PBS optimizes a vertical polarization of the laser before reaching the PBS.
After being reflected by the PBS, the laser vertically-polarized component passes through
a half-wave plate, where its polarization can be rotated by an amount 6 (by rotating the
half-wave plate 6/2). Since resonant excitation is a polarization sensitive process, we are
able to control how the laser excites the orthogonal-polarized fine-structure dipoles of the
QD. The dipole polarizations for X, and X, are denoted as H and V, respectively. H and
V are supposed to be unchanged unless the sample’s position is changed.

Concerning the light detection, as described in Fig. 4.7(b), the back-reflected laser
signal and the light emitted by the dipoles hit the half-wave plate, where their polariza-
tions are rotated by the same amount 8. The back-scattered laser signal is now polarized
vertically again, while H and V are rotated to new positions H and V’. The light then
passes through the PBS where horizontal polarized components will be transmitted. The
laser background is perpendicularly reflected and is now isolated from the detection chan-
nel. Afterwards, a second linear polarizer is placed with a chosen horizontally-polarized
direction, to ensure the suppression of the laser background.

Fig. 4.8 describes three simple cross-polarized excitation-detection scenarios that could
possibly happen when rotating the half-wave plate. Two worst cases are when the laser

polarization coincides with the polarization of one dipole (Fig. 44.8(a)-(b)). That leads
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(a)

Excitation
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(b)

Detection
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Figure 4.7 — Illustration of cross-polarized detection scheme - (a) An incoming laser
beam passes through a polarizer at vertical polarization, reflected by the PBS. Then its polar-
ization can be rotated by an angle 6 by rotating an amount of /2 on a half-wave plate (\/2).
The laser then excites two excitonic dipoles with orthogonal polarizations H and V. (b) De-
tection scheme: the polarizations of light emitted from the two dipoles and the back-scattered
laser are then rotated by 6 by the half-wave plate. The PBS reflects vertical components
(including the back-scattered laser) and passes the horizontal components to the spectrometer
(which in principle include only QD emission).
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to a situation that one dipole is fully excited but is not at all detected whereas the other
dipole is not at all excited. Therefore, the preferred scenario is the situation corresponding

to Fig. 4.8(c), where the laser polarization is at a position in between the two dipoles.

(a) Laser (b) Laser (€) Laser
Xy X X

pd

®

X, X

y s

Detection Detection Detection

Figure 4.8 — Simple sketches of cross-polarized detection configurations - (a) and
(b): The laser polarization is rotated by an angle respectively § = 90° and 0° with respect
to X,. (c) The angle 0 is chosen so that the laser polarization is in between two dipole
polarizations.

To understand how this configuration affect the detection signal, the schemes are de-
scribed in Fig. 4.9 for the weak-excitation regime (a) and strong-excitation regime when
the dipoles are saturated (b). Let us assume that the two excitonic dipoles have an equal
strength. In the weak-excitation regime, consider the case that the laser with a power
P, is on resonance with X, dipole. The laser polarization is at an angle # with respect
to X, as described in Fig. 4.9(a). In this case, the actual power applying on X, is
Py, = Pycos? (). Under the excitation power P, , the dipole emits an amount I,. The
projection of I'x on the horizontal detection channel is I,y = I,sin? (6). Overall, in the
weak-excitation of the laser, assume I is what the two level system emitted when 6 = 0

with the same power P;,, we then have,

Iy = [0032 (0) sin® (0)] Io (4.34)

Similarly, for the X, dipole with the same laser power P;, in a weak-excitation regime,

we have,

Iy = [sin2 (6) cos? (0)] Lo (4.35)

This indicates that at P;, well below saturation power, a spectrometer detects the
same amount of photons for both FSS dipoles regardless of the angle #. When increasing
the laser power, the dipoles will be saturated. Fig. 4.9(b) illustrates this situation. Since
two dipoles are identical, at saturation, they emit the same amount Isu—y = Isat—y-
Therefore, the amount of photons emitted by the dipoles at saturation that are detected

in the horizontal channel scales as
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Isatffo Sin2 (9) 2
= — 2] 4.36
Igt—y—m  cos? () an*(0) (4.36)

Similarly, the laser powers Py, and Py.—y required to saturate the two dipoles scale

as

Peat—z sin? ()

= = tan?(0) (4.37)
Psgt—y  cos?(0)
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Figure 4.9 — Configuration of the resonant excitation in cross-polarization scheme
- (a) Weak excitation regime in which P;,, is well below saturation power Ps,;. The amount of
photons detected in horizontal channel is equal for two dipoles. (b) Strong excitation regime
in which P, is at the saturation level. In this situation, the saturation powers and the amount
of photons detected from two dipoles both depend on the angle 6.

4.2.2.1 Quarter-wave plate

A quarter-wave plate (A/4) is placed just before the microscope objective. The purpose
of using a quarter-wave plate is to optimize the laser rejection following the idea proposed
in [128]. In this report, the authors demonstrated that using a quarter-wave plate could
compensate any distortion of the beam, thus it could help enhancing the back-reflected
laser rejection rate. In addition, the quarter-wave plate behaves as a half-wave plate for
the reflected laser light since the laser beam passes it twice. This possibility is useful at
some alignment stages to visualize the laser beam on the screen. Because with a cross-
polarization scheme, the laser is also isolated from the Watek camera used for imaging the
sample.

The quarter-wave plate using in this setup is Thorlabs AQWP05M-980, which is op-
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timized for the near-infrared region. The wave plate is mounted on a motorized precision
rotation mount Thorlabs PRM1/MZ8. The rotation of the mount is driven via a DC servo
motor that provides 1 arcsecond of resolution (2.8x103degree). The motion of the motor

can be driven by a software interface.

4.2.2.2 Laser extinction ratio

The laser suppression efficiency can be evaluated by the extinction ratio. Extinction
ratio is defined as the ratio of the maximum and minimum transmissions of the laser
back-reflection, when its polarization is respectively horizontal and vertical. The film
polarizers used in this measurement are from Thorlabs, which offer the extinction ratio
up to 103(measured with a linear polarization CW laser). The extinction ratio of the
PBS is announced to be 103. In this setup, the best extinction ratio is achieved at 10%.
The extinction is lower than expected, which can be attributed to the fact that the linear
polarized laser induces some imperfections when traveling through many optical elements
before reaching the polarizer and also to the internal reflections of the laser inside the
optical elements. It will be shown in the following sections that a factor of 10 extinction

is good enough to obtain the resonant excitation spectra from our sample.

4.2.2.3 Optical sources

Spectrometer

Figure 4.10 — A picture of essential optical elements in cross-polarized detection configura-
tion.

A CW laser is used to perform resonant excitation, it is the Toptica DL 100 pro tunable

diode laser. It offers a very wide wavelength coverage in the near-infrared region, with
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a span from 900 - 960 nm. The maximum output power of the laser is 45 mW at the
wavelength 935 nm, corresponding to a maximum current 140 mA. Coarse wavelength
alignment of the laser can be done by hand with a micrometer screw. The fine tuning is
obtained by a piezo actuator. The scan can be performed either internally or externally
with a self-developed Labview program (by Edouard Wagner). The mode-hop free tuning
range of this laser is up to 24 Ghz (100peV).

A second laser is the CW non-resonant laser that has been used in Chapter 3. This laser
is used firstly to perform normal PL experiment to find the excitonic emission energies. In
addition, it turns out that non-resonant laser plays a crucial role in efficiently retrieving
the resonant signal from the QDs. Detail will be given in the following sections.

Fig. 4.10 shows a real photo taken in the laboratory. The photo captures the central
part of the setup, including all the optical elements that contribute to the establishment

of the cross-polarized detection.

4.2.2.4 Experimental procedure

Xy J_---- 3
AE OE

A Laser

X

Laser

0

Figure 4.11 — Resonant excitation scheme - The frequency of a tunable laser with is
scanned around one or both excitonic frequencies and a reflectivity measurement is performed.
When the laser is out of resonance, no reflection signal is detected. By contrast, when it
is on resonance with one of the dipoles, the emission from a dipole induces the reflection
enhancement.

Resonant excitation spectroscopy requires a tuning of the laser energy to be exactly
resonant with the emission energies of the X transitions of the QD. For that reason, the
resonant laser energy is scanned with very small steps over the X emission energy to
ensure obtaining the resonance during the scan. It has been shown in section 3.2.2.1 that
the excitonic state contains two fine-structure splitting transitions separated in energy by
AFE, . In this case, the scan range is chosen to be able to cover one or both two X dipoles.

The scheme in Fig. 4.11 shows the case when the laser energy is swept through both two
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excitonic dipole energies.
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Figure 4.12 — Illustration of the data collection procedure in resonant excitation
experiment - Consider the case when a laser is scanned over the X, dipole. The vertical
straight line corresponds to the wavelength of X, transition. (a) CCD spectrum when the
laser is off-resonant with excitonic levels, only the back-scattered laser background and the
CCD background are detected. (b) CCD photoluminescence spectrum when the laser is very
close to resonance, the X, emission is detected on top of the laser background. The spectra
in (a) and (b) is integrated in a range that covers both two excitonic dipoles. (c) Integrated
values at each laser detuning are taken and then plotted to form a resonant excitation spectra.

The scan of a Toptica CW laser can be done directly with the Scan Control module

SC110 on the controller. However, it is inconvenient to operate. Therefore, the scan is

conducted externally by using a Labview program, in which we can easily control the range,

the step size and the frequency of a scan. The experiment procedure contains several steps.
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Firstly, the non-resonant PL spectra is taken to define the excitonic dipole wavelengths.
Then the resonant laser wavelength is approximately set around those wavelengths to
perform the scan.

We consider the case when the laser is scanned only over the X, resonance. Fig.
4.12(a) shows a CCD spectrum when the laser wavelength is off-resonant. Each point
corresponds to one pixel of the CCD. The scanning range is pointed out in the graph. One
can see that even when the laser is off-resonant, there is a fraction of back-reflection laser
signal that has not been rejected by the cross-polarized system and is therefore detected
by the CCD. The linewidth of the laser spectrum is not infinitely narrow because it is
limited and is equal to the spectrometer resolution (1 pixel ~ 12.3 peV). In addition
to this parasitics laser noise, the CCD camera always possesses a background, which is
an accumulation of the CCD electronic noise and a pre-set offset. The background has
a constant value for each pixel of the CCD (= 700 counts) as showing in Fig. 4.12(a).
When the laser is very close to resonance, Fig. 4.12(b) plots the CCD spectrum in which
the two-level system resonant PL shows up on top of the total background.

To produce resonant excitation (RE) spectra, at each step of the scan, an integrated
value of the pixels within the integration range is recorded. As indicated in Fig. 4.12(a)
and (b), an integration range is selected to make sure it contains the whole laser scan
process. It should also be noted that the integration range always covers the spectra of
both two excitonic dipoles. The integration time for each CCD spectrum is normally taken
from 0.1s to 1s. This integrated value is the sum between the background and the resonant

emission from the QD.

Ilntegrated = Ibackground +Ix = Icep + Liaser + Ix (438)

After each step AFE of the scan, we obtain one integration value. Finally, the resonant
spectrum can be created as described in Fig. 4.12(c). Each integration value corresponds
to a circle. When the laser is off-resonant, Ix = 0. When the laser approaches the X,
transition wavelength as in Fig.4.12(b), the integration starts to grow because of resonant
emission. Eventually, the final spectrum can be resolved by subtracting the flat background
intensity. In practice, during the scan, the laser intensity changes linearly between E,;,
and Fp,q.. Thus it still creates a flat background and within the small range around the

linewidth of the X, transition, the laser intensity can therefore be considered constant.

4.2.2.5 Reflectivity in cross-polarization scheme

In principle, with an ideal system, in which there is no back-scattered laser backgroud,
the optimum resonant reflectivity measurement has to be performed in co-polarization

excitation. In such kind of excitation, the polarizations of the laser, the detection and
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of the QD dipole are aligned in the same mode. In this case, the reflectivity can be
understood as the reflection coefficient of an incoming laser in a single mode, as described
in section 4.1. However, in practice, due to the large unwanted background, we have
to establish the cross-polarized excitation. As shown in Fig. 4.9, one can see that the
reflection obtained in the detection channel is actually the resonant back-scattering in a
mode which is orthogonally polarized to the excitation mode. Therefore, in our cross-
polarization scheme, the reflectivity definition can be considered as the ratio between the

reflection power in the detection mode and the incoming power in the excitation mode.

4.2.3 Resonant excitation spectroscopy

As already discussed in the previous sections, a RE signal of a two-level quantum emit-
ter consists of the superposition of the coherent resonant Rayleigh scattering and the
incoherent resonant PL. Section 4.1.2.4 pointed out that coherent scattering dominates
the RE spectrum when the excitation power is much smaller than the saturation power
(P < Pgat). The realization of coherent signature has been done in [124,129,130]. At
higher excitation power, the emitter is saturated leading to a reduction of the coherent
term and incoherent scattering is dominant. Above saturation, the electron population of
the two-level system will Rabi oscillate between ground and excited states. The result of
Rabi oscillations is the formation of Mollow triplet [107,131]. This high-excitation regime
will be introduced and discussed in detail in the next chapter.

Regarding the spectral linewidth of a two-level system RE spectrum, at low-excitation
regime, an ideal emitter is broadened just by radiative decay rate v, where v = 1/7 (7 is
the radiative lifetime), namely radiative-limit broadening. In practice, although the strong
confinement of electrons and holes in semiconductor QDs results in a discretization of their
energy levels and leads to atomic like properties, a QD is still quite far from behaving like
a perfect isolated atom and the radiative-limit linewidth is therefore hardly reached. The
observed RE linewidths have been always larger than this radiative limit [124-126]. The
additional sources of decoherence that contribute to the spectral broadening can come
from pure dephasing and/or spectral diffusion, as has been introduced at the beginning of
this chapter.

For the particular QD used in this study, the radiative lifetime has been measured as
7 = 1.36 ns (see section 3.2.4), which leads to the radiative decay v/2m = 120 MHz. This
corresponds to the homogeneous radiative-decay linewidth of v = 0.5ueV. At the first
stages of resonant fluorescence measurement, the single resonant laser is scanning firstly
on one of the two fine-structure states (the scan range is around 35 peV’). The RE spectra
is shown in Fig. 4.13. Each black circle corresponds to one step of the laser detuning,
the gap between two steps is about 1.5 peV. In this case, the optical and electronics

background have been subtracted following the procedures explained above. The full-
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Figure 4.13 — Resonant excitation spectrum with a single resonant laser - Following
the procedure described in Fig. 4.12, a RE spectrum is obtained (black circles) and fitted with
a Gaussian function. The resonant laser power used is well below saturation (P/Ps.: = 0.1).
An unexpected broad linewidth is observed with FWHM 15.6 peV, which is much larger than
the radiative-limit linewidth of this QD (0.5 peV).

width-at-half-maximum (FWHM) obtained is 15.6 peV, which is much larger than the
expected homogeneous linewidth. In general, the linewidth broadening may arise from
pure dephasing [120, 122] and/or spectral diffusion [120,132,133]. Spectral diffusion is a
process in which the QD transition frequency is randomly shifted during the measurement.
This shift is thought to originate from a fluctuating charge environment of the QD [133]
(see section 4.1.2.3). In [127], the authors reported a study on InAs/GaAs QDs and it was
pointed out that the residual holes introduced by the non-intentional doping of the sample
will preferably be trapped (de-trapped) in (from) the defect. The presence of this random
trapping and untrapping of charges leads to spectral diffusion of the transition energy and
also the quenching in RE intensity. As a result, broad and weak optical emission lines are

obtained [114], similar to what we see in Fig. 4.13.

4.2.3.1 The effect of an additional ultra-weak non-resonant laser on resonant

excitation spectra

To overcome the influence of spectral diffusion, it was proposed to use an ultra-weak
non-resonant laser that plays a role as an optical gate for the RE process [126]. This non-
resonant laser controls the QD ground state, neutralizes the QD and therefore contributes
to a narrowing of the optical transition of the two-level system. This technique has been

used efficiently in several groups to optimize RE signal [129,134] and to minimize the
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environment fluctuations to reduce the QD linewidth [22,132].

Following this approach, we introduce a CW non-resonant laser to the set up. This
additional laser has the wavelength of 825 nm. It has already been used in Chapter 3 for PL
characterization. To avoid any influence of the non-resonant excitation on RE spectrum,
the idea is to apply an ultra-weak power (at the level of 10~* — 1072 the saturation power)
of this additional laser when performing resonant spectroscopy. Fig. 4.14 shows the RE
spectra with the contribution of a non-resonant laser. The fit gives the FWHM of 4.5
peV, which is three times narrower than the RE spectra without using the non-resonant
laser. In addition, the RE intensity also increases by a factor of 3. The result indicates a

dramatic effect of the non-resonant laser on the RE spectrum.

® NRlaser ON
® NRlaser OFF

Resonant Intensity (a.u.)

-10 -5 0 5 10

Resonant laser detuning (ueV)

Figure 4.14 — Resonant excitation spectra with and without a non-resonant laser
- The red circles are the data obtained in Fig. 4.13 by a single resonant laser. By introducing
an ultra-weak non-resonant laser with an energy below the emitter energy (P/Pgqt ~ 0.2%),
the RE linewidth reduces drastically (black circles).

To have a better understanding of how the RE signal depends on a non-resonant laser,
different non-resonant powers are applied. The dependence of the RE intensity on the non-
resonant laser is plotted in Fig. 4.15. The resonant laser power is kept the same during
the measurement. One can see that by increasing the non-resonant laser power slowly
from 0, RE intensity starts to increase and reaches maximum when the non-resonant laser
power is P/Psg ~ 4.1073. Further increasing of the power leads to the reduction in RE
intensity and at the same time the non-resonant PL contribution starts to be significant.
Therefore, the strict condition of resonance excitation is no longer valid. This behavior
is very similar to what was obtained in [127]. In our experiment, we decide to choose a

non-resonant laser power around P/ Py, =~ 1073, At this level, the non-resonant excitation
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Figure 4.15 — Dependence of resonance intensity on the non-resonant laser power
- The RE spectrum peak intensities for different non-resonant laser powers are taken and
plotted as a function non-resonant power.

contribution to RE signal can be completely negligible. It should be also noted that from
this points, all the RE measurement will always be performed with the presence of an

ultra-weak CW non-resonant laser.

4.2.3.2 Saturation of a two-level system

It has been shown in section 4.1 that the non-linearity in reflectivity happens at the
excitation power around saturation. Therefore, one important step toward realizing a
non-linearity is to perform a resonant excitation power dependence experiment. In this
measurement, the resonant laser is set to scan in a wide range of ~ 70 ueV to be able to
cover both the fine-structure splitting (FSS) dipoles (the FSS energy of this QD is 25 peV’
obtained with the normal PL spectra (see section 3.2.2.1)).

Fig. 4.16 shows the RE spectra when the resonant laser is scanned through both FSS
states. Two RE peaks are observed, the distance between them is ~ 25.3ueV, which is
equal to the the FSS value. Two peaks are fitted which give the linewidth about ~ 4.5ueV .

RE power dependence is performed by changing the power of the resonant laser. The
RE peak intensities are plotted as a function of laser power in Fig. 4.17 for both two FSS
dipoles. The saturation behaviors are observed when increasing the resonant laser power.
One can see that the saturation intensities of two dipoles are different, this is because the

laser polarization is in an asymmetrical position with respect to the polarizations of two
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Figure 4.16 — Typical resonant excitation spectra for both two excitonic dipoles
- A wide resonant scanning range is chosen to be coupled to both X, and X,. The distance
between to RE peaks is =~ 25ueV, which is consistent with the FSS energy.
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Figure 4.17 - Resonant excitation as a function of resonant laser - For each resonant
laser power, RE spectra peak intensities of two dipoles are taken and plotted. A non-resonant
laser with power P/Psq; ~ 1073 is always present in the measurement.
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dipoles as explained section 4.2.2. The saturation intensities of two excitonic dipoles are
scaled like Z‘Z:ﬁ = tan®(0) ~ 0.45 in this situation, which gives 6 ~ 33°. This value is

consistent with the pre-selected value for 6 by rotating the half-wave plate.

4.2.3.3 Calibration of input and output powers

Up to this point, we have introduced a resonant reflection measurement in which the
incoming and reflected powers have been described by the raw units from the devices, which
are nW (measured by a Thorlabs power meter PM100 ) for the excitation and count/s (by
a CCD camera) for the detection. To have a meaningful physical demonstration of the
non-linearity, the units are converted to photon per transition lifetime. For the incoming
power, time-resolved measurement gave the radiative lifetime of the X level 7x = 1.36 ns.

The power in photon/lifetime can be converted by

ATX
he

At the wavelength 920 nm (~ 1.35 eV), 1 nW corresponds to ~ 6.3 photons/lifetime
for this particular QD. In term of reflected intensity, the power is recorded by the CCD

P(photon/lifetime) = * P(nW)

in photons/second, it is easy to convert to the photon/lifetime from 7x = 1.36 ns.
Ideally, input and output powers should be measured directly at the input/output of
the trumpet. However, in the experimental condition, it is hardly possible to measure
directly the amount of power coming in and out the trumpet. For the output power,
the light escaping the trumpet is not detected directly by the CCD camera. As showing
in the experimental setup, it has to travel through many optical elements and therefore
loses many photons before reaching the CCD. The situation is shown in Fig. 4.18. For the
incoming power, the power is measured just before the microscope objective in front of the
cryostat. Given the transmission through the objective (78%), one can then easily infer the
power at the input of the trumpet. Another important issue is to have a precise detection
of power, because the effect is expected to be observed with just a few photons/lifetime.
To do that, for low-power excitations, the laser is put on a higher power at first, then the
power is filtered by multiple density filters. The transmissions of the filters are already
well calibrated. Thus eventually, the low-power value can be inferred with high accuracy.
Concerning an estimation of the output power, the situation is more complicated. An
ultra-low power reflected signal can not be measured with the resolution of typical power
meters. Moreover, the reflected signal at the output of the trumpet contains not only the
QD emission but also the back-reflection laser signal. Therefore, the power is only detected
by the CCD camera after rejecting the background by the polarizing beam-splitter and
the pin hole (Fig. 4.6). A careful calibration of each optical element is carried out (for

objective, the beam splitters, the pinhole, the mirrors, the spectrometer, etc...) and the
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total lost when a photon travels through the setup before reaching the CCD is estimated

to be around 1072.
ccDh e Optical elements
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Figure 4.18 — Calibration of incoming and reflected powers.

4.3 Ultra-low power single-mode giant non-linearity

4.3.1 A quantitative evaluation of all experimental parameters

The previous section has demonstrated the resonant fluorescence of a QD two-level system.
As already described in the first part of this chapter, the non-linearity is realized based on
the reflectivity. The reflectivity R is the ratio between the reflected light coming out from
the trumpet (the QD emission) and the light coming in (laser) the trumpet. In an ideal
situation described in Fig. 4.3, one should expect a unity reflectivity at the laser power well
below saturation. However, in the experimental condition, the one-dimensional atom is not
perfect. The fundamental challenge for any optical waveguide is the light-matter coupling
efficiency. As mentioned in chapter 2, the input and output coupling efficiencies, &;, and
€out, Tespectively, depend mostly on two factors. The first one is 3, which determines the
QD spontaneous emission rate that is coupled to the fundamental guided mode (HE1; in
this case).

The light emitted by the QD is firstly coupled into the HE;; mode with a probability
5 and then propagates along the taper with symmetrical distributions upward and down-
ward. The part moving upward propagates along the trumpet structure, with linearly
increased diameter to induce a lateral expansion of the guided mode. Here we assume
that all the photons that are coupled to this mode could travel toward the top facet with
optimum efficiency, or in other words, the modal transmission Ty g,, >~ 1 [23,135]. Finally,
the light escaping the trumpet is collected in free-space by a microscope objective lens with
a numerical aperture (NA=0.4), as illustrated in Fig. 4.19. The fraction of diffracted light
could be collected by the lens is defined as e¢. Similarly, for the input beam that is focused
on top of the trumpet through a NA objective, e¢ defines the mode-matching efficiency.
The mode-matching determines the amount of an incoming beam could enter the trumpet
and couples to the fundamental guided mode HEj;. It then interacts with the QD with a
probability 5. We then have e;, = ot = 8 % €¢.
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Figure 4.19 — Sketch of the trumpet in the measurement - The trumpet used in this
study has the top facet diameter of 1.88 wum, corresponds to a waist diameter around 550
nm where the QDs are located. The trumpet surface is covered with a 30 nm-thick SigNy
passivation layer.
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4.3.1.1 A non-circular symmetry at the waist where the quantum dots locate

a dgp-V =590 nm

Figure 4.20 - SEM images showing the measurement of the waist diameters of
the trumpet - (a) Top-view SEM image of a part of the whole sample. The sample contains
several blocks of trumpets. Each block has 50 trumpets with different diameters with the step
of 10 nm. The numbers on the left indicate the largest top diameter of the corresponding block.
Two arrows indicate the horizontal and vertical directions that will be used to measured the
QD-location diameter (b) SEM side-view images taken in H and V directions of the trumpet
in this study, with the top diameter 1.88 um. (c) Top-view image of a “broken” trumpet with
top diameter 1.88 um. The broken section is at exactly the QD-waist diameter, which shows
a diamond shape with slightly asymmetrical axes.

In principle, the trumpet should have a uniform circular shape along the structure. But
unfortunately, a SEM measurement taken by J. Claudon (INAC/CEA, Grenoble, who was
in charge of the sample fabrication) indicates that the bottom of the trumpet where the
QDs are located actually has a diamond-like shape. The SEM images are shown in Fig.
4.20. The horizontal and vertical directions are marked respectively as H and V in Fig.
4.20(a). The trumpet used in the study is measured from the side-view as shown in the
SEM images on the center of Fig. 4.20. The diameters at the QDs height are measured
in H and V directions. The results give dgp in H is 480 nm and dgp in V is 590 nm. The
SEM image in Fig. 4.20(c) shows the top-view of a trumpet that was broken at exactly
the waist, which shows clearly a non-circular shape.

In general, 8 factor depends strongly on the dimensions of the structure so that the
asymmetry of the trumpet diameter at the location of the QDs may lead to different

coupling efficiencies depending on the polarizations of the dipole emitter. An illustration



Chapter 4. Single-mode giant non-linearity 79

30 nm
By
590 nm
v l
Bu GaAs  n=3.487
H

480 nm

Figure 4.21 — Illustration of the cross-section at the QD-waist of the trumpet - The
trumpet surface is covered with a 30 nm-thick Si3sN, passivation layer, which results in the
GaAs part dimensions 420 nm and 530 nm for respectively H and V directions. The refractive
indices of GaAs and SigNy, are 3.487 and 1.99.

of QD location cross-section is described in Fig. 4.21. The B factor of this particular
trumpet at the wavelength A = 920nm has been calculated by J. Claudon (INAC, CEA,
Grenoble, France) and N. Gregersen (DTU Fotonik, Denmark). For a on-axis QD, the
calculated By and By for horizontal and vertical directions are 33% and 32%, respectively.
Thus, despite of the non-circular shape at the waist, this trumpet still gives a fairly similar
coupling factor 8 for both directions. Therefore, we can still consider 5 as a polarization
independent factor. In the upcoming sections, the fitting results of different emission
polarizations with a universal g will confirm this approximation.

The factor e¢ for the amount of light escaping from this particular trumpet to be
collected by a NA=0.4 objective is calculated to be 85%, for an on-axis QD. Moreover, the
modal transmission Txg,, for the guided mode H Ey; is calculated to be close to perfection
(~99%) along the vertical direction of the trumpet. This calculation gives the predicted
coupling factor €;, = €5t = B * ec = 0.26, for an on-axis QD.

A theoretical model has been developed by Thomas Grange (theoretician from NanoPhysics
and Semiconductors Group, Institut Néel, CNRS) considering all the imperfections this
one-dimensional system. The parameters used in the theoretical calculation are: the angle
0 between the X, dipole and the laser polarization (vertically polarized), the universal
input and output coupling efficiencies &;,, = €4y¢, the homogenous broadening * (pure de-
phasing broadening) and inhomogeneous broadening ox (spectral diffusion). The model

also takes into account the presence of the other excitonic dipole X,,.

4.3.1.2 Polarizations of the excitonic dipoles with respect to the sample axes

The purpose of this brief section is to defines the exciton dipole polarizations with respect
to the sample axes, to have a better understanding of the sample. It has been shown in

Fig. 4.20 that the two axes of the “diamond shape” bottom waist are coincided with the
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290

Figure 4.22 — Sketch showing the polarizations of the excitonic dipoles with respect
to the axes of the sample - The excitonic polarizations are defined by rotating the half-wave
plate in front of the sample.

axes of the whole sample. For the particular QD studying in this chapter, it turns out
that the excitonic dipoles are polarized in two orthogonal directions that are ~29° away
from sample’s axes, as described in Fig. 4.22. The whole statistic for other QDs and other

trumpets requires further investigation in the future.

4.3.2 Single-mode giant non-linearity

Given all the needed parameters, Fig. 4.23(a) describes the saturation curve of X, dipole
in the unit of photon/lifetime. Blue line is the fitted curve with the parameters given by
the real experimental conditions. The total spectral broadening is 4 peV, which includes
1 peV of homogeneous broadening (pure dephasing) and 3 peV of inhomogeneous broad-
ening (spectral diffusion). Those numbers are obtained through a careful fitting process
based on the data given in chapter 5 for the same QD (see appendix A). The calculation
also takes into account the presence of the other fine-structure dipole X, with a F'SS 25
ueV observed in chapter 3. The calculated values for input and output coupling efficiencies
are respectively €;, = 0.26 and €4, = 0.216. The input coupling efficiency ¢;,, matches
perfectly with the predicted value. While the output coupling efficiency is slightly mis-
match. This is attributed to the uncertainty of the transmission of the experimental set
up. This uncertainty comes mostly from the transmission rate through the pinhole located
before the spectrometer, which is extremely sensitive.

The reflectivity of the dipole X, is plotted in Fig. 4.23(b). The experimental data
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Figure 4.23 — Reflection intensity and reflectivity of X, dipole - (a) The data in
Fig. 4.17 is converted to the unit photon/lifetime and is fitted by the theoretical model. The
angle 0 is 33°. The broadening of the RE spectrum is 4.5 peV, including 0.5 peV radiative
limited linewidth (correspond to the X lifetime 1.36 ns) and 4 peV broadening linewidth.
(b) Reflectivity as a function of resonant laser power showing the non-linearity signature
of the two-level system. The non-linear threshold is obtained at only 2 photons/lifetime,
demonstrating a single-mode giant non-linearity.

again shows a good agreement with the fitted curve. The non-linear behavior is observed,
when increasing the power, the laser reflectivity is switched from reflection to transmission.
The non-linear threshold (the point where the non-linearity starts to occur [14]) is observed
at ~ 2 photons/lifetime. A comparison of state of the art single-mode giant non-linearity

obtained with different one-dimensional structures will be presented in section 5.7.

4.3.2.1 Broad-band operation properties in single-mode giant non-linearity

Fig. 4.24 shows reflected intensity and reflectivity as a function of resonant laser power
for both excitonic dipoles X, and X,. As mentioned above, the asymmetrical excitation
between the laser polarization and two orthogonal polarized dipoles leads to different sat-
urations and reflectivities. X, dipole is more efficiently coupled to the laser and therefore

it requires less photons to reach the non-linear threshold.

The result is also an evidence of the broadband operation feature of the photonic
trumpet. Two excitonic dipoles at two different frequencies can be coupled at the same
time with high efficiency. This feature is confirmed by a good agreement with theoretical

calculation for both dipoles.
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Figure 4.24 — (a) Reflected power and (b) Reflectivity for two dipoles X, and X, with an
angle 33° between X, and laser polarization. Blue circles and red squares correspond to X,
and X, respectively. Section 4.2.2 have pointed out that, in cross-polarized detection scheme,
for an incoming laser power P;, much less than the saturation power, the amount of photons
detected is the same for two dipoles regardless of the angle 6. As a result, the reflectivities
of two excitonic dipoles at vanishing power of resonant laser are equal. A high agreement
obtained between experimental and theoretical results show the high coupling efficiency of the
trumpet over a broadband energy.

4.3.2.2 Single-mode giant non-linearity of an ideal system in cross-polarization

scheme

One could notice in Fig. 4.24 that even though a non-linearity is observed at the level of
just a few photons/lifetime, the maximum reflectivity obtained is less than 1073. This
rather low reflectivity comes from many reasons which have been partially discussed
in the first theory sections of this chapter. The first reason is the spectral broadening
of the emission linewidth, which originates from pure dephasing and spectral diffusion.
Egs. 7?7 indicate that pure dephasing reduces the reflection by a factor of (v +~*) /7.
Eq. 4.22 shows that the reflectivity decreases linearly with spectral diffusion broaden-
ing. The second reason is the non-optimum input and output coupling efficiencies of the
one-dimensional waveguide. With €;, = €4y, the reflectivity obtained in the real sys-
tem is lower by a factor of €2, compared with that of an ideal system. The third reason
comes from the cross-polarized configuration, which reduces the reflectivity by a factor of
1/cos® (0) sin? () as pointed out in Eq. 4.34.

Considering an ideal system in cross-polarization scheme, the reflectivity calculation
is plotted in Fig. 4.25 for the dipole X,. It turns our that the optimum reflectivity could
be observed is & 0.105. This value is still low because of the cross-polarized detection. In
the weak excitation regime, the emitted power from the two-level system is decreased by

a factor of 1/cos? () sin? (#) compared with the power emitted in co-polarized excitation.
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Figure 4.25 — Calculated reflectivity - The calculation is performed in cross-polarized
detection scheme with an angle # = 33°. The black curved is the calculated reflectivity in the
real experimental condition that was shown in Fig. 4.23(b). The red curve is the calculated
reflectivity for a perfect coupling waveguide but the quantum emitter still has a spectral
broadening of 4ueV . The blue curve corresponds to an ideal QD-trumpet system.

In addition, half of the photons emitted by the QD is directed to the downward direction

of the trumpet. Therefore, the maximum reflectivity could be obtained in this case is,

Reross—polarization = 0.5 {cos® (0) sin® (0) } (4.39)

For 0 = 33°, Reross—polarization = 0.104, which is in highly agreement with the calcula-
tion. It is easily to see that for § = 45°, we can have Ré\ffsf_polarimtwn = 0.125.

4.3.2.3 Coherent versus incoherent scattering

Probing and controlling quantum coherence have been considered as the major issues
in quantum information science. As has been demonstrated in section 4.1.2.4, for an
ideal system broadened by radiative decay rate ~, the spectra and temporal properties
of the scattered photons depend strongly on the Rabi frequency €2 of the laser. When
Q < v, most of the light is scattered coherently. Whereas increasing {2 gives rise to
incoherent scattering [136]. A quantum emitter in reality is always affected by surrounding
environment and spectral broadening sources, which induce a huge influence on the spectral
and temporal characteristics of the scattering process compared to the ideal two-level
system [129]. Fig. 4.26 illustrates the calculation of the scattered photons intensity from
a perfect-guided one-dimensional atom (e;, = 1) without (solid lines) and with (trashed

lines) pure dephasing and spectral diffusion . The black curves show the total reflected
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Figure 4.26 — Calculation plots of total reflected light intensity from QD two-level system,
including the fractions of coherent and incoherent parts, for an ideal one-dimensional two-level
atom (solid lines) and for a one-dimensional two-level atom 4 peV broadening (dashed lines).
The polarization of the laser is the same with experimental conditions (§ = 33°).

light intensity. The blue and red curves show respectively the contribution of the coherent

and incoherent scatterings.

4.4 Chapter summary

This chapter presented a detailed study of single-mode optical giant non-linearity of a
laser beam coupled to a QD-waveguide system. A giant non-linearity is realized by char-
acterizing the laser reflectivity. A detailed model including imperfection conditions was
demonstrated in the first sections. The chapter continued with the results of resonant
fluorescence spectroscopy on a single semiconductor QD embedded in a photonic trum-
pet. To perform the resonant excitation measurement, a cross-polarized polarization setup
was established to subtract efficiently the back-scattered laser background. A ultra-weak
non-resonant laser was used to reduce the effect of spectral diffusion. From the resonant
emission signal, the reflectivity was plotted and a giant non-linearity was observed with
just 2 photons/lifetime at non-linear threshold, thanks to the excellent one-dimensional
waveguide property of the trumpet. This power level is within the same order of magni-
tude with the state of the art obtained with a QD-pillar micro-cavity system. The data
was well fitted with a theoretical model, which indicated an excellent waveguide property

as well as an efficient broadband operation feature of the trumpet.
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Two-mode giant non-linearity

The previous chapter has demonstrated the single-mode giant non-linearity of a one-
dimensional artificial atom, in which the reflection of a single laser beam is modified
by a two-level quantum emitter. This chapter aims at a cross giant non-linearity, based
on a three-level system coupled with two laser beams at two different frequencies. We will

show that the reflection of one beam can be controlled by the presence of another beam

at a level of tens of photons, thus realizing an ultra-low power all-optical switch.
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5.1 Introduction

Chapter 4 has described the realization of a single-mode giant non-linearity with a two-
level quantum dot (QD). In this chapter, we take into account a third energy level of a QD,
the biexciton level, to form a “ladder” or “cascade” three-level system. To experimentally
realize a two-mode non-linearity, a second laser beam is added to the system. We then
have two laser beams coupled to two different transitions of the QD. One beam plays the
role of controlling beam, its function is to modify and control the reflection of the other

beam, considered as probe beam in a reflectivity measurement.

(a) (b)
) e p—
Control beam Probe beam
|X) |X)
Probe beam Control beam

0) 0)

Figure 5.1 — Simple sketches describing the goal of this chapter: observing the modification
of a probe beam in the presence of a control beam. Two approaches are considered: (a) the
probe beam is coupled to the 0 <— X transition and the control beam is coupled to the
X +— XX transition; (b) reversed approach, the probe beam is coupled to the X +— XX
transition and the control beam is coupled to the 0 «+— X transition.

In this chapter, two different approaches will be considered to realize a all-optical
switch, by coupling the probe beam either to the lower or the upper transition of a three-
level emitter. The first case as described in Fig. 5.1(a) is based on the dressed-atom
approach [107], through an effect so called Autler-Townes splitting [137]. The second
approach considers the case where the roles of two beams are inverted (Fig. 5.1(b)).
The switch is then obtained due to a population effect. In both two approaches, taking
advantage of the broadband high coupling efficiency of the photonic trumpets, we will
show in the next sections the experimental realization a two-mode giant non-linearity at

ultra-low level of power.

5.1.1 Dressed states
5.1.1.1 Rabi oscillations of the atomic system

Rabi oscillation is the direct consequence of interactions of light with discrete energy
levels and is a fundamental example of non-linear light-matter interaction. We consider a

classical field with frequency we, coupled with a two-level system with ground state |2)
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and excited state |3) (the states are encoded like that because in the next sections, we
will introduce the third state |1) to the system.). The transition frequency of the two-
level system is wgy. The driving frequency is put on or close to resonance with the atom
|0c| = |we — wo| < wp. The general behavior of resonance fluorescence from the two-
level system depends on the amplitude of the driving field. At low excitation regime, the
two-level atom operates as a passive scatterer. The excited-state population is small and
coherent scattering process dominates the emission. Increasing the excitation amplitude
eventually saturates the emitter leading to inelastic scattering and to a decrease of the
coherent term, as has been introduced in the previous chapter. The interaction between a
two-level system and a quasi-resonant electromagnetic field leads to Rabi oscillations [138]:
the population of the two-level system will Rabi oscillate between the ground and excited

states at the generalized Rabi frequency [107]:

Q1 =4/02 + Q2 (5.1)

where  is the Rabi frequency of the driving field 2 = dE/h (d is the electric dipole
moment and FE is the field amplitude. The damping of Rabi oscillations is due to the
spontaneous emission rate v and the pure dephasing rate v* of the two-level atom. Thus
Rabi oscillations decay at the dipole decoherence rate. Therefore, in order to spectrally
resolve Rabi oscillations, the condition €7 > (7 + 7*) must be met. Rabi oscillations
introduce the frequency €21 into the dynamics of the system. This effect can be observed
spectrally in absorption measurement in Autler-Townes approach [137], under the influence
of a strong resonant pump. The following sections will explain in details how we can use

this approach to obtain two-mode giant non-linearity.

5.1.1.2 A two-level atom interacts with a quantized field: Dressed states

approach

Considering the interaction of the atom with a coherent electromagnetic field, the Rabi
results can be seen from the point of view of the dressed states picture. Rabi oscillations
can be described by Jaynes-Cummings model which describes the interaction of the two-
level atom with a single mode quantum laser field [139]. The laser field can be considered
as a coherent source. Following the assumption of C. Cohen-Tannoudji in [107], to simplify
the quantum description of the laser field, the laser is considered as a cavity without losses,
having only one mode with frequency we (in the real experiment, the atom is not in a
cavity, but instead interacts in free space with an incident laser). The laser mode has an
average number of photons N. The energy density of the mode is N/V where V is the
volume of the interaction region. N and V can be considered very large since only the

ratio N/V is significant because it is related to the energy density.
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Figure 5.2 — An electromagnetic field coupled to a two-level quantum emitter with ground
state |2) and excited state |3).

The laser frequency we is put on or close to resonance with the atom |0¢| = |we — wo| <
wp. The atom in the state |2) can absorb one photon and go to state |3). Two states
|2, N + 1) and |3, N) are very close to each other near resonance, they form a manifold.
Similarly, in another manifold, the state |2, N) is coupled to |3, N —1). In the rotat-
ing wave approximation, the total Hamiltonian of the atom-laser system is the sum of

laser Hamiltonian, atomic excitation Hamiltonian, and the Jaynes-Cummings interaction

Hamiltonian:
Hjc = Higser + Hatom + VAL (52)
+, 1 + -
Hjc = hweca™a + §hwoaz +hglac™ +avo") (5.3)
Where a* and a are the creation and operation operators. o = |3) (2| and o~ = |2) (3]

and o, = [3) (3| —|2) (2| are the atomic operators. g is the coupling constant [107].
Eq. 5.3 can be rewritten as
1
Hjc = hwe(a®a + %) + 57’15@02 +hglact +ato7) (5.4)

Under the rotating wave approximation, the first term of Eq. 5.4 possesses the total
number of excitation N = ata + % which is the constant of motion. We consider a
basis that contains only two states |2, N 4+ 1) and |3, N). The Hamiltonian matrix can be

decomposed into blocks of 2 x 2 matrices, each block contains a particular V.

The interaction Hamiltonian Vj4z, couples the two state |2, N + 1) and |3, N) to each

other. The corresponding matrix element is written

v = (3, N |[Var|2,N +1) = hgV'N + 1 = hdE (5.5)

then the sub-matrix can be obtained as
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N 0 VN +1
Hy=n| "¥ct 2 A (5.6)
gVN+1 (N+1we— 9
1 10 dc /2 gv N +1
=h({N+-)w +n
( 2) L(o 1) <g\/N—|—1 b /2
By diagonalizing this matrix, we find the two eigen values
1 1
E|+,N> =h (N + 2) we + §hQN (57)

1 1
E|7,N> =h <N+ 2) wo — 5719]\[

With the generalized Rabi frequency

Oy = /0% +4g2(N + 1) = \ /62 + @2 (5.8)

where the value Q2 = 2g+/N + 1 can be called quantum electrodynamic Rabi frequency, or

just Rabi frequency of the driving field [107]. Since N > 1, the Rabi frequency can be
simplified as Q = 2gv/ N
The eigenstates |+, N) and |—, N) associated with the eigenenergies are given by

|+, N) =sin (0r) |2, N + 1) + cos (0r) |3, N) (5.9)

|—, N) = cos (0g) |2, N + 1) — sin () |3, N)

where the angle 0 is defined by

tan20p = —— 0<20p < (5.10)

These two eigenstates |+, N) and |—, N) are called the dressed states, which are sep-
arated by an interval AQy = h 5% + Q2. The illustration of dressed states are described
in Fig. 5.3, the two initial uncoupled states |2, N + 1) and |3, N) is dressed and split
when taken into account the coupling. Two new states |+, N) and |—, N) are formed and

symmetrically located with respect to the uncoupled states.

5.1.2 Observation of dressed states

We have seen in the previous section that the resonant interaction between a laser beam
with frequency wy, and a two-level atom results in the formation of dressed states which are
separated by h,/(% + Q2 . The splitting depends on the detuning of the laser frequency

and on the power of the incoming laser field, namely the control laser field. The dressed
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Figure 5.3 — Dressed states scheme between an atom and an excitation field: uncoupled
states in the left-hand side and dressed states in the right-hand side in manifold N.

states under the presence of a control field can be observed spectrally by measuring the
absorption spectrum of a second weak probe field. The weak probe field intensity is
considered very low compared to the saturation power, to make sure it does not introduce
any perturbation to the atom dressed by the control field. The two most common cases
are when the probe field couples to the same or to a different transition as the control

field. The following sections will discuss these two cases.

5.1.2.1 Mollow triplet

2N+1) [+X)
13) — 0, o, _TL nQ,
:‘WW N | I-.N)
We : e [+ N-1)
o, 2Ny | ’
|2> — v né. t . hQy
BAN-1) e N-1)

Figure 5.4 — The second laser beam couples the transition and leads to the formation of the
Mollow triplet.

In the first case, the second weak probe beam is on resonance with the same transition
|2) and |3) of the atom. The configuration is presented in Fig. 5.4. The configuration
is described in the left scheme, the probe beam has the frequency wp and not far from
the atomic frequency wq that |wp —wp| < wp. Without atom-field interaction, the two
uncoupled states |2, N + 1) and |3, N) have almost the same energy and form a manifold.
The dressed states are created when taking into account the light-matter interaction. The
result of the coupling is the generation of the dressed states |+, N — 1) and |—, N — 1)
as can be seen in the right scheme of Fig. 5.4. Since N is large, gv/N + 1 ~ gv/N, the
splittings are therefore similar in different manifolds. Under a strong control field, four
dressed states are formed. The absorption of the weak probe field is now measured. The

transitions between the two dressed states within the same manifold are not allowed .
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Four transitions connecting the two dressed states of two adjacent manifolds are allowed
at frequencies wo and we + Qn. Thus, in the absorption spectrum of the probe field,
a triplet is form, which is called Mollow triplet [117,131]. The two transitions between
|+,N), |+,N —1) and |-, N), |-, N — 1) have the same frequency w¢ and correspond to
the central and the dominant peak of the emission spectra. Two other satellite emission
peaks are positioned symmetrically around the central peak with a distance Q5. Mollow
triplet was observed firstly with atom [117] and then with semiconductor QDs in several
experiments [121,122,140].

5.1.2.2 Autler-Townes doublet

______ +,N>
3) ——=— 2N S hQ,
:wo |3’N> T e _ N>
WM hao, ’
C — #N-1) —+
i o) et |
1‘ ‘ 3,N—1> h = — hQN
i w, B - N-1)
L—\/vv\— heoy
. Wp
1) —— LN) I,N)

Figure 5.5 — Pump-Probe experiment of a three-level system,AT doublet.

The second approach concerns a pump-probe experiment of a three-level atom, where
the weak probe beam is now coupled to a different transition sharing a common level with
the initial transition, as described on the left of Fig. 5.5. The third level |1) is introduced
to the atom and is positioned below level |2). The frequency of this lower transition is w[/)
and we assume that wé — wy is large enough so we can ignore any perturbation produced
by an intense control beam (with frequency w¢) on the level |1). Under a strong resonant
control field, dressed states are formed. Assuming that |1, N) remains unchanged in the
presence of the control field, the transition with frequency close to wé is probed by the
second weak beam. This transition is limited to |1, N)«+|2, N) without the control field
(2 = 0). When Q > 0, the dressed states |+, N —1) and |-, N — 1) appear, leading
to two possible probe transitions |1, N) <— |+, N — 1) and |1, N) <— |-, N — 1) with
frequencies wg) - %C — QTN and wg) — %L + QTN, respectively. The corresponding doublet is
called Autler-Townes doublet [137].

The energy difference between the Autler-Townes doublet is equal to 2. So, if we keep
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Figure 5.6 — Energy evolution of the dressed states as a function of the pump laser detuning
dc.

the same control laser intensity (€2 is constant) and vary the control frequency detuning
dc, the evolution of the absorption field is therefore similar to the evolution of the two
dressed states |+, N — 1) and |—, N — 1), with an anti-crossing characteristic as illustrated
in Fig. 5.6. The minimum distance between two branches is equal to the Rabi frequency
of the strong control beam 2 and that occurs when weo = wg. Two solid arrows represent
two components of the Autler-Townes doublet, at resonance (dc = 0), we obtain two lines

at frequencies wy 4 /2.

The Autler-Townes doublet indicates that, for a three-level system, the absorption
line of a weak probe laser beam tuned over the transition |1) <— |2) is split into two
components if the transition |2) <— |3) is resonantly coupled to an intense control laser
beam. Thus, an optical switch can be obtained if we look at the transmission or reflection

of the probe field wp, with and without the presence of the control field wc.

5.1.3 Dressed states of a three-level system via Bloch equations

This section will give detailed analytical discussions of the non-linear effect resulting from
the interaction between a three-level atom and two electromagnetic fields. We consider a
three-level ladder system with the state |1), |2) and |3), forming a cascade. Three states
have energies hwi1, hwoo and hwss, respectively. The Hamiltonian for a three-level atom

is
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Figure 5.7 — A cascade three-level system is coupled simultaneously with two different fields,
namely probe and control fields. The probe field with frequency wp is tuned around the
transition |1) <— |2) frequency wy; with detuning dp. The control field with frequency we
is tuned around the transition |2) <— |3) frequency ws2 with detuning dc. The goal is to see
how the presence of the control field affects the absorption spectra of the probe field.

w11 0 0
HA =h 0 w9 0 (511)
0 0 (w33

The transition |1) <— |2) and |2) <— |3) have transition frequencies wo; = woe — w11 and
w32 = w33 — wag, respectively. Two electromagnetic fields are applied to the upper and
lower transitions of the system: ep tuned around the transition |1) <— |2) and e¢ around
the transition |2) <— [3). The scheme is described in Fig. 5.7, ep and e¢ are called as

probe and control fields, respectively.

The Hamiltonian for the three-level system and the two fields is,

H:HA+VP+VC (5.12)

Where the interactions of atom with probe and control fields are,

Vp = —dp . EP COS(th) (5.13)

Vo = —d¢ - Ec COS(th)

with d is the atomic dipole, wp and w¢ are respectively the frequencies of the probe

and control fields. Consider the probe field, for the transition between states |1) and |2),
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the atomic dipole is given by
dp = di2 ([2) (1] +[1) (2]) (5.14)

The interaction Vp can be rewritten in the terms of the raising and lowering operators,

5O . . . A

Ve = 02 (12) (1] rt 1 [2) (1] 0t 1 [2) (1] 0t 4 [2) (1] e7rt)  (5.15)
where,

hQlp = —dy2 - Ep (5.16)

di2 = (1/d |2) (5.17)

with Qp (2¢) the Rabi frequency of the probe (control) laser field. Similar transfor-

mation is done for the interaction Vi. In the rotating wave approximation, we have [107]

Q , .
Vp = th (12) (1] e™P! + 1) (2] e r?) (5.18)
hs2 . _
Vo = =57 (13) (2l €“e" + |2) (3] ")

The Hamiltonian for Vp and Vi can be written in the form

0 (Qp/2) e~iwrt 0
V=Vp+Vo=n| (Q2p/2)c~rt 0 (Qc/2) e iwet (5.19)
0 (Qc/2) eet 0

The resulting total Hamiltonian of the system is,

w11 (QP/Q) e wpt 0
H=n| @p/2)ert  wyn  (Qc/2)e et (5.20)
0 (90/2) eiwct w33

The density matrix p for the three-level system is a 3 x 3 matrix in which the matrix
elements p12 = p3; and pa3 = p3o describe the coherences for the dipole transitions. The
matrix element pi3 = p3; describes the two-photon non-radiative coherence and p11, p22,
P33 represent the populations of three levels.

We want to derive the equations of motion for the density matrix elements, based on

Liouville equation [141],

Pmn = %[pa H]mn - ('7p)mn (5'21)
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where we have
Z pmkan - mk’pkn) (522)
k

(’Yp)mn = YmnPmn

Here the decay rate v,y is introduced to the system. For simplification, we assume that
we have an ideal three-level system, without any spectral broadening (like pure dephasing

or spectral diffusion).

The “slow” density matrix elements, after removing the rapidly varying components

of the dipole coherences are written as:

p12 = prae” P! (5.23)
pas = page” !
P13 = ﬁlge_i(wP+wC')t
We also make the replacements:
P11 =1N1 (5.24)
P22 = N2
P33 = MN3

where the total population of the system is normalized so that ni 4+ ng + nz = 1.

In the rotating-wave approximation, we then obtain the following set of optical Bloch

equations:

- iQp Qo -

1o = (i0p — Y21) P12 — T(”Q —ny)+ — P13 (5.25)
~ Qo iQp

Pag = (i6c — 32) P23 — T(ng —ng) — Tpmg (5.26)

< . i1Qp Q0o -

p13 = [i(0p + dc) — v31lp13 — TPP23 + Tcpm (5.27)

where dp = wp —woa1, d¢ = wo — w32 are the detunings of the probe and control fields,
respectively, around the frequencies of the lower and upper transitions.
Assuming that |1) is the ground state of the system and that the probe field Qp is

very small, so that most of the population is in the state |1) while the two other states

are unoccupied. Eqgs. 5.25 become,



Chapter 5. Two-mode giant non-linearity 97

Qp Qo -

Pra = (i0p — Y21)P12 + Ty A1 (5.28)
< . - idp
pag = (i6c — Y32)p23 — TPPIB (5.29)
5 . ~ iQp Qo -
p13 = [i(0p + 6¢c) — 31]p13 — Tppzs + Tsz (5.30)

One could see from Eq. 5.31 that in the absence of the control field (2¢ = 0), we end
up with the usual Bloch equation for a laser and a two-level system interaction, so that
the third level can be ignored.

In the steady-state regime, 512 = 323 = 513 = 0, we then have,

iQC ~ ~ Z'QP

— P13 = —(idp — y21) P12 — - (5.31)
iQp _ ) _
Tpmz’, = (i0c — ¥32)p23 (5.32)
1Qc - . - 1Qp
TCPH = —[i(0p + dc) — ys1]p1s + TPP% (5.33)

Since the amplitude of the probe field is very small, its Rabi frequency Qp < o1, Q¢
(which is consistent with the conditions for Autler-Townes splitting considered in the above
section) so that the last term in Eq. 5.33 can be neglected. Substitute Eq.5.33 into Eq.

5.31, we then have the final expression

N iQp [, 02,/4 -
_ B s 5.34
P12 5 (i0p = y21) + i(6r + 00) — a1 (5.34)
Eq. 5.34 can be rewritten as
— 82 1i(5p + 6¢) —
P2 = 2" ({0 +0c) — ] (5.35)

. . 02
(i0p — v21)[i(dp + 0c) — y31] + —F
The absorption Ap of the probe beam scanned across the transition |1) «+— [2) is

proportional to the imaginary part of the coherence po;:
Ap o Im ['012] (5.36)

Fig. 5.8 plots the absorption of the transition |1) +— |2). Firstly, in the absence of the
control field as shown in Fig. 5.8(a), the system behave as a two-level system driven by
a single field. When the strong second field (2 = 5v21) is introduced to couple with the
upper transition |2) «+— |3), the absorption of the lower transition |1) <— |2) changed
drastically. The anti-crossing feature obtained in Fig. 5.8(b) is described by dressed

atom approach in the section above and is a clear evidence of Autler-Townes effect. The
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Figure 5.8 — Absorption of transition |1) «+— |2) as a function of field detunings -
In this case, we consider v3; = 0.575;. The Rabi frequency of probe field Qp = 1073 x ~21.
Two values of Rabi frequency are plotted: (a) Q¢ =0 and (b) Q¢ = 5y21. The two figures in
the left show the absorption as a function of 0p/v21 at ¢ = 0 (correspond to the dash line of
the two-dimensional figures in the left).
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absorption of a resonant probe beam is thus dramatically changed by the presence of the
control beam.

In the weak control field limit (¢ < 7y21), it will be seen in section 5.1.7 that for a three-
level system under two-photon resonance condition and if 33 = 0 (which means transition
|1) «— |3) is forbidden and there is no dephasing), we will obtain the interference effect
which suppresses the absorption even under very weak control field Rabi frequency (so

called electromagnetically induced transparency effect).

5.1.4 Two-mode giant non-linearity with a quantum dot three-level sys-
tem - Autler-Townes splitting approach

(a) (b)

|XX) e o I Q
a)C

¥ T e
_—'::’_

|0) _.‘_

Figure 5.9 — A scheme of two-mode giant non-linearity for a QD three-level cascade
system in Autler-Townes approach - Assuming that the system is placed inside a photonic
trumpet. The reflectivity measurement is performed similar to what has been done in chapter 4
by looking at the reflection of an incoming beam at the output of the trumpet. (a) The ground,
exciton (X), and biexciton (X X) states of a QD resemble a cascade three-level system. A
probe beam is coupled the 0 «+— X transition. Without the presence of the control beam, the
emitter behaves like a two-level system interacting with a resonant field. Assuming the power
of the probe beam is very weak compared to the saturation power of 0 «+— X transition, then
X level will absorb and re-emit all the photons. Thus, maximum reflection will be detected
at the output. (b) A control beam is turned on and coupled resonantly to X +— XX. At
the power level of the control beam much larger than the linewidth of the transition (well
above the saturation power), X and XX levels will be split into new dressed states. If the
frequency of the probe beam is kept unchanged wp = wx, it will probe an empty level due
to splitting. Thus, no emission is induced and zero reflection is obtained at the output. As a
result, a all-optical switch is realized.

A semiconductor quantum dot (QD) can be considered as an artificial three-level atom,
in which the ground, exciton (X) and biexciton (XX) states form a cascade system as
illustrated in Fig. 5.9(a). We assume that the QD is perfectly symmetrical, so that there
is no X fine-structure splitting (FSS) in this case. Without the presence of external fields,
all the QD population is initially prepared in the ground state. This is consistent with the
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assumption of the theoretical model above.

To obtain a all-optical switch, two laser beams are coupled to the system. A probe
beam with frequency wp excites the 0 <— X transition, whereas a control beam with
frequency we excites the X +— X X transition. The Rabi frequency Qp of the probe
beam is kept very weak Qp < vx (vx = 721). Without the presence of the control beam,
one can ignore the X X level. The situation is then similar to the case presented in chapter
4 for a single beam coupled to a two-level system. In particular, if Pp.ope < Psatutarion—X
at dp = 0, the probe field is entirely absorbed by the 0 «+— X transition. X state reflects
all the photons it absorbed owing to the one-dimensional structure of the waveguide. The
emission can be detected in a reflectivity measurement as demonstrated in chapter 4. The
reflectivity has a maximum value at vanishing probe power.

When the control beam is introduced to the system and is coupled to the X +— XX
transition, at high enough power, Rabi oscillations give rise to the formation of X dressed
states . As aresult, at p = 0, X state splits and becomes transparent to a resonant probe

beam and a suppression in absorption is obtained, realizing a all-optical switch.

5.1.5 Two-mode giant non-linearity with a quantum dot three-level sys-

tem - population switch approach
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Figure 5.10 — A scheme of two-mode giant non-linearity for a QD three-level
cascade system in a reversed approach - (a) In this approach, the probe beam is now
coupled to X <— X X transition. Without a control beam, the probe beam is pumping an
empty transition and therefore no emission is induced. The beam is completely transmitted.
(b) A control beam with an arbitrary power less than saturation is turned on and resonantly
coupled to 0 <— X transition. X level is now populated so that the upper transition is no
longer transparent. As a result, the probe beam is absorbed by X +— X X transition and
the reflection is switched. We call this approach population switch.

In this section, we consider an alternative approach using the same system, but the

roles of the control and probe fields are inverted. As showing in Fig. 5.10, X +— XX



Chapter 5. Two-mode giant non-linearity 101

transition is now coupled to a weak probe beam while the 0 «+— X transition is coupled
to a control beam.

Fig. 5.10(a) illustrates to the case when the control beam is absent. The initial X and
X X states are unoccupied and have no population. Therefore, transition X +— X X is
completely transparent and thus the probe beam is entirely transmitted. As a result, no
reflection is detected.

However, as soon as a control beam is introduced to the system (Fig. 5.10(b)), X state
will be populated due to an absorption of the control beam. In this case, the probe beam
will be absorbed by X «— X X transition. For the probe beam with a power less than
saturation of X <+— X X transition, all the photons of the probe field will be absorbed and
re-emitted. Part of this emission is guided to the output of the waveguide and detected.
As a result, a all-optical switch is realized. This approach using population effect is called
“population switch”. The switching contrast is obtained by comparing the reflection when
the control laser is OFF and ON, one should notice that the contrast is always 100%, that
(Pron — Propr) /| (Proy + Propr) = 1, regardless of the control beam amplitude.

5.1.6 Evaluation of all-optical switch performances

We have proposed two approaches to realize a all-optical switch, based on two-mode giant
non-linearity of a one-dimensional three-level system. The power of the probe beam is
always ultra-weak, while the control beam power can be arbitrarily large. A switch is
obtained by looking at the reflection of a probe beam in the absence or presence of a
control beam. When the control beam is turned on, the first phenomenological difference
between two approaches is that, in Autler-Townes approach, the probe beam is switched
from reflection to transmission, whereas in population approach, the probe is switched
from transmission to reflection.

For any potential low-power switch application, the power required to obtain a switch
is a crucial factor that affects the performance of the device. For the Autler-Townes switch
based on the splitting of dressed states under the pumping of a strong control beam (section
5.1.4), the higher the power amplitude, the larger the splitting is induced. Therefore, a
switch would require the control beam power at least equal to the saturation power of the
transition. By contrast, in the population switch approach (section 5.1.5), the condition to
realize a switch is just a non-zero control power. In addition, this approach offers a switch
with maximum contrast since the reflection is always zero without the presence of the
control beam. For an ultra-weak probe power, its reflectivity depends on the population
of the X intermediate state and is maximal at saturation of the control beam. One then
should realize that for a control power higher than saturation, X state will be dressed and
split due to Rabi oscillations. As a result, the X state becomes transparent to the probe

beam, the reflection is then switched again from reflection to transmission.
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5.1.7 Electromagnetically induced transparency versus Autler-Townes

splitting

This section will discuss a special case of the interaction between a three-level system and
two distinct laser fields that has been presented in section 5.1.3. By looking at Eq. 5.31,
one could predict a destructive interference effect. The term mTCﬁlg can counteract with

i%P . This interference effect would require the two-

the absorption coming from the term
photon resonance condition for the non-radiative coherence pi3 in Eq. 5.30 [142]. For Qp
infinitively small, the non-radiative coherence gives a two-photon resonance with a width
~31 centered at 0p = —d¢. Considering this two-photon resonance condition dp 4+ dc = 0,

from Eq. 5.35, the absorption has the form

p: Yarys + 5
Ap o Im [SQ] = 31  TRCE (5.37)
F (721’731 + TC> + 6573
(a) Oc /7y =1 (b) Oc /5 =0 (©) Oc /¥y =-1
0.5 0.5 . . . - - - . . . 0.5
;g 0.4 ;).4 0.4
= 035 !
\; 03 03 i 03
9 0.25 i
% 02 oz 02
2 0.1 .0.1 0.1
0.05
Y 0 Ta— 0
8 6 4 -2 0 2 4 6 8 8 6 -4 2 0 2 4 6 8 8 6 4 2 0 2 4 6 8
0, /7 O /12y 0p /75,

Figure 5.11 — Electromagnetically induced transparency effect - Absorption as a
function of the probe field detuning §p for different control field detunings for the case y3; =
0. The control field Rabi frequency Q¢ = 7210 (a) d¢/v21 = 1, (b) dc/v21 = 0 and (c)
0c/v21 = —1. At the probe field detuning dp satisfying the two-photon resonance condition
dp + d¢c = 0, the interference effect causes the total suppression of the absorption.

One could see that if v3; = 0, which means the dipole transition |1) <— |3) is forbid-
den, there is no absorption and transition |1) «— |2) is entirely transparent. Fig. 5.11
plots the absorption of transition |1) «— |2) as a function of probe field detuning for three
different detunings of the control field. In all cases, when dp = —d¢, a dip in absorption
is observed. This dramatic change in absorption is the signature of electromagnetically
induced transparency (EIT) effect. As has been pointed out above, the reason for the
dip in absorption is the destructive interference (also called as Fano interference [143])
between two transitions |1) <— |2) and |2) «— |3). This interference thus induces the

suppression in absorption even with a weak control field, leading to the transparency in
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reflection spectrum. Thus, Fano interference effect discriminates EIT from Autler-Townes
splitting. In the absence of Fano interference, we have seen that strong control field induces
dressed states with frequency separation proportional to the control-field Rabi frequency
Q¢. This field-induced splitting also causes the reduction in absorption but exhibits no
interference effect and corresponds to Autler-Townes splitting. In other words, one could
say that the effect of EIT resembles a combination of Autler-Townes splitting and the

Fano interference.

It was pointed out in [144,145] that the strict condition to obtain Fano interference
for a three-level system (for “lambda” and “ladder” system with control field coupled to
the upper transition) at weak-control field is that, the third transition |1) +— |3) must be
dipole forbidden, as in those plots in Fig. 5.8 with 37 = 0. This is similar with what is
predicted in Eq. 5.37. Under this condition, as soon as the control field with an arbitrarily

power is introduced to the system, the absorption is canceled out and EIT is observed.
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Figure 5.12 — Absorption spectra of transition |1) <— |2) at zero detuning of the
control field jc = 0 - The probe field Rabi frequency is kept very weak at Qp = 1073 X ~yo1.
Different decay terms of transition |1) <— |3) 31 is applied for each Rabi frequency of the
control field: (a) Q¢ = 0.192; (in this figure the detuning range of the probe field is zoomed
to a short range since the EIT dip is very narrow), (b) Q¢ =721 and (¢) Q¢ =7 X 721 .

In practice, with artificial atoms, especially semiconductor QDs, having a system with
such EIT condition is very challenging. Because the system most of the time exhibits pure
dephasing and other sources of spectral broadening due to the surrounding environment,
so that for QDs, we always has 31 # 0 . Therefore, observing purely EIT with QDs is
hardly possible.

To see how the factor 31 affects the absorption of transition |1) <— |2), we consider
a simple case where the control field detuning ¢ = 0. From Eq. 5.35, the absorption

becomes
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QQ
N , VIQ 65721 + Y31 (TC + 721731)
pocIm | ==

0 ] s 2
P (TC — 6%+ 721’)’31) + 6% (ya1 + 731)?

(5.38)

One could see that if 31 = 0, zero absorption is obtained at the probe field detuning
op = 0¢ = 0, regardless of the control field amplitude. However, for a non-zero 31, the
absorption is no longer totally suppressed at two-photon resonance condition. Fig. 5.12
plots the absorption at ¢ = 0 with different decay terms 31, for three different Rabi
frequencies of the control field. When ¢ is very small with respect to the decay rate of
transition |1) «+— |2) (Fig. 5.12(a)), the interference effect is observed when ~3; = 0. The
interference is reduced when increasing 3 as expected. The similar behavior is observed
when Q¢ = 21 (Fig. 5.12(b)).

At high control field Rabi frequency Q¢ as in Fig. 5.12(c), Fano interference is neg-
ligible since the intermediate state is dressed by a strong control field which leads to the
emerging of dressed states with large frequency splitting. It leads to the reduction in
absorption even with ~y3; > 791 since EIT effects are dominated by Autler-Townes effect

at that power level.

To conclude, the difference between EIT and Autler-Townes splitting is significant
at low Rabi frequency range of the control field Q¢ < 721, due to Fano interference
effect. And it should be noted that the destructive interference is obtained efficiently
only when the third transition |1) <— |3) decay rate 731 = 0 . Because of this tightly
EIT restriction, experimental realization of the narrow absorption dip at weak control
field has just been observed for limited systems. There have been a few reports which
demonstrated the observation of narrow EIT transmission window, with atom [40, 146],
nitrogen-vacancy centers in diamond [147], nanoscale optomechanical crystal [148] or with
whispering-gallery-mode resonators [149]. Concerning semiconductor QDs, EIT has not
been observed experimentally. This is because of the large dephasing in QDs transitions
that inhibits the destructive interference needed for EIT. Proposals have been made to
overcome this obstacle [150-152]. For example, it has been proposed that using hybrid
system by placing QDs as optical emitters near a single plasmonic resonator could modify
the lifetime and efficiency of the emitter and could induce a transparency dip in the
surface-plasmon spectrum [152]. Purcell effect boosts radiative effects so that the system

becomes less sensitive to dephasing.

With our system, due to the limit decoherence properties of the semiconductor QDs,
narrow absorption dip in EIT is not expected to be observed. The strategy to obtain
a all-optical switch will rely on the Autler-Townes approach that has been discussed in

section 5.1.4.
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5.2 Experimental setup
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Figure 5.13 — Experimental setup of the two-mode giant non-linearity measure-
ment - The same configuration as in chapter 4 is used. One more Toptica CW laser is added
to the setup and it shares the path with other lasers toward the first pin hole and toward the
sample. An ultra-weak non-resonant laser is always present in resonant excitation as explained
in section 4.2.3.1. The cross-polarized detection is established with an angle 27° with respect
to the X, dipole polarization axis.

The setup configuration using cross-polarized detection is exactly the same as the
single-mode giant non-linearity experiment, except for the addition of a second CW TOP-
TICA laser, as can be seen in Fig. 5.13. This additional laser is also directed to the same
pin hole and has the same optical path and polarization with two other lasers used in
chapter 4. Two tunable Toptica lasers play the roles of control and probe beams as has
been demonstrated in the previous sections.

It should be noted here that in this cross-polarized scheme, the angle 8 is chosen to
excite non-symmetrically two excitonic dipoles (f = 27° in this case) because the study
will focus on one dipole of which the polarization (X,) is closer to the laser polarization.
Eq. 4.37 shows that the saturation powers of X, and X, scale as tan? (), which means
having a smaller 6 results in a smaller power needed to saturate X, (see Fig. 4.24 for the

single-mode giant non-linearities of two non-symmetrically excited dipoles in which the
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power required to saturate X, (blue curve) is smaller than that of the other one).

5.2.1 Experimental procedure

1 | 1
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Figure 5.14 — Illustration of two-laser scan process - The scan ranges are defined by the
PL spectra of the QD. The FSS of the excitonic level is 25 ueV, so the range is set between a
few tens of pueV to 85 peV, depending if we want to study one or both to FSS dipoles. The PL
spectrum at each scanning step is recorded with the CCD camera and is integrated (see section
4.2.2.4 for more details) in a fixed range (normally more than 100 peV') that always covers
the emission from both two FSS dipoles. Both the integrated reflections of two lasers are
integrated and can be plotted as a function of two detunings in the form of a two-dimensional
map.

The general goal of the experiment is to see how the reflection of a weak probe beam
coupled to one transition is changed by the presence of a control beam coupled to a different
transition. Such measurement requires that two beams are simultaneously resonant with
different transitions. To be able to do that, the idea is to scan at the same time the
frequencies of two beams around resonances, in which the effect should be observed during
the scan.

We use the very same QD as in chapter 3 and 4, with FSS energy 25 peV. As described
in Fig. 5.14, two lasers are scanned simultaneously around the X and X X energies (see
section 3.3 and 3.2.3 for an identification of X and X X lines from a single QD). The idea
is to sweep one laser, for example Laser 1 within its range while keeping the frequency of
the Laser 2. After one sweep of Laser 1, the frequency of Laser 2 is changed by one step.
Or in other words, in this measurement, the scan with a single laser is repeated several
times (see section 4.2.2.4 for the full description of the single-laser scan), each time with a
progression in frequency of the second laser until the second laser could cover its range. At
each step of the scan, the CCD spectra are recorded and two integrations are made for two

emission lines, as described in Fig. 5.14. Eventually, we can plot the reflected intensity of
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one laser (usually the probe laser) as a function of both laser detunings, similar to what is
plotted in Fig. 5.8. These two-dimensional maps contain the information of the reflection
for every detuning of two lasers. The reflected intensity of the other laser is also recorded
but is usually not of great interest.

The typical integration time of each point is 0.1s. The scanning range of the laser
beam normally varies between a few tens of pueV to 85 peV, which is able to cover both
two FSS dipoles when needed. The integration range is always large enough to integrate
both the emissions from two fine-structure dipoles. The polarization angle 8 between X,
and laser polarizations is set to be at 27°.

The following sections will demonstrate in details the results obtained following the

Autler-Townes and the population approaches.

5.3 Two-mode giant-nonlinearity: Autler-Townes splitting

approach

5.3.1 Autler-Townes splitting
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Figure 5.15 — Probe laser scans over X, state - (a) Cross-polarization scheme showing
that the dipole X, chosen for a short scan has its polarization closer to the laser polarization
(the angle 6 is 27° compared with 63° of the other dipole). Thus, it will require less laser power
to saturate X,. (b) A full configuration describing a four-level quantum emitter. Firstly, the
scan range is set that it is just enough to cover dipole X,. In this case, the scan range for the
probe beam is about 40 peV. Meanwhile, the scan range for the control beam is 80 peV, to
make sure that the Autler-Townes effect is captured in the two-dimensional map.

In this approach, the probe laser is coupled to the lower transition (ground and X

states), while the control laser is coupled to the upper transitions (X and XX states).



108 5.3. Two-mode giant-nonlinearity: Autler-Townes splitting approach

With the absence of the control laser, the situation is exactly the single-mode giant non-
linearity where we have one single probe beam coupled to a two-level artificial atom. At
first, we focus on the X, dipole of the FSS doublet. The polarization of this FSS state is
closer to the laser polarization as described in Fig. 5.15, the probe laser scan range is just

enough to scan across the X, line.

(a) (b)

0
ISl
—_ o
3 3
2 z /
[]
o Q
£ ) / 40
5 Q
g 1 / o
o /
5 2 F o &
an = / o
S < =
£ E g
5 =) -0 2
S El &
= 2
2 §
3 3
! o N
40" i1 # 5
20 -10 O 10 20 N

Pr

. obi 1
Probe laser detuning (ueV) (;JeV)e laser detuning 20

Figure 5.16 — Autler-Townes splitting of X, transition - (a) Two-dimensional map
with the horizontal and the vertical axes showing respectively the scanning of the probe and
the control beam across the resonances. In this measurement, the power of the probe laser
is put below the saturation power of the X, level. The color scale indicates the reflected
intensity of the probe laser. The power of the control laser is far above saturation so that it
induces a significant Autler-Townes splitting

Fig. 5.16 shows a typical result for a two-laser scan. In the two-dimensional plot in Fig.
5.16(a), typical anti-crossing curves are observed. When the control laser is far detuned
from resonance, one can see that there is no splitting and a single line is observed at the
probe resonance, just like single probe laser resonant excitation in chapter 4. When the
intense control laser approaches the resonance, it starts to give rise to Rabi oscillations
and two new dressed states appear. Fig. 5.16(b) shows more clearly the evolution of the
probe reflection in a three-dimensional point of view.

Fig. 5.17 shows in detail the resonant spectra of the X, transition at different detunings
of the control beam. Probe reflection spectra shows a normal single resonance peak when
the control laser is far-detuned from resonance. When the control frequency is closer to
resonance, a Autler-Townes doublet is formed. The relative amplitudes and the splitting
of these two dressed states are controlled by the control detuning do. The positions of

two peaks with respect to the control laser detuning d¢ are (¢ £ €©1)/2 where €25 is the
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Figure 5.17 — Cross-section of probe reflection for different control detunings d¢c. One could
see the formation of two dressed states when the control beam is scanned toward the resonance.
The blue dashed lines give a guide to the eye for the anti-crossing feature of a Autler-Townes
doublet.

generalized Rabi frequency as presented in section 5.1.1.2

Q1 = /6% + Q% (5.39)

with Q¢ the Rabi frequency of the control laser. The quantity €21 also gives the splitting
between the Autler-Townes doublet, therefore we also call 21 the Autler-Townes splitting.
At zero detuning ¢ = 0, the dressed states have an equal admixture of the X state and the
ground state, resulting in the two equal amplitude peaks, and the Autler-Townes splitting

of the two peaks is 01 = Qc¢.

5.3.2 Autler-Townes splitting as a function of control laser power

To understand the dependence of the Autler-Townes splitting when changing the power of
the control laser, several scans are performed with different control laser powers and the
results are shown in Fig. 5.18. At the power of the control laser 19.5 nW, a slight spectral
broadening is observed indicating that the excitonic state starts to be split. Increasing fur-
ther the control laser power, Autler-Townes splitting becomes significant and two dressed
states are well resolved with an anti-crossing feature when changing the control laser de-
tuning. To have a closer look of the effect, Fig. 5.19(a) shows the probe reflection (black

circles) for different control laser powers at zero detuning dc = 0. The red lines are the
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Figure 5.18 — Two-laser scan of probe reflection with different powers of control
laser powers - The probe laser power is kept at the power below the saturation power
(Pprove/Psat = 0.2). The probe and control laser scanning ranges are 40 peV and 80 peV,
respectively.
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Figure 5.19 — Probe reflected intensity at zero detuning of control laser - (a) Probe
reflection with increasing the control laser power at dc = 0. The experimental data (black
circles) is fitted showing the contribution of two dressed states (red curves). The dashed arrow
at the zero detuning of probe laser shows the reduction in probe reflection when increasing the
control power, which is the indication of two-mode giant optical non-linearity and all-optical
switch. (b) The Autler-Townes splitting at d¢ = 0 between two dressed state (the distance
between two fitted curves) with different control powers is plotted as a function of square
root of the control power (which is proportional to the field amplitude of the beam). A linear
dependence is observed.
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fitted curves, which represents two dressed states.

The Autler-Townes splitting for each control laser power is taken by taking the peak to
peak distance of the two fitted curves. Fig. 5.19(b) shows the plot of the Autler-Townes
splitting as a function of square root of the control laser power (proportional to the Rabi
frequency Q¢) at zero detuning dc = 0. A linear dependence is observed confirming the
relation 27 = Q¢. When the control laser is switched off 2c = 0, we have no splitting as

expected.

5.3.3 A full scan over two excitonic fine-structure dipoles

To have a complete picture of the behavior of two FSS dipoles, we carry out a broad probe
beam scan that could cover both X, and X, states. The F'SS energy is 25 pueV, the scan
range for both control and probe beams is 80 peV'.

Fig. 5.20 and Fig. 5.21 show a systematic measurement for different powers of the
control beam where the reflections of both two dipoles are observed within the probe laser
detuning range. The scans in the left (right) show the experimental data (theoretical
calculated data). Similar to chapter 4, the full theoretical model done by T. Grange
considers all the imperfections of the QD-waveguide coupling system, including the other
excitonic FSS dipole forming a four-level system. The fitting parameters for the spectral
broadening (pure dephasing v* and spectra diffusion o) and the input-output coupling
efficiency are chosen so that they reproduce best the experimental two-dimensional plot.
In addition, for a more precise fit, one could base on the slope of Autler-Townes splitting in
Fig. 5.19(b) or base on the reflectivity plots in the next sections to adjust the parameters
of the system. A detailed fitting method will be presented in appendix A.

Because of the asymmetry of the laser polarization with respect to the FSS dipoles,
one can see different behaviors and splittings between X, and X, reflections. At zero
detuning of both two beams dp = dc = 0, the splittings of X, and X, can be expressed
as:

Q. Qccos ()

0, " acsn( O 40

This equation indicates that the Rabi frequency of the laser applying on a dipole
depends on the angle 6, the dipole closer to the laser polarization is dressed more efficient
by the laser thus its Autler-Townes splitting is larger than the other one. For 8 = 27°, the
Autler-Townes splitting €, is larger than €, by tan™! (27) ~ 2.

One could see from experiment results that the X frequency suffers slightly from
temporal drift (see section 3.2.3). The lines are thus shifted with the speed approximately
1peV /minute. The total scan takes 4 minutes to finish (for 0.1s integration time per each

point), therefore the emission energies are shifted by 4 peV when the scan finishes. The
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and theoretical (right) results of the broad scans are shown for different powers of the control
laser beam where the reflections of both two FSS dipoles are visible. The experiment is
performed on the same QD that has been used in chapter 4 (section 4.3.2), so the linewidth
broadening factors used in the model are the ones used in section 4.3.2. The total spectral
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effect of temporal drift can be reduced by decreasing the integration time of the scan. In

this case, the integration time is fairly short, just 0.1s per point.

5.3.4 Autler-Townes optical switch

5.3.4.1 Probe reflection as a function of control power
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Figure 5.22 — Probe laser reflectivity when the control laser is ON and OFF res-
onance - (a) For control power 19.5 nW, which is not too far above saturation power, when
the control beam is turned on (black circles), one could see an enhancement in reflection
compared with when the control beam is turn off (blue square). For a constant probe power
(Pprobe/Psat = 0.2), this enhancement is because of the presence of the other excitonic dipole,
which will be explained in details in the next section. (b) The control power is far above
saturation power at 524 nW. When the control beam is turned on, Autler-Townes splitting is
well established. At zero probe detuning dp = 0, a switch in reflection is obtained.

Previous section has demonstrated how the reflection of a probe beam can be modified
by the presence of a control beam dressing the upper transition of a QD three-level system.
This section aims at estimating quantitatively this two-mode giant non-linearity all-optical
switch and how the switching contrast depends on the power of the control beam. Fig.
5.22(a) and 5.22(b) show the probe reflection of X, level when the control beam is on
resonance and when it is far away from resonance (off), respectively.

These two plots show clearly the switch at the zero probe detuning ép = 0, as indicated
by the green dashed-lines. When the control laser power is large as in Fig. 5.22(a), two
dressed states are well separated and the reflection of the probe laser is reduced drastically.
This is the experimental demonstration of a all-optical switch in which the modification
of probe reflection is triggered by the control beam.

Interestingly, one could notice from Fig. 5.22(b) that, with a control laser power not
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Figure 5.23 — Probe reflection intensity and probe reflectivity as a function of the
control laser power - (a) The dependence of probe reflection intensity (black square) on
the control power. The probe power Pp,ope/Psqr = 0.2. (b) Probe reflectivity (defined as the
ratio between the probe reflected intensity and the probe laser power) as a function of control
power.

very intense, we have slightly more reflection at §p = ¢ = 0 . This is surprising because
with a purely three-level system, in principle, the X, state can not emit an amount of
photons more than what is populated by the probe laser, which means the presence of the
control laser can not induce the enhancement in reflection of the probe beam. To be able
to understand it, we have to take into account the contribution of other FSS dipole X, in
a four-level system picture. This reflection enhancement will be discussed in the coming
section.

Fig. 5.23(a) plots the measured probe reflection intensity (black squared) as a function
of control laser power, together with the fit obtained from the theory. The data is taken
at resonances of both two beams (d¢ = dp = 0). When the control power is infinitely
small, the probe reflection is constant because of the negligible contribution of the control
beam. However, when increasing the control power, a surprising enhancement in reflection
is observed. The probe reflection intensity increases and reaches the maximum at control
power = 200 photons/lifetime. Increasing further the control power, the reflection intensity
reduces rapidly because of Autler-Townes effect. Fig. 5.23(b) plots the probe reflectivity
as a function of control power. Because probe power is kept constant for the whole
measurement, so the reflectivity is proportional to the reflection intensity. The probe

reflectivity for an ideal system will be discussed in section 5.3.4.4.

5.3.4.2 Enhancement of probe reflection

To be able to explain the enhancement of the probe reflection, we have to consider a

full picture of the system, in which the other FSS dipole is taken into account and the
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Figure 5.24 — Schema of a four level system that explains the enhancement in probe
reflection - (a) A QD four-level system: X, level is chosen to be resonantly coupled with the
lasers. (b) Without the presence of a control laser, one can neglect the other excitonic dipole
Xy. The probe laser excites dipole X, (whose polarization is away from the polarization of the
laser by an angle 6). For a probe power below saturation (Pprope < Psqt), the amount of probe
reflection is proportional to power. Assuming that X, emits N, photons, then the amount
of photons detected is N, sin? (). (c) A control laser is turned on and coupled to X, — XX
transition. X X level has also the decay path to X, thus when increasing the control power,
the population of X, will be gradually transferred to X,. Therefore, the population of two
excitonic levels will eventually be equalized. At this stage, each level will emit equally N, /2
photons, but depending on the angle 6, the actual amount of photons detected for each level
will be different.
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system has to be seen in cross-polarized detection scheme (as explained in section 4.2.2).
Fig. 5.24(a) sketches a four-level system. We consider the case in which the lasers are on
resonance with X, dipole (6p = ¢ = 0). When the control beam is absent, for a probe
beam with a power much less than saturation, X, state absorbs and emits an amount
N, photons, as illustrated in Fig. 5.24(b). Assuming that the FSS energy AFEpg is large
enough that dipole X, is not affected by the laser beam and therefore can be neglected
in this case. Because of cross-polarized detection, the amount of photons that will be
detected is N, sin? (6).

When a control laser is introduced into the system, since X X level always has two
possible decay channels to X, and X,, thus X, level has to share its population with
Xy. As a result, for a control power high enough, eventually, two F'SS levels will have
equal population and two FSS dipole will emit equally N,./2 photons. Therefore, in cross-
polarization scheme, as can be seen in Fig. 5.24(c), the total photons that will be detected
in horizontal channel is (N, /2)sin? () + (N, /2) cos? () = N,/2.
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Figure 5.25 — Calculated probe reflection intensity as a function of control power,
for different angle 6§ between dipole X, and laser polarizations - The power of the
probe laser is kept to be the same at 6 photons/lifetime (Pprope/Psar = 0.15). The FSS is
considered large enough to well isolate the dipole X, from direct influence of the control laser.
One could see that at an infinitely small control power, the probe reflections are very different,
this is because for a constant probe power, the excitation efficiency of the beam depends
strongly on the angle 6, as explained in section 4.2.2. For § < 45°, N, sin? (0) < N,/2 so
the enhancement in probe reflection is obtained. Reversely for 6 > 45° no enhancement is
observed.

Therefore, in the cross-polarized detection scheme, the behavior of probe reflection
intensity with or without the presence of the control beam depends strongly on the angle
6. Fig. 5.25 plots the probe reflection intensity for different angles 6. One could see
that the enhancement in probe reflection with the presence of the control laser is obtained
only when 6 satisfies the condition N, sin? (#) < N, /2, which means when 6 < 45°. That
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explains the probe reflection enhancement in our measurement (Fig. 5.23) because the
angle 6 is set at 27°.

It should be noted here that if the data collection process integrates only the range of
dipole X, this enhancement should not be observed because in this case the reflection from
X, is not taken into account. In our measurement the data collection process integrates
the whole spectral range that covers both two X dipoles (see section 4.2.2.4 and 5.2.1),
so that the reflections from both of them is always collected. The integration range has
to be large because on one hand, the large range is needed to obtain the full anti-crossing
signature of Autler-Townes splitting. On the other hand, the temporal drift makes it
very challenging to integrate the spectrum at an exact single frequency. As a result, we
eventually collect also the light emitted from X,, which leads to the observed reflection

enhancement.

5.3.4.3 Probe laser switching contrast
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Figure 5.26 — Probe laser switching contrast as a function of control laser power
- The angle § = 27°. The data is fitted by the theory. Due to the enhancement in probe
reflection, the contrast is firstly switched to positive values at the control power less than 200
photons/lifetime. Increasing further the control laser power far above saturation, the contrast
starts to decrease as expected and finally becomes negative. In this configuration with the
experimental conditions, the level of control power required to have the most efficient switch
(switching contrast close to-1) is rather large (in the order of larger than 10* photons/lifetime).

From the probe reflection in Fig. 5.23, one can induces the switching contrast. The

probe switching contrast Cp can be defined as

_ Pr(on) = Pr(off)
Pg(on) + Pr(of f)

Where Pr(on) and Pr(of f) are the probe reflected intensity when the control laser is

Cp



120 5.3. Two-mode giant-nonlinearity: Autler-Townes splitting approach

ON and OFF, respectively. The switching contrast is plotted in Fig. 5.26(b) as a function
of the control laser power. The black squares are the experimental results, the red curve
is the calculation. Basically, the behavior of the contrast is similar to the probe reflection
in Fig. 5.23. From the curve, we can see that the switching contrast starts to have a non-
zero value when the control laser power is just in the order of 10 photons/lifetime. The
contrast gets to the maximum value when the control laser power is at the level ~ 2.10?
photons/lifetime. When the control laser power keeps increasing, the switching contrast
turns from positive to negative because of Autler-Townes splitting. It is worth mentioning
here that for 6 > 45°, as explained in the previous section, the contrast will start from

zero and go negative without any positive value.

5.3.4.4 Probe reflectivity for an ideal system in Autler-Townes approach
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Figure 5.27 — Probe reflectivity for optimized parameters of the system in cross-
polarized configuration - The probe power is set at Ppobe/Psqet = 0.01. The black curve
plots the fitted reflectivity for the experimental condition (Fig. 5.23(b)), in which &;,, = €4t =
0.26, 8 = 27°, pure dephasing rate v* = 1 pueV, spectral diffusion width 3 pueV. The red curve
plots the calculated reflectivity for the same spectral broadening as the black one (4 peV in
total), but with optimum coupling rates ;, = €out = 1. The blue curve shows the ideal
cross-polarized probe reflectivity at § = 27° for a perfect system with zero broadening and
€in = €out = 1. The pink curve shows also the ideal cross-polarized probe reflectivity for a
perfect system with zero broadening and €;, = €4+ = 1, but with 6 = 45°.

This section will show the calculation of probe reflectivity obtained with an ideal
three-level system in crossed-polarization and co-polarization excitation schemes. Firstly,
we consider a cross-polarized detection with an angle § = 27° similar to the experiment.

Section 4.3.2.2 and 4.1.2 have discussed in detail the scaling laws for the impacts of im-
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perfection parameters on the probe reflectivity (including the input and output coupling
efficiencies, spectral broadening factors and also the angle 6), for a vanishing probe and
control powers. Fig. 5.27 plots the calculated probe reflectivity in three different cases.
Firstly, the black curve shows the case for real parameters in the experiment. The red
curve shows the case for a system with perfect coupling efficiency €;, = €5t = 1 but the
line width is broadened as in the real condition (4 peV'). In this case, compare to the
real experimental condition, the reflectivity is enhanced by a factor of 0.2672 ~ 15. In
this case, pure dephasing rate v* induces a reduction of (v + v*) /v and spectral diffusion
induces a reduction of o (see Eq. 4.22) in probe reflectivity compared with an ideal case
with no broadening, as represented by the blue curve (for § = 27°, with unity coupling
efficiencies). At a control laser power well below saturation, similar to the ideal case in
the single-mode giant non-linearity in section 4.3.2.2, an ideal reflectivity Rp in cross-
polarized scheme could be obtained is 0.5 cos? (6) sin? (§). For § = 27°, Rp ~ 0.08. One
can see that the cross-polarized reflectivity can reach the maximum Rp = 0.125 when
0 = 45° (the pink curve in Fig. 5.27). As discussed in section 5.3.4.2, at § = 45° we can

also avoid an unexpected enhancement in probe reflection.
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Figure 5.28 — Ideal probe reflectivity in co-polarized excitation configuration - In
this case, the angle 0 is 0°, the excitation and detection have the same polarization. Assuming
that the probe power is very low (Pprobe <€ Psqt). In this scenario, without the presence of
the control beam (or with an infinitely small control power), we can obtain a unity probe
reflectivity. At the power of the control laser 1 photon/lifetime, the reflectivity is reduced
by a factor of 2 and eventually total transmission is induced at control power larger than 10
photons/lifetime.

Ideal probe reflectivity in co-polarized excitation scheme In cross-polarization
scheme, the maximum probe reflectivity could be obtained for an ideal system is 0.125 for

an angle § = 45° (Fig. 5.27). One then would wonder the reflectivity could be reached if we
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perform a co-polarized excitation, assuming that there is no laser background. Fig. 5.28
plots the optimum reflectivity as a function of control laser power. When the control laser
is absent, the reflectivity is equal to 1. A unity reflectivity could be reach in co-polarized
excitation because at ultra-low probe power, it has been shown in section 4.1.2.1 that the
destructive interference between half of the photons emitted in the forward direction and
the incoming laser cancels out the transmission. Therefore, one could obtain a maximum
reflectivity. In this case, the reflection could be reduced by a factor of 2 by a control power

just 1 photon/lifetime.

5.3.4.5 Optical switch with laser background

As already mentioned in the beginning of chapter 4. One of the biggest obstacles in per-
forming resonant spectroscopy is the presence of the scattered light from the excitation
laser, because the laser has the same frequency as the emitter’s frequency. For that rea-
son, we used a cross-polarized detection scheme to reject the unwanted laser background.
Unfortunately, a small fraction of laser background is still present. Fig. 5.29(a) and (b)
show respectively the probe reflection intensity and the probe switching contrast with the
presence of the probe laser background. In practice, the background of the laser can be
reduced if the anti-reflection coating layer is improved and if we can enhance the efficiency

of cross-polarized laser rejection scheme (the rejection rate is 10* at the moment).
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Figure 5.29 — (a) Probe reflection and (b) probe switching contrast as the presence of probe
laser background.

For a conclusion of this section, we have presented an experimental realization of a all-
optical switch based on Autler-Townes splitting approach. The result indicated that the

switch could be obtained at a control power around 200 photons/lifetime for the excitonic

10° 10 10° 102 10" 10° 10' 10> 10° 10°

10°
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dipole with a polarization # = 27° with respect to the laser polarization. However, it
has been pointed out that the reflection enhancement at that control power comes from
the contribution of another excitonic fine-structure dipole with a different frequency. In
addition, the reflectivity obtained in the experiment is far below unity (=1072). Those
results are not favorable for a real all-optical switch application in optical or quantum
computing. Nevertheless, we have also shown that by performing a co-polarized excitation,
a unity reflectivity could be achieved. Furthermore, it will also be discussed in section 5.5.1
that this co-polarized excitation based on Autler-Townes splitting approach also preserves

the coherent nature of the system at low control power.

5.4 Two-mode giant non-linearity: Population switch ap-

proach

Scan range
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Figure 5.30 — Population switch geometry - Very similar experimental configuration
in Autler-Townes approach is established. The only different is the swapping of probe and
control beams. (a) Cross-polarized detection scheme with an angle § = 27°. (b) Sketch of
a QD four-level system. The excitonic dipole X, is chosen to form a three-level cascade. A
control beam is tuned around 0 +— X, resonance with a detuning dc. A probe beam is tuned
around X, <— X X resonance with a detuning dp.

In this section, we aim at realizing a all-optical switch in a reversed approach, with the
probe beam coupled to the upper transition and the control beam coupled to the lower
one. Fig. 5.30 illustrates the configuration. One important notice is that in this section,
the term “control laser beam” and “probe laser beam” will be used reversely compared
with the previous section. It has been stated in section 5.1.5 that without the presence

of the control beam, the X level is empty, so that a probe beam coupled to the upper
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levels will be totally transmitted. By contrast, if the control beam, with a power below
the saturation of the X level, is turned on, the X level is populated. As a result, the
probe beam will then be absorbed and exhibit a non-vanishing reflectivity. The nature of
the switch is based on the population of the intermediate state, so we call this approach
“population switch”. This switch is very efficient because the reflection is really zero when

the control laser is off.

5.4.1 Reflection measurement
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Figure 5.31 - Two-laser scan in the population switch approach - (a) Experimental
and (b) theoretical results showing top-view (left) and side-view (right) of the two-dimensional
maps. The horizontal and vertical axes show the detuning of the probe and control lasers,
respectively. The color bar shows the probe reflection intensity. The detuning range for both
control and probe lasers is around 40 peV, which is enough to cover just the X, dipole. The
probe and control powers are respectively Pprope/Psqr = 0.1 and Proptror/Psat = 0.5. The
angle 6 is always set at 27°. In the calculation, the input-output coupling efficiencies are
€in = €out = 0.26. The total spectral broadening is 4 peV, including 1 peV due to pure
dephasing and 3 peV due to spectral diffusion (see appendix A for more details of fitting
method).
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The experiment is carried out for the same QD that has been studied in Autler-Townes
splitting approach. The measurement follows the same procedure as in section 5.2.1. It
should be noted here that the angle 6 in cross-polarization scheme is kept at 27°. A two-
dimensional scan is performed by sweeping the probe beam frequency over X X frequency.
The control beam frequency is put around the X, level. After each sweep, the frequency of
the control beam is tuned by one step. We want to observe the modification of probe beam
reflection as the presence of the control beam, therefore this time the reflection frequency
of interest is the frequency of X, «+— X X transition.

Following this procedure, Fig. 5.31(a) shows the experimental result of a typical two-
laser scan. One can see that when the control beam is far from resonance (dc = 0),
the probe beam is entirely transmitted and no reflection is detected. By contrast, when
the control beam approaches very close to resonance, the presence of the control laser
populates X, state and therefore, the probe beam is absorbed only for §p = 0 and thus
reflected by the X, — XX transition. Fig. 5.31(b) shows the calculation plots given the

same parameters as in Fig. 5.20.

5.4.2 Ultra-low power optical witch
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Figure 5.32 — Probe reflected intensity as a function of the control laser power
- Several two-laser scans are performed with varying control powers for two different probe
laser powers: 0.5 nW (Pprope/Psat = 0.1) and 2.6 nW (Pprope/Psqr = 0.5). For a probe power
below saturation power, the probe reflected intensity is proportional to the probe power.

The previous section has shown an experimental demonstration of a all-optical switch
in population approach. The next step is to see how the control power modifies the

reflection of the probe beam, the control power is varied from ultra-low to well above
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saturation of the X, level. Two different probe powers (at Ppyope/Psat = 0.1 and 0.5) are
taken to perform the measurement. Fig. 5.32 plots the results of probe refection. The
resonant reflection of each scan is taken to plot the probe reflection intensity (the value at
0p = dc = 0 in Fig. 5.31). The black squares and red circles are the data for two probe

powers. The black and red curves are calculation fits.
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Figure 5.33 — Probe reflectivity of the probe laser in 4 orders of magnitude of
the control laser power - The reflectivity is taken as the ratio between the probe reflected
intensity in Fig. 5.32 and the probe power. The symbols are experimental data, and the
curves are the theoretical calculations. At the weak control power level, the probe reflectivity
increases progressively with control power until it reaches the maximum due to saturation.
For the probe power 2.6 n'W (Pprope/Psat = 0.5), the probe reflection is also measured for the
control power well above saturation. At this level of control power, X, state will be split due
to the formation of dressed states. Thus, keep increasing the control power will lead to less
and less coupling of the probe beam at zero detuning ép = 0. As a result, the reflectivity is
reduced and eventually reaches zero reflection.

From the reflection intensity, the reflectivity can be plotted in Fig. 5.33 as a function of
control laser power. The reflectivity is defined as the ratio of the probe reflection and probe
power. The figure indicates that with ultra-weak control power, in the order of less than
0.1 photon/lifetime, no probe reflectivity is induced. When the control power increases

by one and two orders of magnitude at 1 and 10 photons/lifetime. The reflectivity starts
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to increase and the optical switch can already be realized at such power level. Increasing
further the control laser power, the reflectivity reaches the maximum at ~100 photons/life-
time. One interesting remark that has already been pointed out is that, for any power of
the control laser, the switching contrast Cp = [Pr(on) — Pr(of f)]/ [Pr(on) + Pr(of f)]
is always maximum because Pr(of f) is always equal to zero.

One could notice that when increasing the control power above 100 photons/lifetime,
the reflectivity starts to reduce quickly and finally reaches the minimum. This is because
when two beams are on exact resonances with the transitions (6c = dp = 0), X, state
is dressed and split with the amplitude proportional to the control power. Therefore, X,
level becomes more and more transparent to the probe beam. The full behavior of probe
reflection for above-saturation control power range will be discussed in section 5.4.2.1.

Fig. 5.33 can be considered as the most important result of this thesis. A reflectivity
of the probe beam is switched on and off by the presence of the control beam with a power
from just a few photons/lifetime. The probe reflectivity reaches a maximum value with a
control power as low as ~ 100 photons/lifetime (~ 16 nW). In addition, for any control
power, the probe switching contrast always has a unity value. Keep increasing the probe
power, the probe reflectivity is switched off again. Although the high control range is
not at a great interest in this approach, a variation of control power in a four orders of
magnitude range gives a complete picture of the probe reflectivity response and shows a
high agreement between experimental results and theoretical model. Finally, it should be
mentioned again that this two-mode giant non-linearity confirms the exceptional broad-
band operation property of the photonic trumpet, which allows simultaneous couplings of

two different beams to two different transitions of the emitter.

Probe reflectivity for different probe laser powers One could see in Fig. 5.33 that
the reflectivities for two probe powers are not the same, this is because one of the two
powers is close to the saturation power. Fig. 5.34 plots the probe reflectivity for different
probe powers. The plots show that when the probe power is well below saturation power,
the reflectivity remains constant because the absorption of X X transition is still in linear
regime and it increases progressively with the probe power. When the probe power reaches
saturation, the absorption is no longer proportional to the power, thus the reflectivity

decreases rapidly with increasing probe power.
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Figure 5.34 — Calculated probe reflectivity as a function of control power for different probe
powers Pprope/Psat: 2.107°5 (1074 nW), 2.1072 (0.1 nW), 0.1 (0.5 nW), 0.5 (2.6 nW) and 20
(100 nW). The black and red curves with P,,ope/Psqr respectively 0.1 and 0.5 correspond to
the two powers using in the experiment. The dependence of probe reflectivity on probe power
explains different reflectivity obtained in Fig. 5.33 .

5.4.2.1 Observation of Autler-Townes splitting at high control laser power

We have seen in the previous section that when increasing the control power, because of
Rabi oscillations, X levels will be dressed and leads to the formation of an Autler-Townes
doublet. Fig. 5.35 shows two-dimensional scans for two different powers of the control
beam. Both experiment and calculation results are shown. The scan ranges of both lasers
are large enough (80 ueV) to cover efficiently two FSS dipoles. As expected, the anti-
crossing signature of Autler-Townes effect is observed. One can see that the splitting is
not equal for two excitonic dipoles, which is because of the asymmetry of the excitation
polarization with respect to two orthogonal polarizations of the dipoles, as explained in
section 5.3.3.

Fig. 5.36(a) shows the cross-section of probe reflection when the control laser is on
exact resonance at dc = 0, for different control powers. The behavior is the same as
in section 5.3, the Autler-Townes splitting increase progressively with the control field
amplitude and is equal to Rabi frequency of control beam at zero detuning. The splitting

as a function of square root of power is also plotted in Fig. 5.36(b).
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Figure 5.35 — Two-dimensional map of the probe reflection when control power
is far above saturation - Experimental (left) and theoretical (right) results showing two-
dimensional map of the probe reflection in the reversed situation (population switch) for two
different powers of the control beam well above saturation. The scan range for the probe beam

is 80 peV.
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Figure 5.36 — Autler-Townes splitting for different control laser power in reversed
approach - (a) The probe reflected intensity is plotted as a function of probe detuning ép
for different powers of the control beam (coupled to 0 «— X, transition), the experiment
date (black circle) is fitted as red curves showing the Autler-Townes splitting between dressed
states. (b) Autler-Townes splitting for each control power is plotted as a function of square
root of control power. The data (blue triangles) shows a linear dependence as expected.
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5.4.2.2 Probe reflectivity with optimum parameters

The probe reflectivity observed in population switch approach is relatively far below 1,
which is similar to the single-mode giant non-linearity in chapter 4 and also two-mode
giant non-linearity in Autler-Townes approach in section 5.3.4. The main reasons have
been discussed in section 4.3.2.2. The first reason is the linewidth broadening 4 peV
(due to pure dephasing (1 peV) and spectral diffusion (3 peV)). The second reason is
the non-optimum input and output coupling efficiencies of the one-dimensional waveguide
(€in = €out = 0.26 for the trumpet in this measurement). The third reason comes from the
cross-polarized configuration, which reduces the amount of photons detected. Finally, the
saturation results in the fact that just half the population is established in the X, state,
while the other half stays in the ground state. The presence of the other excitonic dipole

X, also influences the reflection.
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Figure 5.37 — Illustration of the population switch in cross-polarized detection
scheme - (a) X, state is at a polarization  away from laser polarization. (b) When the
power of the control beam is higher than saturation power, at ¢ = 0, X, state will be split
into two new dressed states with frequencies Q¢ /2. There are two strategies to probe the
upper transition X, — X X, by either probing at the original X, resonance frequency (dp = 0)
or by probing at one of the two dressed state frequencies (dp = £Q2¢/2).

In principle, as shown in Fig. 5.33, the maximum reflectivity is obtained when the X,
state is saturated. At saturation, X, and ground states share each state a half of the total
population. Thus, we loose a factor of 2 in reflectivity. Then, due to saturation (even in
co-polarized excitation), destructive interference effect in the forward direction between
the emission and the laser is canceled out. Therefore, the photons emitted are separately
guided into forward and backward directions of the trumpet guided mode, another factor
of 2 is lost. Next, we have to take into account the presence of the other FSS dipole
X, (Fig. 5.37). As soon as the XX level is populated due to coupling with the probe
beam, the photons will decay through XX <«— X, transition. If the probe power is
vanishingly small, one can neglect the contribution of X,,. But for a probe power high

enough, eventually, half of the population of the X, level will be transferred to level X,.
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In the following, we will consider an ideal one-dimensional three-level atom and show
the calculated probe reflectivity in two excitation-detection scenarios: cross-polarization

and co-polarization.

Ideal reflectivity in cross-polarized excitation At the control power level above
saturation and with the control detuning dc = 0, X is split by an amount equal to Rabi
frequency of the control beam Q¢ (see Fig. 5.37(b)). For that reason, precise estimation
can be made if we probe at the frequency of one of the two dressed states, as described
in Fig. 5.37(b). However, in this case, only one dressed state is probed so that a factor
of two in reflectivity will be lost. In the population switch approach, the probe beam is
coupled to the X, +— XX transition which makes the situation more complicated than
coupling with the a real ground state. Because of those complications, the calculated
probe reflectivity for both two geometries is plotted in Fig. 5.38 for an ideal-system in
cross-polarized excitation scheme. The results indicate that for both cases, the ideal probe

reflectivity can reach to around 0.03, which is still far below the unity reflectivity.
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Figure 5.38 — Calculated probe reflectivity in cross-polarized at 27° excitation for
the population switch approach - The control laser is always put at resonance frequency
dc =0, (a) The probe beam is put on resonance with the original X, state (6p = 0). (b) The
probe beam is put on resonance with one of the two Autler-Townes doublet (6dp = Q¢/2).

Ideal reflectivity in co-polarized excitation Given the same approach, if we excite
in co-polarized scheme by assuming that there is no scattered laser background. In this
case, the polarizations of excitation, detection and of X, level are identical. It should be
noted that the destructive interference effect between half the emission into the forward
direction and the laser field is only valid for a power much lower than saturation. The
effect is no longer valid for a control power above saturation. In addition, half of the
population is lost at saturation. Fig. 5.39 plots the calculated probe reflectivity for two

cases similar to the cross-polarization geometry above.
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Figure 5.39 — Calculated probe reflectivity in co-polarized excitation for the pop-
ulation switch approach - The control laser is always put at resonance frequency d¢ = 0,
(a) The probe beam is put on resonance with the original X, state. (b) The probe beam is
put on resonance with one of the two Autler-Townes doublet.

Overall, even for a perfect three-level system in this approach, the reflectivity of a probe
beam could be switched from 0 to only 0.05, the power required to obtain a maximum
switch is ~ 2 photons/lifetime. In comparison with the Autler-Townes approach, it has
been presented in section 5.3.4.4 that the probe reflectivity could be switch from 1 to zero.
In that case, with the control power 1 photon/lifetime, the reflectivity can be switched
only from 1 to 0.5. It will require more than 10 photons/lifetime to switch the reflectivity
close to zero.

For a short conclusion of this section, we have presented experimental results of two-
mode giant non-linearity based on population switch approach. With the presence of a
control beam coupled to the upper transition of a cascade three-level system, the reflectiv-
ity of a probe beam coupled to the lower transition can be switched to maximum with a
control power as low as 100 photons/lifetime. This approach offers a unity switch contrast
regardless of control power. Similar to Autler-Townes switch approach, the maximum
reflectivity could be experimentally observed is also far below unity (=~ 5.107%). It has
been shown that even for an ideal case in this approach, the probe reflectivity can not be
achieved more than 0.05, which is much worse than a unity reflectivity in the ideal case

for Autler-Townes approach (see section 5.3.4.4).

5.5 Contributions of coherence and incoherence in total probe
reflectivity
For any possible application in quantum information and computation, preserving the

quantum coherent nature of the system is an important aspect. Section 4.1.2.4 and 4.3.2.3

in chapter 4 have discussed the contributions of coherent and incoherent scatterings in the
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single-mode giant non-linearity case. Eqs. 4.5 describe the contribution of imperfections of
the system on the incoherent part even at very low excitation power. In two-mode giant
non-linearity with the same system, a similar behavior is observed and the calculation

results will be presented in this section, for both two approaches.

5.5.1 Autler-Townes splitting approach
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Figure 5.40 — Calculated coherent and incoherent contributions in total probe
reflectivity in Autler-Townes splitting approach - The probe power is vanishingly small
(Pprobe/Psat = 107°). Three different cases are considered: (a) Probe reflectivity as a function
of control power in cross-polarization detection scheme with 0 = 27°, €;,, = €, = 0.26, total
linewidth broadening 4 peV. (b) Probe reflectivity in cross-polarization detection scheme with
6 = 45°, for an ideal system with no loss, ;, = €out = 1, zero linewidth broadening. (¢) Probe
reflectivity in co-polarization excitation-detection scheme (6 = 0°) for an ideal system.

Fig. 5.40 plots the calculated probe reflectivity as a function of control power for the
real experimental condition (Fig. 5.40(a)) with an angle § = 27° and for an ideal one-
dimensional system in two excitation-detection scenarios: cross-polarization with 6 = 45°
(Fig. 5.40(b)) and co-polarization (Fig. 5.40(c)). One could see that besides the dramatic
differences in reflectivity between an ideal and a real perfect systems that has been dis-
cussed in section 5.3.4.4, coherent scattering also depends strongly on the imperfections
of the system. In cross-polarization scheme, an ideal probe reflectivity can be reached up
to 0.125. For an infinitely low control power, coherent scattering dominates the reflec-
tion. However, as discussed in section 5.3.4.2, increasing the control power results in an
enhancing contribution of the other excitonic dipole, which is a source of decoherence.

The best scenario is obtained with an ideal system in co-polarized excitation scheme
in Fig. 5.40(c). In this case, one can ignore the presence of the other excitonic dipole
polarized in a perpendicular direction with respect to excitation and detection directions.
Thus, coherent contribution is well preserved at control power below saturation. This
feature together with a unity reflectivity at low control power are favorable conditions for

the realization of a single-photon optical transistor.
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5.5.2 Population switch approach
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Figure 5.41 — Calculated coherent and incoherent contributions in total probe
reflectivity in population switch approach - The probe power is vanishingly small
(Pprobe/ Psat = 107°). Three different cases are considered: (a) Probe reflectivity as a function
of control power in cross-polarization detection scheme with 0 = 27°, €;,, = €, = 0.26, total
linewidth broadening 4 peV. (b) Probe reflectivity in cross-polarization detection scheme with
6 = 27°, for an ideal system with no loss, €;, = €out = 1, zero linewidth broadening. (c) Probe
reflectivity in co-polarization excitation-detection (@ = 0°) scheme for an ideal system.

In this approach, similar set of calculation is plotted in Fig. 5.41, for the probe
reflectivity of the real system as well as for an ideal system in crossed-polarized and co-
polarized detection schemes. One could see that incoherent scattering is dominant even
with an ideal system in cross-polarization scheme. This is because in this approach, the
probe beam is coupled to the X, +— X X transition and thus it makes the situation more
complicated than coupling with the ground state. In addition, the presence of the other
fine-structure splitting level X, also impacts the probe reflectivity of level X,.

This section has shown that even though the experimental data for a all-optical switch
in Autler-Townes splitting approach is not as good as that in population switch approach,
it turns out that for an ideal system, Autler-Townes approach out-performs the other in

which unity parameters required for a all-optical transistor could be reached.

5.6 Switching time

We have shown that a all-optical switch can be realized at the levels of just a few photons
per emitter lifetime. In practice, another crucial factor that determines the performance
of an optical transistor is the amount of time needed to perform a switch.

Firstly, we consider the Autler-Townes switch approach. Les us assume that the lower

transition is always excited by a continuous wave (CW) probe laser. The presence of a
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strong control beam coupled to the upper transition dresses the intermediate state and
switches the probe reflection. Therefore, in principle, the time required to obtain this
switch is the time it takes to establish the two new dressed states. In principle, when
a control pulse is coupled to the upper transition, the levels will Rabi oscillate with a
damping rate equal to the decay rate of the transition. Therefore, the time required to
establish an Autler-Townes doublet is equal to the decay rate of the emitter.

Secondly, in the population switch approach, the probe beam is coupled to the upper
transition. Without the control beam, no reflection is induced. When the control beam
coupled to the lower transition is turned on, the intermediate state is populated and thus
the probe reflection is switched. In this case, one has to firstly consider the time needed to
populate the intermediate level. Imagine if we excite the lower transition with a m—pulse.
In this case, the time to populate the lower transition will be inversely proportional to
the pulse amplitude (Qt = 7). There is a trade-off between time and amplitude. A short
population time requires a strong control pulse and vice versa, a low-power control pulse
leads to longer population time.

Finally, it should be noted that in any case, even for a single-mode giant non-linearity
with a two-level system coupled with a single field, it always takes a time 1/+ to establish

the reflection.

5.7 A comparison with state of the art giant non-linearity

5.7.1 Single-mode giant non-linearity

Single-mode giant non-linearity in which a quantum emitter can change the transmission of
an incoming electromagnetic field at ultra-low power has been reported in several systems,
mostly with QDs inside one-dimensional photonic structures. Table 5.1 shows a short
summary of the results obtained with the common QD - photonic structure systems. For a
QD-pillar-cavity system, giant non-linearity has been reported by the group of P. Senellart
from Laboratoire de Photonique et Nanostructures, LPN/CNRS in 2012 [14] and recently
in 2015 [130]. Owing to the high input-output coupling efficiencies, together with high
spontaneous emission enhancement, a giant non-linearity threshold was obtained with just
8 photons/pulse in [14] and less than 1 photon/pulse in [130]. With photonic crystal cavity,
the non-linearity was shown to be achieved with a few average cavity photon numbers [30],
by the group of J. Vuckovié¢ from Stanford University, USA. However, the actual power
required at the input of the system was larger since the input coupling efficiency was only
1.8%. For photonic crystal waveguide, in 2015, the group of P. Lodahl from Niels Bohr
Institute, University of Copenhagen, demonstrated a giant non-linearity at a level of less
than one critical average photon per lifetime with a system having 23% input-coupling

efficiency [31].
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Apart form semiconductor QDs, strong light-matter non-linear interaction has also

been reported with superconducting transmon qubit [32], ultra cold atom gas [33, 34],

which will be shown in the coming section.

Photonic EXCltEtlgn Input Output lilowe}li ?(ti Year Broadband
structure metho % % thresho property
Pillar MC | CW/Pulse | 95% | 16% | ° phofons [14] No
/pulse 2012
0.7
Pillar MC CW/Pulse 95% 70% photon/ [130] No
pulse* 2015
PC CW 23% N/A 2 nW [31] 20 nm
Waveguide 2015
PC cavity CW 1.8% N/A 200nW* [30] No
2007
2
Waveguide' CW 26% 26% photons/ >100 nm
lifetime

MC: Micro-cavity.
CW: Continuous wave.
PC: Photonic crystal.
N/A: Not available.

*: Value inferred from given parameters.

1. QD-trumpet system studied in this thesis.

Table 5.1 — Common QD - photonic structure systems that have been reported to show

single-mode giant non-linearity.

5.7.2 Two-mode giant non-linearity

We have shown in this chapter a all-optical switch based on a three-level system with two

distinct probe and control beams coupled to two transitions of the system. In literature,

the investigation of dressed excitonic states based on a QD three-level system has been

reported in several articles [153-155]. Autler-Townes splittings were observed in [153]

considering a cascade three-level system similar to our study and in [154] considering a
“V” system. In [155], the authors reported a cascade three-level QD in which both two

switching approaches (control beam coupled to either upper or lower transition) were

considered. However, all of those articles were done with bulk QDs, which were not

embedded in any photonic structure. Thus none of them has observed the effect at ultra-

low power level and therefore a giant non-linearity has not been addressed.

Autler-Townes splitting approach has also been used for different types of artificial
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atom. In [156], the authors have observed the Autler-Townes splitting on a supercon-
ducting loop interrupted by Josephson junctions (superconducting qubit). Io-Chun Hoi
et.al. [32] demonstrated a single-photon router in the microwave regime, their artificial
atom is a multi-level superconducting transmon qubit, strongly coupled to a supercon-
ducting one-dimensional transmission line. By coupling two optical fields on three energy
levels of the transmon, one strong control field splits the original intermediate state into
a doublet due to Autler-Townes splitting. In this work, the system was seen as a single-
photon router, where the probe field in the single-photon regime is reflected without the
control field (routed to one port) and transmitted with the presence of the control field

(routed to another port).

Photonic Excitation | Input Output power of Yoar Broadband
structure method % % CB property
140-400
PC cavity Pulse 0.8% N/A photon- [43] No
s/pulse 2012
PC cavity Pulse 3% N/A 3.4 nW! [82] No
2012
120
PC cavity Pulse 2% N/A photons/ [42] No
pulse 2012
10-100
waveguide? CW 26% 26% photons/ > 100nW
lifetime

CB: Control beam.

MC: Micro-cavity.

CW: Continuous wave.

PC: Photonic crystal.

N/A: Not available.

* : Value inferred from given parameters.

1. With 40 ps pulse duration and 80 MHz pulse repetition rate
2 . QD-trumpet system studied in this thesis.

Table 5.2 — Quantum dot - photonic structure systems that have been reported to show
two-mode giant non-linearity.

All-optical switch and transistor can also be obtained with ultra-cold atom [33, 34,40,
157]. In [33], the group of G. Rempe from Mazx-Planck-Institut fir Quantenoptik, Germany
a combination of electromagnetically induced transparency (EIT) (see section 5.1.7 for
EIT) with Rydberg states and Rydberg blockade was used to create large nonlinearities.
The “average” gate photon number required to switch one or more source photons was

in the order of one photon. However, in this type of approach, a strong control field
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is always required to provide EIT effect. Another approach using a four-state N-type
laser-cooled cesium atom was reported in [157] by the group of M.D. Lukin from Harvard
University, USA, they demonstrated a all-optical transistor device in which one stored
gate photon controlled the resonator transmission of subsequently applied source photons,
this approach also needed a control laser to induces transparency (through EIT) for the

gate photons.

Another method to obtain low-power all-optical switching is to exploit the strong atom-
light interactions between a QD and a photonic crystal cavity. Cavity-QD interactions can
enable the strong coupling regime where a cavity and a QD mix to form new polariton
states. In this strong coupling regime, the system can exhibit a large nonlinear optical
response at low optical powers [25,41,43,158]. Therefore, controlling these nonlinearities
could enable all-optical switching at low energy. In addition, this approach also offers
fast switching time scale, in the ps regime. In particular, R. Bose and co-workers from
University of Maryland, USA reported a nonlinear all-optical switch by utilizing strong
coupling between a single QD and a planar photonic crystal cavity structure [43]. The
response of the strongly coupled system is modulated by a picosecond pump laser pulse
that induces a large nonlinear response, resulting in an observed modification of the trans-
mission and scattering amplitude of a second incident probe pulse. The pump energy
required for optical switching ranges from 140 to more than 440 photons. The same pro-
tocol has been addressed by the group of J. Viickovié. Their non-linear optical medium
consisted of a three-hole-defect photonic crystal cavity with a layer of self-assembled InAs
QD [82]. In [42], the group of A. Imamoglu from Institute of Quantum Electronics, ETH
Zurich also reported a similar study based on a strongly coupled QD-cavity system. A
control laser was tuned to one of the two polariton resonances, and a signal laser pulse
was scanned across the spectrum. The presence of the control laser reduced the polari-
ton signal and thus induced the non-linearity. The power of the control laser was ~120
photons/pulse. A short summary of those QD-cavity strong coupling system is shown in
table 5.2. Although this kind of method is different from our approach, it is worth to have

a comparison because of the similarity of the systems.

Alternatively, a single-photon transistor can be realized using nanoscale surface plas-
mons system proposed by M.D. Lukin and coworkers [46]. Surface plasmons are propagat-
ing electromagnetic modes confined to the surface of a conductor-dielectric interface. Their
unique properties make it possible to confine them to sub-wavelength dimensions [44,45].
Therefore, it was proposed that a non-linear effect can be exploited by the strong cou-
pling between individual optical emitters and propagating surface plasmons confined to
a conducting nanowire to perform a two-photon switch, leading to the realization of a

single-photon transistor.
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5.8 Chapter summary

This chapter presented a detailed study of two-mode giant non-linearity with two distinct
lasers coupled to a QD three-level system embedded in a photonic trumpet. A all-optical
switch was obtained by looking at the reflection of a probe beam coupled to one transition,
depending on the presence or absence of a second control beam coupled to the other
transition of a three-level system. Two approaches were considered with probe beam
coupled to upper or lower transition. In both two approaches, all-optical switches were
realized at the level starting from just a few photons/lifetime. The conclusion was that the
most efficient switch was achieved when the probe beam is coupled to the upper transition,
with a control power of just ~ 100 photons/lifetime to obtain maximum reflectivity. This
chapter once again confirmed the excellent one-dimensional waveguide property of the
photonic trumpet, as well as its efficient broadband operation feature. The results of
two-mode giant optical non-linearity presented in this chapter have not reached the unity
conditions for the realization of a single-photon transistor. However, it was also shown
that an ideal all-optical switch could be obtained in Autler-Townes approach with an

optimized system.



Chapter 6
Summary and Perspectives

This thesis work focused on a realization of two-mode optical giant non-linearity using
a InAs quantum dot (QD) embedded in a GaAs photonic trumpet, which paves a way
in obtaining an ultra-low-power all-optical switch. At the end of the thesis, the initial
goal has been achieved. We have demonstrated a all-optical switch in which the reflection
of a probe beam was modified by the presence of a control beam at the level of just a
few tens of photons per emitter lifetime. This is the lowest switch power level that has
been reported for a QD-waveguide system. In addition, the fact that the switch was
realized by two distinct optical beams is an experimental confirmation of the excellent
broadband operation feature of the photonic trumpet. The following paragraphs will

briefly summarize the main content of this thesis.

At the beginning of the thesis, chapter 2 gave an overview about semiconductor QDs
and photonic nanostructures. General properties, applications, multi-exciton levels and
fabrication process of self-assembled InAs QDs embedded in a GaAs photonic trumpet

were presented.

The following chapter presented the basic characterizations of PL spectroscopy of QDs
embedded in a photonic trumpet. A detailed description of experimental configuration was
presented. Non-resonant PL measurement was performed. Power dependence analysis
and polarization dependence PL measurement were taken into account to help identify
the neutral exciton (X) and biexciton (X X)) transitions of a single QD. Time-resolved PL
measurement was also carried out to study the lifetime of the neutral X and XX in a

single QD embedded in a trumpet.

The last two chapters are dedicated to the presentation of optical giant non-linearity
of the one-dimensional system. Firstly, in chapter 4, single-mode giant non-linearity was
investigated. The giant non-linearity was experimentally realized by characterizing the re-
flectivity of a one-dimensional system based on the saturation effect of a two-level system.

The reflectivity measurement was done by performing resonant fluorescence spectroscopy.
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To perform the resonant excitation measurement, a cross-polarized detection scheme was
established to subtract the laser background. A ultra-weak non-resonant laser was added
to the setup to reduce the spectra diffusion caused by the fluctuating charge environment
surrounding the QDs. The reflectivity as a function of excitation power was plotted show-
ing a non-linear behavior. Thanks to the excellent one-dimensional waveguide property of
the trumpet, the single-mode giant non-linearity was observed with just 2 photons/lifetime

at non-linear threshold.

The thesis then went on with chapter 5 considering a QD with three-level (or four-
level taking into account the exciton fine-structure dipoles) in a one-dimensional system, to
realize two-mode giant non-linearity. The idea was to use two distinct laser beams coupled
to two different transitions sharing a common level. One beam played the role of the
probe beam, the reflection of which was expected to change depending on the presence or
absence of a second beam, who played the role of the control beam. Two approaches were
considered with probe beam coupled to upper or lower transitions of the three-level ladder
system. This chapter firstly begun with introducing some basic theoretical backgrounds
of dressed atom pictures and Autler-Townes effect on a three-level system. In both two
approaches, all-optical two-photon switches were realized at the level starting from just a
few photons per lifetime. Eventually, the most efficient two-mode giant non-linearity was
achieved when the probe beam is coupled to the upper transition. In particular, a control
beam could switch a probe beam efficiently from zero refection to maximum reflection.
This demonstration is due to the excellent one-dimensional waveguide property of the
photonic trumpet. In addition, the fact that two laser beams with different frequencies
could be well coupled to two different transitions of a three-level system can only be of the
efficient broadband operation feature of the trumpet. Overall, those results provide a very
promising candidate for ultra-low power all-optical transistors and switches or eventually

to possible quantum information and computation applications.

For the future works, as discussed in section 5.5.1, for an ideal system, unity reflec-
tivity and highly preservation of coherence can be obtained by performing a co-polarized
excitation in Autler-Townes switch approach. To improve the system, firstly, it has been
stated in the previous chapters that the QD-waveguide coupling efficiency can be enhanced
by optimizing the dimensions of the trumpet. As shown in Fig. 2.13 and 2.14(b), for an
on-axis QD emitting at A = 950 nm, a trumpet with a bottom diameter around 240-260
nm features a spontaneous emission coupling rate 8 ~ 95%. For the first-lens input-output
coupling efficiencies, in [23], M. Munsch and co-workers reported a study on the far-field
emission of these photonic trumpets showing that the transmission into a numerical aper-
ture 0.75 objective lens could reach 95% for a trumpet with top diameter around 2.5 pm
and an opening angle around 10°. Combining those parameters can result in the total

input-output coupling efficiencies €;, = €yt &~ 90%.
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Another possibility of improvement is to minimize the effect of spectral broadening.
In particular, one idea to reduce the influence of pure dephasing is to implement a low-Q
cavity into the trumpet structure and take advantage of a fairly weak Purcell effect of
the cavity to enhance the spontaneous emission rate. Thus, the impact of pure dephasing
will be reduced. Although this approach will decrease the broadband operation property
of the trumpet, such a two-mode giant non-linearity experiment does not require an 100
nm broadband feature. For example, 1 nm broadband operation is enough to perform
the two-color resonant excitation with the QD in our study. In addition, reducing the
sensitivity of the system to decoherence sources like pure dephasing also enhances the
coherent scattering rate of the emitter.

A realization of a single-photon transistor would be an important step toward the
realization of optical computing and eventually quantum computing. Nevertheless, the
question whether or not quantum computation could really be achieved has been still
controversial. For example, in [159, 160], the authors have proved the impossibility of
realizing a quantum logic based on single-photon Kerr nonlinearities to achieve cross-
phase-modulation between two optical fields.

Besides the context of giant optical non-linearity, another interesting perspective is to
combine quantum optics and mechanical properties of this one-dimensional system. It has
been shown that the photonic trumpet can be considered as a mechanical oscillator [96],
where the influence of the mechanical motion on the fluorescence properties of the emitter
was evidenced. The system with a quantum emitter coupled to a mechanical oscillator
is a hybrid system. In [161], it was proposed that a two-level quantum emitter under a
modulated resonant optical excitation could behave like an optomechanical transducer and
create constructive interferences of classical phonon fields in the oscillator. Thus, optically
resonant driving of the QD results in the excitation of large amplitude mechanical oscil-
lations. This mechanism could open up interesting applications, for example a single-shot
measurement of a QD state with high signal to noise ratio or a temperature manipulation

of the mechanical mode.
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Appendix A

Fitting method for the unknown
parameters of the quantum

dot-waveguide system

This appendix will briefly show the fitting method to find the parameters of the real system.
As has been showing in chapter 4 and 5, the unknown parameters of a QD-waveguide
system are the input-coupling efficiencies €;,, €4t and the origins of the resonant spectra
linewidth broadening. One of the ways to find those parameters is to rely on Autler-
Townes splitting measurement. From section 5.1.1, we know that when the intermediate
state of a three-level atom is dressed by a strong control field, it will be split into two
new states with the Autler-Townes splitting €2 = \/5% + Q% For a non-perfect system, 2,
is defined as the Rabi frequency of the control field inside the waveguide before coupling
with the QD. At zero detuning of the control field, Q = Q; = |/£;,Q0 with (g is the real
Rabi frequency of the control field before entering the waveguide, which can be measured
with normal power detectors. Therefore, with a given Q4 and knowing the Autler-Townes
splitting from the two-laser scan, one can firstly infer the input coupling efficiency of the
waveguide.

The next unknown parameters are the contributions of homogeneous broadening (pure
dephasing factor v*) and inhomogeneous broadening (spectral diffusion factor ox) on the
total linewidth of the resonant spectrum. Pure dephasing arises from fast fluctuations of
the medium that causes rapid vibrations of energy levels in a time scale faster than the
recombination time of the emitter. Therefore this fluctuation is homogeneous and pure
dephasing rate v* can be appeared in Bloch equations of the field-atom interaction (see
section 4.1.2). By contrast, spectral diffusion arises due to fluctuation of the environment
surrounding the emitter at a rate higher than the spontaneous emission rate but much

shorter than the detection limit of the CCD devices. This results in an inhomogeneous
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broadening of the spectrum. The question is what are the weights of these two types of
broadening in the total spectral width. From the resonant spectrum, a total spectral width
4.5 peV is easily to be extracted, in which it includes 0.5 peV radiative-limit linewidth (see
section 4.2.3). Thus the total spectral broadening is 4 ueV. Fig. A.1 shows an example of
a fitting process based on the experimental result in a two-mode giant non-linearity based
on Autler-Townes approach. Fig. A.1(a) plots the experimental result of a two-laser scan
with control power 274 nW. As mentioned above, the first step is to find &;,, which is
0.26 in this case. Fig. A.1(a), (b) and (c) show the theoretical plots for different values
of v*. Comparing them to the experimental plot, one can see that Fig. A.1(c) is the best
fit to the measurement. Eventually, the homogeneous and inhomogeneous linewidth are
selected to be respectively 1 peV and 3 ueV.

One can also base on the probe reflectivity experimental results in population switch
approach to find the unknown spectral broadening parameters. From the experiment
data in section 5.4.2 for two different probe powers, different values of homogeneous and
inhomogeneous broadenings are applied in the theoretical calculation to obtain the best
fit. The fitting plots are shown in Fig. A.2. One could see that similar to the above
fitting process, the most suitable fit is for a pure dephasing v* = 1ueV, as showing in
Fig. A.2(b). The good agreement between two fitting approaches gives the final reliable

broadening parameters, as well as the coupling coefficients.
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Figure A.1 — Two-laser scan in Autler-Townes approach with a probe beam cou-
pled to 0 +— X transition - The probe power Ppyope/Psqt = 0.2. The control power is
274 nW in this case (see Fig. 5.21 in the main text). In the calculation, the total linewidth
broadening is always 4 peV, the input and output coupling efficiencies €;, = €, = 0.26. (a)
Experimental data. (b) Theoretical calculation for homogeneous broadening (pure dephasing)
~v* = OpeV and inhomogeneous broadening (spectral diffusion) ox = 4peV . (¢) Theoretical
calculation for v* = 1peV and ox = 3peV. (d) Theoretical calculation for v* = 4ueV and
ox =0ueV .
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Figure A.2 — Calculated probe reflectivity for different homogeneous broadenings
- The experimental data obtained for two different probe powers 0.5 nW (P/Pse: = 0.1)
and 2.6 nW (P/P,q = 0.5) is fitted with different combinations of homogeneous (7*) and
inhomogeneous (ox) broadenings, the total linewidth broadening is always 4 peV in the
calculation. (a) v =0, (b) v =1 peV and (c) yx =4 peV.



Appendix B. Observation of suspended and giant trumpets 149

Appendix B

Observation of suspended and

giant trumpets

In this thesis, we also perform the measurements for other types of trumpet, namely
“suspended” and “giant” trumpets. Both of them were fabricated by J. Claudon and
J-M. Gérard in CEA/INAC. This appendix will briefly introduce the structures and also

present the basic optical spectroscopy measurements of these two trumpet families .

B.1 Suspended trumpet

Figure B.1 — Scanning electron microscope views of suspended trumpets. The top diameter
ranges from 1.5 to 3.3 pm with 20 nm step. The opening angle of the taper is 8.5°.

Scanning electron microscope (SEM) images of suspended trumpet are shown in Fig.
B.1. The main difference of this sample compared to the “free-standing” trumpets pre-
sented in the main part of the thesis is that the trumpets are held by the pillars. The
bottom of the trumpet is not connected to the substrate. This structure offers improved
mechanical stability and robustness.

Besides the round-shape top facet samples, this set of suspended trumpets also comes

up with elliptical-shape top facet samples. .
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B.2 Giant trumpet

Figure B.2 — SEM images of giant trumpets. The maximum top diameter is 7 um.

This family of “free-standing” trumpet is considered “giant” because in comparison of
the normal trumpets presented, the top facet diameter can reach up to 7 ym. This set of
trumpets has an opening angle up to 10.5° (compared with 5° of the normal ones), the
height is 26.8 ym (compared with 17 pm of the normal ones). The purpose of fabricating
a large top facet trumpet is to improve the output beam directivity and thus obtain highly

Gaussian far-field emission [135].

B.3 Photoluminescence spectra of quantum dots embedded

in a suspended trumpet

In the following sections, we will show the preliminary results of the photoluminescence
(PL) and resonant excitation (RE) spectra from suspended trumpets. The study of PL
spectroscopy is carried out in the same configuration as the normal free-standing trumpets.
We focus just on the trumpets which have circular top diameter. The most efficient PL
is observed with the trumpets with top diameter around 2.5-2.7 um (which corresponds
around 500 nm base diameter where QDs are located). The percentage of the “alive”
trumpets, which means the trumpets that emit efficient PL, is relatively higher compared
with the normal trumpets. In addition, each suspended trumpet contains many active
QDs. Fig.B.3 shows a typical PL spectra of a suspended trumpet, with a top diameter
2.66 pm. The non-resonant excitation power is 7 uW. A high density of emission lines is
observed. In general, the emission energy is similar to the QDs embedded in free-standing

trumpets.
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Figure B.3 — An example of PL spectra from QDs embedded in a suspended
photonic wire - Many emission lines are observed. The emission linewidth is different from
QD to QD, which is in the range from a few tens of ueV to more than 100 ueV.
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Figure B.4 — Exciton and biexciton lines of a InAs quantum dot embedded in a
suspended trumpet - The X and X X lines are well fitted two curves (blue and red lines),
which represent two linearly polarized emission lines.
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Figure B.5 — Exciton and biexciton power dependence of a QD in a suspended trumpet.
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Figure B.6 — Biexciton Binding energy as a function of exciton energy for InAs QDs
in suspended and free-standing trumpets - The binding energy of InAs QDs embedded in
suspended trumpet matches the dependency of the ones embedded in free-standing trumpets.

Fig.B.4 shows a typical PL spectra of a pair of X and X X emission lines from a QD
inside a suspended trumpet. Two orthogonal-polarized lines are clearly observed. The
fine-structure splitting (FSS) energy of this X level is 110 peV, the linewidth of the lines
is about 85 peV. Investigating other QDs gives linewidths which are in the same range
of the QDs embedded inside the free-standing trumpets. The non-resonant excitation
power dependence of the X and X X lines is also plotted in Fig. B.5. The linear and
quadratic dependence are observed for X and X X lines, with the exponents 0.92 and
1.93, respectively.

For this QD, the X X binding energy is close to 1 meV, with the X emission energy
~1.354 eV. If we place this value together with the binding energies obtained for free-
standing trumpets, the plot is shown in Fig. 3.11. A good trend is still observed confirming

the linear dependence of binding energy on the X emission energy.

B.4 Resonant excitation spectra of suspended trumpet

RE measurement of the suspended trumpets is carried out in exactly the same manner
as with the free-standing trumpets. A weak non-resonant laser is also introduced to help
reducing any possible spectral diffusion process. Fig. B.7 shows the PL spectrum for the
X states of a InAs QD embedded in a suspended trumpet with top diameter 2.62 ym. Two
FSS dipoles are observed with the linewidth about 27 ueV', the FSS energy is found out to
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Figure B.7 — Photoluminescence spectrum of the excitonic level of a QD in a suspended
trumpet used for the resonant excitation measurement.

be about 21 peV. In principle, narrow PL linewidths promise to obtain very narrow RE
linewidths of these transitions. Unfortunately, in our measurement, we observe very large
resonant spectra linewidths with this QD, as showing in Fig. B.8(a). The black circles
are the experimental data. The data was fitted with the black and blue curves, which
corresponds to the two FSS dipoles. The black curve is the sum of the two individual
fitted curves. Various amount of the weak non-resonant laser has been used in an effort
to reduce the spectral linewidth. However, the narrowest linewidth observed is 15.6 pueV,
which is more than 3 times larger than the linewidth obtained with free-standing trumpet.
The FSS energy observed by scanning the resonant laser is in the good agreement with
the value obtained by PL spectrum. Many resonant excitation measurements have been
performed for various QDs from different trumpets, unfortunately, the same rather large
linewidth is observed.

For giant trumpets, the very similar behavior is obtained for both PL spectroscopy
and RE measurement. Fig. B.8(b) shows the RE spectra for a giant trumpet with top
facet diameter of 5.32 um. Two RE peaks are observed with the large linewidth of 15.8
peV . the exciton FSS energy is 12.7 peV. The large amount of linewidth broadening
observed for both two new sets of samples can be attributed to some intrinsic properties
of the samples or to the fabrication process. For example, the effect of spectral diffusion is
too intense and it can not be reduced by the weak non-resonant laser. Further study and
measurement would be required to fully understand and to be able to efficiently reduce

the spectral broadening of these two samples.
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Figure B.8 — Resonant excitation spectra of the QD embedded in (a) a suspended trumpet
and (b) a giant trumpet. Two fine-structure dipoles are observed with the expected splitting,
however, the linewidth of the resonant spectra are broad even with the presence of a weak
non-resonant laser.
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Appendix C

An alternative to counteract the

temporal spectral drift
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Figure C.1 — Experimental setup of the resonant excitation with the presence of an intense
fiber laser. The fiber laser has the energy much lower than the emission energy of the QD.

As has been mentioned in the main part of this thesis, temporal spectral blue-drift
has been an obstacle which causes many difficulties in performing the measurements. In
particular, the emission energies of the X and X X states tend to blue-shift with time.
The drift was attributed to the sticking of oxygen molecules onto the wire, which modified
the surface charge and hence the electric filed seen by the QD [95]. Since the resonant
fluorescence measurements requires a setup with as high stability as possible, the fact the

target transition frequencies move with time leads to the unavoidable re-alignment and
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calibration of the lasers to be in the optima scanning ranges. For that reason, it would
be ideal if the temporal drift problem could be resolved. In this context, we propose an
alternative to partialy counter the blue-drift, by using an extra intense laser beam, with
an energy much lower than the QD transition energies, to red-shift the emission lines with
a speed exactly equal to the natural blue-drift speed. Hence, it would help to stabilize the

emission lines.

It is commonly known that temperature of the QD affects its emission energies, like
it was investigated in [52] for InAs QD embedded in GaAs photonic trumpet. Increasing
the temperature of the system could cause surface effects on the trumpet environment
surrounding the QDs. This leads to the red-shift of the emission lines. Base on that
temperature effect, we come up with an idea of using an intense laser, to heat up the
trumpet and red-shift the emission lines to encounter with the natural blue-drift. Fig.
C.1 describes the setup of the resonant excitation measurement. The experimental setup
is the same as described in chapter 4, with an additional fiber laser introduced to the
setup (Thorlabs laser diode BL976-PAG500). The laser has maximum power up to 600
mW and it has a wavelength of 976 nm (1.27 eV), which is much higher than the emission
wavelengths of the X and XX of InAs QDs. This laser is set to be horizontally polarized
to pass through the PBS. The power of the laser is monitored with a controller (Thorlabs
CLD1015).
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Figure C.2 — Temporal resonant spectra without (a) and with (b) the presence of the intense
fiber laser. With a proper tuning of power, the red-shift caused by the fiber laser counteracts
perfectly with the natural drift, thus a stable spectrum is obtained.

Fig. C.2 demonstrates the effect of the additional intense laser. In Fig. C.2(a), the
temporal evolution of a normal resonant spectra is illustrated, which shows clearly how
the emission energy of the X transition changes with time. In Fig. C.2(b), the fiber laser
is turned on. The red-shift speed induced by the intense fiber laser increases progressively

with laser power. Therefore, by carefully tuning the power, the red-shift speed can be set



Appendix C. An alternative to counteract the temporal spectral drift 157

exactly equal to that of the natural blue-drift. As a result, a stable emission energy is

obtained.
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Figure C.3 — (a) Resonant spectra with and without the presence of the intense fiber laser.
(b) Resonant spectrum with the presence of the fiber laser, the spectrum shows the possibility
of containing one more transition.

This technique brings a way to stabilize the emission lines. However, it also induces
a broadening of the resonant spectrum. This broadening is probably a result of thermal
effects. For example, thermal fluctuations of charges around the quantum dots may induce
the spectral jittering and leads to a broader spectrum. Fig. C.3(a) shows the resonant
spectra when the intense fiber laser is turned ON and OFF. The resonant spectrum in
the presence of the intense fiber laser is broader and it has an asymmetrical shape. This
spectral shape can be fitted as shown in Fig. C.3(b), which appears to be the sum of two
individual peaks. The additional transition may come from the fluctuation of the charges
surrounding the QD. To fully understand and have better control of the spectral width, a
more systematic study is required to have a better understanding of this phenomenon.

In our experiment, although this technique has not been used simultaneously with a
resonant excitation measurement, it can be useful to red-shift the emission lines back to
preferred regions (in case of a QD nature blue-drift). For example, in a two-laser scan
measurement in chapter 5, it is not so easy to set up the lasers to scan in single-mode in the
QD emission ranges. Therefore, having the possibility to bring back the emission lines to

well-prepared laser scanning ranges makes it more convenient to perform the measurement.
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Résumé

Controler la lumiére avec de la lumiére au niveau du photon unique est un objectif
fondamental dans le domaine de l'information quantique, ou de 1'ordinateur optique a trés
basse puissance. Un émetteur quantique constitué d'un unique systéme a deux niveaux est
un milieu trés non-linéaire, pour lequel l'interaction avec un photon peut modifier la
transmission d'un photon suivant. Dans ce scenario, le défi pour obtenir une telle non-
linéarité géante est d'optimiser l'interaction lumic¢re maticre. Une solution a ce défi est
d’insérer 1'émetteur quantique dans une structure photonique. Ce systeme est appelé
“atome uni-dimensionnel”: la collection de la lumiére, tout comme la probabilité
d'absorber un photon se propageant dans la structure est maximum.

Dans ce travail, nous avons utilisé ce type de systéme pour réaliser une non-linéarité
géante a deux modes, dans laquelle la réflexion d'un des modes est contrélée par un autre
mode au niveau du photon unique. Le systéme est constitué¢ d'une boite quantique semi-
conductrice InAs/GaAs, qui peut étre considéré comme un atome artificiel, insérée dans
un fil photonique en GaAs opérant comme un guide d'onde. Le fil photonique définit un
mode spatial unique autour de I'émetteur et offre une interaction lumiére-matic¢re avec une
efficacité quasi-idéale. De plus, ce fil photonique présente cette propriété sur une large
bande spectrale. Grace a ces deux propriétés, nous avons démontré expérimentalement
une non-linéarité géante a un mode et a deux modes a un niveau de quelques dizaines de
photons par durée de vie de I'émetteur. Cela permet de réaliser un interrupteur tout
optique intégré, a tres faible seuil.

Mots-clés: Nanophotonique, boite quantique, semi-conducteur, nanophysique,
optique non-linéaire.

Abstract

Controlling light by light at the single photon level is a fundamental quest in the field
of quantum computing, quantum information science and classical ultra-low power
optical computing. A quantum light emitter made of a single two-level system is a highly
non-linear medium, where the interaction of one photon with the medium can modify the
transmission of another incoming photon. In this scenario, the most challenging issue to
obtain a giant optical non-linearity is to optimize photon-emitter interaction. This issue
can be overcome by inserting the quantum emitter inside a photonic structure. This
system is known as “one-dimensional atom”: the light collection efficiency as well as the
probability for an emitter to absorb a photon fed into the structure is maximal.

In this study, we aim at using such kind of system to experimentally realize a two-
mode giant non-linearity, in which the reflection of one light mode is controlled by
another light mode at the single-photon level. The system consists of a semiconductor
InAs/GaAs quantum dot, which can be considered as an artificial atom, embedded inside
a GaAs photonic wire, which is an optical waveguide. The photonic wire defines a single
spatial mode around the emitter and offers a close to unity light-emitter interaction
efficiency. In addition, the photonic wire also possesses a spectrally broadband operation
range. Thanks to these two excellent features of the system, we experimentally
demonstrate in this thesis a single-mode and a two-mode giant non-linearity obtained at
the level of just a few tens of photons per emitter lifetime. This realizes an integrated
ultra-low power all-optical switch.

Keywords: Nanophotonics, quantum dot, semiconductor, nanophysics, non-linear
optics.
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