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Introduction

In general, the structure of a (hyper)graph can be complicated, both from a combinatorial
and algorithmic point of view. On the other hand, it is often the case that restricting the
range makes possible to obtain certain properties. In this thesis, we consider several (hy-
per)graph parameters and study whether restrictions to subclasses of hypergraphs allow to
obtain desirable combinatorial or algorithmic properties. Most of the parameters we consider
are special instances of packings and transversals of hypergraphs and we examine essentially
three kinds of “desirable” properties:

• Existence of a large packing;

• Existence of an upper bound for the transversal number in terms of the packing number;

• Polynomial-time decidability of the packing and transversal numbers and of some (hy-
per)graph properties.

Along the way, we also consider a prominent measure of the “complexity” of a hypergraph:
its VC-dimension.

Let us now properly define the notions introduced above. A packing of a hypergraph
H = (V,E) is a set of pairwise disjoint edges of H. A related notion is that of a transversal
(also known as hitting set or covering) of H, which is a subset X ⊆ V intersecting each edge
of H. Clearly, every hypergraph has a packing (the empty set) and so it is natural to look
for maximum packings, namely packings with as many edges as possible. Similarly, every
hypergraph has a transversal (the vertex set) and we are interested in minimum transversals,
namely transversals with as few vertices as possible. The packing number ν(H) is the number
of edges in a packing ofH of maximum size (a maximum packing) and the transversal number
τ(H) is the number of vertices in a transversal ofH of minimum size (a minimum transversal).

In Chapter 2, we study the packing number of two hypergraphs arising from graphs. The
first is obtained by considering the graph itself, and so a packing is what is usually known as
a matching. The other hypergraph is the dual of the clique hypergraph of a graph G, where
the clique hypergraph is the hypergraph having as vertices the vertices of G and as edges the
maximal cliques of G. It is easy to see that a packing of this hypergraph is nothing but an
independent set of G. A natural relation between the notions of matching and independent
set arises when considering the class of line graphs1: Indeed, there is a bijection between the
matchings of a graph and the independent sets of its line graph. Line graphs constitute a rich
and ubiquitous class of graphs, introduced by Whitney [183]. In Chapter 2, we concentrate
on a subclass of line graphs: line graphs of subcubic triangle-free graphs. In particular, we
provide several characterizations of this class and we study the independence number of its
graphs. The famous Brooks’ Theorem asserts that every connected graph G which is neither
a complete graph nor an odd cycle must be ∆(G)-colourable and so α(G) ≥ |V (G)|/∆(G).
Following this result, several authors considered the problem of finding tight lower bounds
for the independence number of graphs having bounded maximum degree and not containing
cliques on 3 or 4 vertices [66, 67, 93, 129, 176]. In particular, Kang et al. [104] showed
that if G is a connected (K4, claw)-free 4-regular graph on n vertices then, apart from three
1 The line graph of a graph G is the graph having as vertices the edges of G, two vertices being adjacent if the
corresponding edges intersect.
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2 Introduction

exceptions, α(G) ≥ (8n− 3)/27. We show that if G is a (K4, claw,diamond)-free graph on n
vertices, then the tight bound α(G) ≥ 3n/10 holds.

The question of whether a graph admits a perfect matching has been deeply investigated
but not much is known about general lower bounds for the matching number. Biedl et al.
[24] showed that any subcubic graph G has a matching of size (|V (G)| − 1)/3 and that any
cubic graph G has a matching of size (4|V (G)| − 1)/9 and Henning et al. [95] showed that
any connected cubic triangle-free graph G has a matching of size (11|V (G)| − 2)/24. Given
the correspondence between matchings of a graph and independent sets of its line graph, our
previous lower bound for the independence number implies the following tight lower bound
for the matching number: if G is a subcubic triangle-free graph with ni vertices of degree i,
then α′(G) ≥ 3n1/20 + 3n2/10 + 9n3/20.

The problem of deciding, given a hypergraph H and an integer k, whether τ(H) ≤ k is
NP-complete in general. In Section 2.2.3, we consider the special case where H is the cycle
hypergraph ofG, i.e. the hypergraph whose vertices are the vertices ofG and whose edges are
the vertex sets of cycles ofG. This problem is known as FEEDBACK VERTEX SET. Speckenmeyer
[174, 175] showed that it remains NP-hard even for planar graphs with maximum degree
4 and Ueno et al. [180] showed that it becomes solvable in polynomial time for subcubic
graphs. In Section 2.2.3, we strengthen the results in [174, 175] by showing the NP-hardness
for line graphs of planar cubic bipartite graphs and we provide an inapproximability result for
line graphs of subcubic triangle-free graphs. Finally, in Section 2.2.4, we address two other
well-known NP-complete graph problems: HAMILTONIAN CYCLE and HAMILTONIAN PATH. In
particular, we show that they remain NP-hard for some subclasses of line graphs of planar
cubic bipartite graphs, thus strengthening a result by Lai and Wei [119].

One possible generalization of line graphs is given by the following construction: For an
integer k ≥ 2, the k-line graph Lk(G) of a graph G is the graph having as vertices the cliques
of G of size k, two vertices being adjacent if the corresponding cliques intersect in a clique
of size k − 1. This notion has been introduced independently and with different motivations
by several authors [43–45]. Clearly, 2-line graphs are the usual line graphs, whereas 3-line
graphs are also known as triangle graphs. Unlike line graphs, the class of k-line graphs
with k ≥ 3 is not hereditary. Nevertheless, motivated by Tuza’s Conjecture2, we provide in
Section 2.3 a partial list of forbidden induced subgraphs for this class.

Let us now consider again packings and coverings of a hypergraph H and see how they
interact. Since no vertex covers two edges of a packing, we have τ(H) ≥ ν(H). Therefore, a
large packing can be considered as an obstruction to a small transversal. A family of hyper-
graphs satisfies the Min-Max Property if ν(H) = τ(H), for each memberH of the family. There
are several families of hypergraphs satisfying the Min-Max Property and the most prominent
example is probably given by the well-known König-Egerváry Theorem3. The Min-Max Prop-
erty allows a good characterization of the packing and transversal numbers. Indeed, to show
that ν(H) ≤ k or τ(H) ≥ k, it is enough to exhibit a transversal or a packing of size k, respec-
tively. Unfortunately, most families of hypergraphs do not satisfy the Min-Max Property, but
it is still of interest to find an upper bound for τ in terms of ν, if any. A family of hypergraphs
satisfies the Erdős-Pósa Property if there exists a function f such that τ(H) ≤ f(ν(H)), for
each memberH of the family. This implies that one parameter is characterized by its obstruct-
ing analogue, or dual: either H contains a packing of size k or it contains a transversal of size
f(k). The family of r-uniform hypergraphs satisfies the Erdős-Pósa Property. Indeed, consider
2 This conjecture will be covered in Chapter 3. 3 This theorem asserts that the family of bipartite graphs satisfies
the Min-Max Property.



Introduction 3

an r-uniform hypergraph H and a maximal packing of H. Since the union of the edges in this
packing intersects all the edges of H, we have τ(H) ≤ rν(H) and it is not difficult to see that
this inequality is tight.

In Chapter 3, we consider three families of hypergraphs satisfying the Erdős-Pósa Property
and we seek to determine the optimal bounding functions. The first family consists of duals of
clique hypergraphs. It is easy to see that the transversals of such a hypergraph correspond to
the clique covers of the underlying graph and we have already mentioned that packings cor-
respond to independent sets. For historical reasons, it is convenient to stick to the underlying
graph and we say that a class of graphs G is θ-bounded if there exists a function f : N → R
such that for all G ∈ G and all induced subgraphs H of G, we have θ(H) ≤ f(α(H)). Such a
function f is a θ-bounding function for G. Gyárfás [81] introduced the concept of θ-bounded
class in order to provide a natural extension of the class of perfect graphs: indeed, this class
is exactly the class of graphs θ-bounded by the identity function. In [81], he also formulated
the following meta-question: given a class G, what is the smallest θ-bounding function for
G, if any? In Section 3.2, we consider this question for classes of graphs having bounded
maximum degree. It is easy to see that θ(G) ≤ kα(G), for any graph G with maximum
degree at most k. On the other hand, for k = 3, we show that this bound is far from op-
timal: f(x) = b3

2xc is a θ-bounding function for the class of subcubic graphs and it is best
possible. Moreover, we give some insight for the case of graphs with maximum degree four.
The study of these two cases is also motivated by a result of Henning et al. [95] showing
that θ(G) ≤ 3

2α(G), for any subcubic triangle-free graph G, and by a result of Joos [101]
showing that θ(G) ≤ 7

4α(G), for any triangle-free graph G with maximum degree four. In
Section 3.2, we also treat some algorithmic aspects related to clique covering and we show, in
particular, that the problem of finding a minimum-size clique cover of a planar graph admits
a polynomial-time approximation scheme.

In Section 3.3, we consider the triangle hypergraph of a graph G, which is the hypergraph
having as vertices the edges of G and whose edges are the subsets spanning triangles of G.
Since the triangle hypergraph is 3-uniform, its transversal number is at most three times the
packing number. In other words, the minimum number of edges of G whose deletion results
in a triangle-free graph is at most three times the maximum number of edge-disjoint triangles
of G. In fact, Tuza [178] conjectured that this can be improved: the transversal number of
the triangle hypergraph is at most twice the packing number. If true, this conjecture would
be tight, as shown by the complete graph on 4 vertices. Several partial results on Tuza’s
Conjecture have been obtained and in Section 3.3 we concentrate on some subclasses of K4-
free graphs. The classes we consider are essentially of two kinds: graphs with edges in few
triangles (at most four) and graphs obtained by forbidding certain odd-wheels. We show that,
in these cases, it is in fact possible to considerably reduce the constant 2 in Tuza’s Conjecture.
The results proved in Section 3.2 play a big role in our reasoning.

Finally, in Section 3.4, we consider the cycle hypergraph. Contrary to the triangle hy-
pergraph, the cycle hypergraph need not be uniform. Nevertheless, a fundamental result by
Erdős and Pósa [59] asserts that the transversal number of cycle hypergraphs is bounded by
a function of the packing number. Kloks et al. [107] conjectured that cycle hypergraphs of
planar graphs admit the constant function 2 as a bounding function. In other words, the min-
imum number of vertices of a planar graph whose deletion makes it acyclic is at most twice
the maximum number of vertex-disjoint cycles. This is known as Jones’ Conjecture and, if
true, it would be best possible, as shown by wheel graphs. Not much is known about Jones’
Conjecture and, in Section 3.4, we show it holds for claw-free graphs with maximum degree
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4 and we provide some properties a minimum subcubic counterxample must have, if any.
In Chapter 4, we consider a prominent measure of the “complexity” of a set system4: its

VC-dimension. Given a set system H on X and a subset Y ⊆ X, we say that Y is shattered
by H if {E ∩ Y : E ∈ H} = 2Y and the VC-dimension of H is defined as the maximum size
of a set shattered by H, or as ∞ if arbitrarily large subsets can be shattered. The notion
of VC-dimension was introduced by Vapnik and Chervonenkis [181] and, in Chapter 4, we
are interested in the VC-dimension of set systems arising from graphs. For every family P of
subgraphs of a given graph G, we can naturally define the VC-dimension VCP(G) of G with
respect to the family P as the VC-dimension of the set system induced by P. In this way
we obtain several different notions of VC-dimension, each one related to a special family of
subgraphs. The VC-dimension with respect to some of these families is equal to well-known
parameters: if P is the family of complete subgraphs then VCP is the clique number, while
if P is the family of subgraphs induced by independent sets then VCP is the independence
number.

Kranakis et al. [115] initiated a systematic study of the VC-dimensions of graphs with re-
spect to families of subgraphs. In particular, they showed that the VC-dimension VCcon(G) of
a graph G with respect to connected subgraphs differs by at most 1 from the connected domi-
nation number of G. In Chapter 4, we continue their systematic study and we concentrate on
the VC-dimension with respect to k-connected subgraphs. Given a graph G, this quantity can
be thought as the maximum size of a subset A ⊆ V (G) such that, no matter how many ver-
tices of A are deleted from G, there is a k-connected subgraph of G containing the remaining
vertices of A. We extend the results in [115] by providing tight upper and lower bounds for
the VC-dimension with respect to k-connected subgraphs, for k ≥ 2.

Papadimitriou and Yannakakis [155] considered the problem of deciding the VC-dimension
of a general set system: Given a set system H (by its incidence matrix) and an integer s,
does H have VC-dimension at least s? They introduced the complexity class LOGNP and
showed that the problem in question is complete for it. In this context, it is natural to inves-
tigate GRAPH VCP DIMENSION: the problem of deciding, given a graph G and an integer s,
whether VCP(G) ≥ s holds. Kranakis et al. [115] showed that GRAPH VCcon DIMENSION is
NP-complete. In Section 4.3, we extend this result by showing that GRAPH VCk-con DIMEN-
SION is NP-complete even for split graphs, for any k. On the positive side, we show it can
be decided in linear time for graphs of bounded clique-width and in polynomial time for the
subclass of split graphs having Dilworth number at most 2. Finally, we prove that GRAPH

VCk-con DIMENSION remains NP-hard for some subclasses of planar bipartite graphs in the
cases k = 1 and k = 2.

In Section 4.4, we provide complexity dichotomies for GRAPH VCcon DIMENSION and CON-
NECTED DOMINATING SET when restricted to classes of graphs obtained by forbidding a sin-
gle induced subgraph (monogenic classes). The first dichotomy in monogenic classes was
obtained by Korobitsin [108] for DOMINATING SET and only few other dichotomies in mono-
genic classes are known [1, 79, 102, 114]. Our results show that the complexities of GRAPH

VCcon DIMENSION, CONNECTED DOMINATING SET and DOMINATING SET all agree in mono-
genic classes.

In Chapter 5, we study in more details some of the algorithmic graph problems mentioned
above (and some others). We have seen that most of them are NP-hard even for restricted
classes of graphs, while they might become solvable in polynomial time for some subclasses.
Therefore, assuming that P 6= NP, it is natural to ask when a certain “hard” graph problem
4 This notion coincides with that of hypergraph.



Introduction 5

becomes “easy”: Is there any “boundary” separating “easy” and “hard” instances? In Chap-
ter 5, we consider this question for hereditary graph classes. For a problem Π, we say that a
hereditary class of graphs X is Π-hard if Π is NP-hard for X, and Π-easy if Π is solvable in
polynomial time for graphs in X. In a first attempt to answer the meta-question posed above,
one might be tempted to consider maximal Π-easy classes and minimal Π-hard classes. In
fact, the first approach immediately turns out to be meaningless: there are no maximal Π-
easy classes. Moreover, minimal Π-hard classes might not exist at all, as there might exist
infinite descending chains of Π-hard classes. This suggests that the “limit” of an infinite “de-
creasing” sequence of Π-hard classes should play a role in the search of a “boundary” between
easy and hard classes. Alekseev [5] formalized this intuition by introducing the notions of
limit class and boundary class for INDEPENDENT SET. In fact, these concepts are completely
general and can be stated as follows [8]. Given an NP-hard graph problem Π and a Π-hard
class of graphs X, a class Y is a limit class for Π with respect to X ((Π, X)-limit in short)
if there exists a sequence Y1 ⊇ Y2 ⊇ . . . of Π-hard subclasses of X such that

⋂
n≥1 Yn = Y .

The class Y is a limit class for Π (Π-limit in short) if there exists a Π-hard class X such that
Y is (Π, X)-limit. Finally, an inclusion-wise minimal (Π, X)-limit class is a boundary class
for Π with respect to X ((Π, X)-boundary in short) and a class Y is a boundary class for Π
(Π-boundary) if there exists a Π-hard class X such that Y is (Π, X)-boundary.

Alekseev [5] and Alekseev et al. [8] showed that a boundary class with respect to a Π-
hard class represents indeed a meaningful notion of “boundary” between Π-hard and Π-easy
subclasses: A class X is Π-hard if and only if it contains a (Π, X)-boundary class. Moreover,
Π-boundary classes can be used to characterize the finitely defined graph classes5 which are
Π-hard: A finitely defined class is Π-hard if and only if it contains a Π-boundary class [8].

Alekseev [5] studied INDEPENDENT SET and revealed the first boundary class for this prob-
lem. Other problems have been studied in the context of boundary classes. For example, Alek-
seev et al. [7] revealed three boundary classes for DOMINATING SET, Malyshev [135] found a
fourth boundary class for this problem and Korpelainen et al. [110] revealed two boundary
classes for HAMILTONIAN CYCLE. So far, the complete description of boundary classes has been
obtained only for a single problem, the so-called LIST EDGE-RANKING [136]. In Chapter 5, we
continue the study of boundary classes for NP-hard problems. In Section 5.2, we provide the
first boundary class for the closely related HAMILTONIAN CYCLE THROUGH SPECIFIED EDGE

and HAMILTONIAN PATH. In Section 5.3, we reveal the first boundary class for FEEDBACK VER-
TEX SET. Finally, in Sections 5.4 and 5.5 we make some progress towards the determination
of some boundary classes for two other problems involving non-local properties: CONNECTED

DOMINATING SET and CONNECTED VERTEX COVER.

Chapter 2 is partially based on [144], Chapter 3 on [143, 144], Chapter 4 on [145] and
Chapter 5 on [142].

5 Recall that a hereditary class is finitely defined if the set of its minimal forbidden induced subgraphs is finite.





CHAPTER 1

Preliminaries

In this chapter we introduce most terminology and basic results used in the thesis. Further
definitions are presented later, in special cases where more explanations are necessary.

A reader familiar with the basic topics in graph theory may skip single sections or even
the whole chapter. We refer to [28, 52, 182] for complete introductions to graph theory and
for the missing proofs.

Graphs and subgraphs. A graph is a pair G = (V,E) consisting of a set V of vertices and
a set E (disjoint from V ) of edges together with a function that associates to each edge e a
pair of (not necessarily distinct) vertices, called the endpoints of e. If the edge e has endpoints
u and v, we usually write e = uv in place of e = {u, v}. In this thesis we consider only finite
graphs, namely graphs with a finite number of vertices. Given a graph G, we usually denote
its vertex set by V (G) and its edge set by E(G). The order of G is the number of vertices of
G, sometimes denoted by n(G), and the size of G is the number of edges of G, also denoted
by m(G). A loop is an edge whose endpoints are equal and multiple edges are edges having
the same pair of endpoints. For the most part of this thesis, we consider only simple graphs,
namely graphs with no loops or multiple edges. However, in some parts of Sections 3.4.1
and 5.3 we allow loops and multiple edges and this will be explicitly mentioned whenever it
is the case.

A graph G′ = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E, and we write
G′ ⊆ G. Moreover, G′ is a spanning subgraph of G if G′ is a subgraph of G and V ′ = V .
Finally, if G′ is a subgraph of G and G′ contains all the edges of G with both endpoints in V ′,
then G′ is an induced subgraph of G and we we write G′ = G [V ′].

Two (simple) graphsG = (V,E) andG′ = (V ′, E′) are isomorphic if there exists a bijection
ϕ : V → V ′ such that xy ∈ E if and only if ϕ(x)ϕ(y) ∈ E′, for each pair of vertices x and y.

Neighbourhoods and degrees. A vertex v of a graph G is incident to an edge e ∈ E(G) if
it is an endpoint of e. Two vertices of G are adjacent, or neighbours, if they are endpoints of
an edge of G. Two edges are incident if they share an endpoint. For a vertex v ∈ V (G), the
neighbourhood NG(v) is the set of vertices adjacent to v in G and the closed neighbourhood
NG[v] is the set N(v) ∪ {v}. Moreover, if S ⊆ V (G), then NG(S) =

⋃
v∈S NG(v) and NG[S] =⋃

v∈S NG[v]. Note that we usually drop the subscripts when the context is clear.
Given two subsets S and T of V (G), the set of edges having one endpoint in S and the

other in T is denoted by [S, T ]. An edge cut is a set of edges of the form [S, S], where S is a
non-empty proper subset of V (G) and S = V (G) \ S.

The degree dG(v) of a vertex v ∈ V (G) is the number of edges incident to v in G, with
the exception that each loop counts as two edges. A graph is even if all its vertices have even
degrees. A k-vertex is a vertex of degree k and we refer to a 3-vertex as a cubic vertex. A
0-vertex is an isolated vertex. We denote by dk(G) the set of k-vertices of G and we usually

7



8 Chapter 1. Preliminaries

write nk(G) for |dk(G)|. The maximum degree ∆(G) of G is the number max {dG(v) : v ∈ V }
and G is subcubic if ∆(G) ≤ 3. Similarly, the minimum degree δ(G) of G is the quantity
min {dG(v) : v ∈ V }. If all the vertices of G have the same degree k, then G is k-regular and a
3-regular graph is usually called cubic. A k-factor of a graph is a spanning k-regular subgraph.

Paths and cycles. A path is a non-empty graph P = (V,E) with V = {x0, x1, . . . , xk} and
E = {x0x1, x1x2, . . . , xk−1xk}, and where the xi are all distinct. The vertices x0 and xk are
linked by P and they are called the ends of P . The vertices x1, . . . , xk−1 are the inner vertices
of P . The size of a path is its length and the path of order n is denoted by Pn. We refer to a
path P by a natural sequence of its vertices: P = x0x1 · · ·xk. Such a path P is a path between
x0 and xk, or a x0, xk-path. More generally, given a graph G = (V,E) and two subsets X
and Y of V , an X,Y -path is a path which has one end in X, the other end in Y , and whose
inner vertices belong to neither X nor Y . Two or more paths are independent if none of them
contains an inner vertex of another. A family of independent x, Y -paths with distinct ends in
Y is an x, Y -fan.

The distance dG(u, v) from a vertex u to a vertex v in a graph G is the minimum length of
a path between u and v. If u and v are not linked by any path in G, we set dG(u, v) =∞. The
greatest distance between any two vertices of G is the diameter of G, denoted by diam(G).
The radius of G is the quantity minx∈V (G) maxy∈V (G) dG(x, y).

If P = x0 · · ·xk is a path and k ≥ 2, then the graph P + xkx0 with vertex set V (P ) and
edge set E(P ) ∪ {xkx0} is called a cycle. The cycle on n vertices is denoted by Cn. The girth
of a graph containing a cycle is the length of a shortest cycle and a graph with no cycle has
infinite girth.

A Hamiltonian path of a graph G is a path of G which is spanning. A Hamiltonian cycle of
G is a spanning cycle of G and a graph is Hamiltonian if it contains a Hamiltonian cycle.

Graph operations. Let G = (V,E) be a graph and V ′ ⊆ V and E′ ⊆ E. The operation of
deleting the set of vertices V ′ from G results in the graph G−V ′ = G[V \V ′]. The operation of
deleting the set of edges E′ from G results in the graph G− E′ = (V,E \ E′). The complement
of a simple graph G is the graph G with vertex set V (G) and such that uv ∈ E(G) if and
only if uv /∈ E(G). The union of simple graphs G and H is the graph G ∪H with vertex set
V (G) ∪ V (H) and edge set E(G) ∪ E(H). If G and H are disjoint, their union is denoted by
G+H and the union of k (disjoint) copies of G is denoted by kG. The join of simple graphs
G and H is the graph G ∨H obtained from G + H by adding the edges {xy : x ∈ V (G), y ∈
V (H)}. A k-subdivision of G is the graph obtained from G by adding k new vertices for each
edge of G, i.e. each edge is replaced by a path of length k+ 1. The cartesian product G�H of
G and H is the graph with vertex set V (G)× V (H) and such that (u, v) is adjacent to (u′, v′)
if and only if either u = u′ and vv′ ∈ E(H) or v = v′ and uu′ ∈ E(G).

Graph classes and special graphs. If a graph does not contain induced subgraphs iso-
morphic to graphs in a set Z, then it is Z-free and the set of all Z-free graphs is denoted by
Free(Z). A class of graphs is hereditary if it is closed under deletions of vertices. It is well-
known and easy to see that a class of graphs X is hereditary if and only if it can be defined
by a set of forbidden induced subgraphs, i.e. X = Free(Z) for some set of graphs Z. The
minimal set Z with this property is unique and it is denoted by Forb(X). If the set of minimal
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forbidden induced subgraphs for a hereditary class X is finite, then X is finitely defined. If
X ⊆ Y and Forb(X) \ Forb(Y ) is a finite set, then X is defined by finitely many forbidden
induced subgraphs with respect to Y .

A complete graph is a graph whose vertices are pairwise adjacent and the complete graph
on n vertices is denoted by Kn. A graph G is r-partite, for r ≥ 2, if its vertex set admits
a partition into r classes such that every edge has its endpoints in different classes. An
r-partite graph in which every two vertices from different partition classes are adjacent is
called complete. 2-partite graphs are usually called bipartite and the complete bipartite graph
with partition classes of size n and m is denoted by Kn,m. A graph of the form K1,n is usually
called a star.

The unique complete (r−1)-partite graph on n ≥ r−1 vertices and whose partition classes
differ in size by at most 1 is denoted by T r−1(n) and called a Turán graph. It is easy to see
that T r−1(n) has at most 1

2n
2 r−2
r−1 edges. Turán graphs are extremal in the following sense:

Theorem 1.0.1 (Turán’s Theorem). For all integers r and n with r > 1, every graph of order
n with no Kr subgraph and with the largest possible size is the Turán graph T r−1(n).

A triangle is the graph K3, a claw is the graph K1,3 and a diamond is the graph obtained
fromK4 by deleting an edge. For n ≥ 3, an n-wheelWn is the graph Cn∨K1. An odd-wheel is a
graph Wn with n odd. Figure 1.1 depicts other recurrent graphs appearing in the thesis. Note
that the prefix “co-” denotes the complement of a certain graph: for example, the co-banner
is the complement of the banner.

paw co-banner bowtiebanner

Figure 1.1: Some special graphs.

A hole in a graph G is an induced subgraph isomorphic to Cn, for n ≥ 4. An antihole in
G is an induced subgraph isomorphic to the complement of Cn, for n ≥ 4. An odd-hole is a
hole isomorphic to Cn, with n odd. Similarly, an odd-antihole is an antihole isomorphic to Cn,
with n odd.

A split graph is a graph in which the vertex set can be partitioned into a clique and an
independent set (see below for the definitions of clique and independent set). A cograph (or
complement reducible graph) is defined recursively as follows: K1 is a cograph, the disjoint
union of cographs is a cograph, the complement of a cograph is a cograph. In fact, the class
of cographs coincides with that of P4-free graphs.

Connectivity. A non-empty graph G = (V,E) is connected if any two of its vertices are
linked by a path in G. A component of a graph is a maximal connected subgraph. A separating
set or vertex cut of G is a set S ⊆ V (G) such that G−S has more than one component. Given
two vertices x and y of G, an x, y-cut is a set S ⊆ V (G) \ {x, y} such that G − S has no x, y-
path. A cut-vertex of a graph is a vertex whose deletion increases the number of components.
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A block of G is a maximal connected subgraph with no cut-vertex. The connectivity of G is the
minimum size of a vertex set S such that G − S is not connected or has only one vertex. A
graph G is k-connected if its connectivity is at least k. By definition, a graph different from
K1 is connected if and only if it is 1-connected. Moreover, we consider K1 as 1-connected.

The following easy but useful property of k-connectedness will be employed in Chapter 4:

Lemma 1.0.2 (Expansion Lemma). If G is a k-connected graph and G′ is obtained from G
by adding a new vertex with at least k neighbours in G, then G′ is k-connected.

The following fundamental min-max theorem will also be used in Chapter 4 (see also
Section 3.1):

Theorem 1.0.3 (Menger’s Theorem). Let G be a graph and x and y two of its vertices. The
minimum size of an x, y-cut is equal to the maximum number of independent x, y-paths. More-
over, G is k-connected if and only if it contains k independent paths between any two vertices.

An easy corollary of Theorem 1.0.3 is given by the following:

Lemma 1.0.4 (Fan Lemma). For k ≥ 2, a graph G is k-connected if and only if it has at least
k + 1 vertices and, for every choice of x ∈ V (G) and U ⊆ V (G) with |U | ≥ k, it has an x, U -fan
of size k.

A cut-edge (or bridge) of a graph is an edge whose deletion increases the number of com-
ponents. A bridgeless graph is a graph without cut-edges. A disconnecting set of edges is a set
F ⊆ E(G) such that G− F has more than one component and a graph is k-edge-connected if
every disconnecting set has at least k edges.

A graph G is cyclically k-edge-connected if the deletion of fewer than k edges from G does
not create two components both containing at least one cycle.

Trees. A tree is a connected graph not containing any cycle as a subgraph. The vertices
of degree 1 are its leaves. The following assertions can all be easily verified. Every non-trivial
tree has at least two leaves. A graph T is a tree if and only if any two vertices of T are linked
by a unique path in T . A connected graph with n vertices is a tree if and only if it has n − 1
edges. Every connected graph contains a spanning tree.

If we consider one vertex of a tree as special, we call it the root of the tree. A tree with a
fixed root is a rooted tree. Let T be a tree rooted at r and, for each v ∈ V (T ), let P (v) denote
the unique v, r-path in T . The descendants of a vertex v ∈ V (T ) are the vertices u such that
P (u) contains v.

A spanning tree is a maximum leaf spanning tree (MLST) if there is no spanning tree with
a larger number of leaves. Given a graph G, we denote by `(G) the number of leaves in a
MLST of G.

Graph parameters. In this thesis we often consider the following parameters of a graph
G. An independent set of a graph is a set of pairwise non-adjacent vertices. The maximum
size of an independent set of G is the independence number α(G). A clique of a graph is a set
of pairwise adjacent vertices. The clique number ω(G) is the maximum size of a clique of G.
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Clearly, we have α(G) = ω(G).
A colouring of a graph G is a partition of V (G) into independent sets and the minimum

number of partition classes is the chromatic number χ(G). The graph G is k-colourable if
χ(G) ≤ k. A clique cover of a graph is a set of cliques such that each vertex of the graph
belongs to at least one of them. The minimum size of a clique cover of G is denoted by θ(G).
Clearly, we have χ(G) = θ(G).

A matching of a graph is a set of pairwise non-incident edges and the matching number
α′(G) is the maximum size of a matching of G.

A vertex cover of a graph is a subset of vertices containing at least one endpoint of every
edge. The minimum size of a vertex cover of G is denoted by β(G). Clearly, S ⊆ V (G) is
a vertex cover of G if and only if V (G) \ S is an independent set of G. A connected vertex
cover of G is a vertex cover S of G such that G[S] is connected and we denote by βc(G) the
minimum size of a connected vertex cover of G.

An edge cover of a graph G is a subset S ⊆ E(G) of edges such that every vertex of G is
incident to an edge in S. We denote by β′(G) the minimum size of an edge cover of G. A
result known as one of the Gallai’s identities asserts that α′(G) + β′(G) = |V (G)|, for any
graph G without isolated vertices (see below for an extension and a proof).

A dominating set of G is a subset D ⊆ V (G) such that each vertex in V (G) \D is adjacent
to a vertex in D. The minimum size of a dominating set of G is denoted by γ(G). A connected
dominating set of G is a dominating set D of G such that G[D] is connected and we denote
by γc(G) the minimum size of a connected dominating set of G, also known as the connected
domination number of G.

A feedback vertex set of G is a subset T ⊆ V (G) such that G− T is acyclic, i.e. it contains
no cycle. We denote by τc(G) the minimum size of a feedback vertex set of G.

A vertex triangle-transversal of G is a subset T ⊆ V (G) such that G−T is triangle-free. We
denote by τ∆(G) the minimum size of a vertex triangle-transversal of G. Similarly, an edge
triangle-transversal of G is a subset T ⊆ E(G) such that G− T is triangle-free and we denote
by τ ′∆(G) the minimum size of an edge triangle-transversal of G.

A nonseparating independent set of G is an independent set I ⊆ V (G) such that there is no
X ⊆ I for which G −X has more components than G. Therefore, for a connected graph G,
the complement of a nonseparating independent set of G is a connected vertex cover of G.
We denote by z(G) the maximum size of a nonseparating independent set of G.

Graphs on surfaces. For the contents of this section, we refer the reader to [140].
Let X be a topological space. A curve in X (or arc) is the image of a continuous function

f : [0, 1]→ X. The curve f([0, 1]) is said to join (or connect) its endpoints f(0) and f(1). The
curve is simple if f is injective. It is closed if f(0) = f(1). A topological space X is arcwise
connected if any two elements of X are connected by a simple arc in X. The existence of a
simple arc between two points of X determines an equivalence relation whose equivalence
classes are the arcwise connected components of X, or regions.

A graph G is embedded in a topological space X if the vertices of G are distinct elements
of X and every edge of G is a simple arc connecting in X its two ends and such that the
interior is disjoint from other edges and vertices. The faces of a graph G embedded in X
are the regions of X \ G. An embedding of G in X is an isomorphism of G with a graph G′

embedded in X and the graph G′ is usually called a drawing of G in X. An embedding of G in
X is cellular if every face of G′ is homeomorphic to an open disc, where G′ is the drawing of
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G under the embedding. If there is an embedding of G in X, we say that G can be embedded
in X.

Graphs which can be embedded in the Euclidean plane R2 are called planar. A graph
which is embedded in the plane is a plane graph. The outer face of a plane graph is the
unbounded face.

Theorem 1.0.5 (Jordan Curve Theorem). For every simple closed curveC in the plane, R2\C
consists of exactly two arcwise connected components. Precisely one of them is bounded and C is
the boundary of each region.

Each face of a 2-connected plane graph G is bounded by a cycle of G. Each 3-connected
planar graph has a unique planar drawing, in the sense that the facial cycles are uniquely
determined. The (geometric) dual G∗ of a 2-connected plane graph G is the plane graph
having one vertex in each face of G and such that if e is an edge of G, then G∗ has an edge e∗

crossing e and joining the vertices of G∗ in the two faces of G that contains e on the boundary.
Given a planar graph G and a drawing Γ of G in R2, we define L1 to be the set of vertices

incident to the outer face and, for i > 1, Li is defined recursively as the set of vertices on the
outer face of the planar drawing obtained by deleting the vertices in

⋃i−1
j=1 Lj . We call Li the

i-th layer of the drawing Γ. A graph is k-outerplanar if it has a planar drawing with at most k
layers. This notion was introduced by Baker [18]. 1-outerplanar graphs are simply known as
outerplanar graphs.

Algorithms and complexity. We refer the reader to [15, 55] for introductions to compu-
tational complexity.

A decision problem Π is a pair (I, S), where I is the set of instances of Π and S : I →
{“yes”, “no”} is a function. Solving (or deciding) Π for an instance I ∈ I means deciding
whether S(I) = “yes” or S(I) = “no”.

The (worst-case) time-complexity of an algorithm is the (worst-case) running time of the
algorithm as a function of the input size, i.e. the maximum running time over all inputs
of the same size. In order to estimate the running time of an algorithm, it is necessary to
specify the computational model in which the algorithm is implemented and it turns out that
a reasonable choice is the so-called Turing machine. Indeed, it is widely believed that every
physically realizable computation device can be simulated by a Turing machine (this is the
Church–Turing thesis). The complexity class P is then defined as the class of all decision
problems that are solvable in polynomial time by a (deterministic) Turing machine.

A decision problem Π = (IΠ, SΠ) is polynomial-time reducible to a decision problem Λ =
(IΛ, SΛ) (denoted by Π ≤p Λ) if there exists a polynomial-time computable function f : IΠ →
IΛ (called a reduction function from Π to Λ) such that SΠ(I) = “yes” if and only if SΛ(f(I)) =
“yes”. It is easy to see that the relation ≤p is transitive and that if Π ≤p Λ and Λ ∈ P, then
Π ∈ P.

The complexity class NP is formally defined as the class of all decision problems that
are solvable in polynomial time by a nondeterministic Turing machine. Loosely speaking,
a decision problem Π = (I, S) is in NP if there exists a polynomial-time algorithm V (·, ·)
(a verifier) such that, for every instance I ∈ I, S(I) = “yes” if and only if there exists a
certificate C(I) of size polynomial in that of I such that V (I, C(I)) returns “yes”. Therefore,
the problems in NP can be thought as those having “efficiently verifiable solutions”.
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A (decision) problem Π is NP-hard if Λ ≤p Π, for every Λ ∈ NP and it is NP-complete if in
addition Π ∈ NP. Clearly, if Π is NP-hard and Π ∈ P then P = NP and so an NP-hard problem
can be considered at least as hard as any other problem in NP. In Table 1.1, we summarize
most of the NP-complete problems which will be considered in the thesis.

Let Σp
1 = NP. For i ≥ 2, the complexity class Σp

i is defined recursively as the class of
decision problems solvable in polynomial time by a nondeterministic Turing machine having
access to an oracle which decides problems in Σp

i−1. The polynomial hierarchy is the set
⋃
i Σp

i .
An optimization problem Π is a quadruple (I, S, c, opt), where I is the set of instances of

Π, S(I) is the set of feasible solutions of an instance I ∈ I, the function c : I × S → N is the
objective function and opt ∈ {max,min}. Solving Π for an instance I ∈ I means finding a
solution s ∈ S(I) which maximizes or minimizes c(I, s), according to whether opt = max or
opt = min. We denote by opt(I) the value opt{c(I, s) : s ∈ S(I)} and an optimum solution of
an instance I is a feasible solution s ∈ S(I) with c(I, s) = opt(I).

For k ≥ 1, a k-factor approximation algorithm for an optimization problem Π = (I, S, c, opt)
is a polynomial-time algorithm that computes for each instance I ∈ I a solution s ∈ S(I) with

max

®
c(I, s)

opt(I)
,
opt(I)

c(I, s)

´
≤ k.

A polynomial-time approximation scheme (PTAS, in short) for an optimization problem
Π = (I, S, c, opt) is a polynomial-time algorithm accepting as input an instance I ∈ I and a
constant ε > 0 and such that, for each fixed ε, it is a (1 + ε)-approximation algorithm for Π.

Let 0 < α < β. A minimization problem Π = (I, S, c,min) has an NP-hard gap [α, β] if
there exist an NP-complete decision problem Λ = (IΛ, SΛ) and a polynomial-time reduction
f from Λ to Π such that, for every I ∈ IΛ, the following holds:

• If SΛ(I) = “yes”, then min(f(I)) ≤ α;

• If SΛ(I) = “no”, then min(f(I)) > β.

We have an obvious analogue definition for a maximization problem.

Lemma 1.0.6. If Π is an optimization problem with an NP-hard gap [α, β], for some 0 < α <
β, then there is no β

α -approximation algorithm for Π, unless P = NP.

A gap-preserving reduction from a maximization problem Π = (IΠ, SΠ, cΠ,max) to a min-
imization problem Λ = (IΛ, SΛ, cΛ,min) is a function f mapping every instance of Π to an
instance of Λ in polynomial time, together with constants αΠ ≤ 1 and αΛ ≥ 1 and functions
gΠ and gΛ such that:

• If max(I) ≥ gΠ(I), then min(f(I)) ≤ gΛ(f(I));

• If max(I) < αΠgΠ(I), then min(f(I)) > αΛgΛ(f(I)).

The definition above can be easily adapted to the other three possible cases of a reduction
between two optimization problems. Similarly to Lemma 1.0.6, the following holds:

Lemma 1.0.7. Suppose there exists a gap-preserving reduction from a maximization problem
Π = (IΠ, SΠ, cΠ,max) to a minimization problem Λ = (IΛ, SΛ, cΛ,min). If it is NP-hard to
distinguish between those I ∈ IΠ for which max(I) ≥ gΠ(I) and those for which max(I) <
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αΠgΠ(I), then it is NP-hard to distinguish between those f(I) ∈ IΛ for which min(f(I)) ≤
gΛ(f(I)) and those for which min(f(I)) > αΛgΛ(f(I)). In particular, Λ is not approximable
within αΛ, unless P = NP.

We use the standard notation for considerations on the asymptotic behaviour. Given two
real-valued functions f(n) and g(n) depending on n, we write f(n) = O(g(n)) if there exists
a constant c > 0 such that |f(n)| ≤ c · |g(n)|, for all sufficiently large n.

Hypergraphs. A hypergraph (or set system) H is a pair H = (X,F), where X is a set
(the vertex set) and F is a family of subsets of X (the hyperedges). We refer to a hypergraph
with vertex set X as a hypergraph on X. The vertex set of H is denoted by V (H) and the
family of hyperedges by E(H). A hypergraph is k-uniform if all its hyperedges have size k
and complete if it contains all possible hyperedges. For a hypergraph H = (X,F), the dual
hypergraph H∗ = (Y,G) is defined as follows: Y = {yS : S ∈ F}, where the yS are pairwise
distinct vertices and for each x ∈ X, we have that {yS : S ∈ F , x ∈ S} is a set in the family
G.

A hitting set (or transversal) of a set systemH = (X,F) is a subset T ⊆ X which intersects
all the sets in F . Given a set system H, the hitting set problem consists in finding a minimum-
size hitting set ofH. The dual problem is the set cover problem: given a set systemH = (X,F),
the goal is to find a minimum-size subfamily F ′ ⊆ F such that

⋃
F ′∈F ′ F

′ = X. Both problems
are known to be NP-hard (see, e.g., [75]).

Polymatroids. We refer the reader to [112, 132] for introductions to matroids and 2-
polymatroids, respectively.

A 2-polymatroid is a pair P = (S, f), where S is a finite set and f is a function f : 2S → Z
satisfying the following properties:

(P1) f(∅) = 0;

(P2) f(X) ≤ f(Y ), for any X ⊆ Y ⊆ S;

(P3) f(X ∪ Y ) + f(X ∩ Y ) ≤ f(X) + f(Y ), for any X,Y ⊆ S;

(P4) f({x}) ≤ 2, for any x ∈ S.

If in addition f({x}) ≤ 1, for any x ∈ S, then P is a matroid. A subset X ⊆ S is a matching
of P if f(X) = 2|X| and it is a spanning set of P if f(X) = f(S). The maximum size of a
matching of P is denoted by ν(P ) while the minimum size of a spanning set of P is denoted
by ρ(P ).

It is easy to see that, given a (simple) graph G = (V,E), the pair P = (E, f) with f(X) =
|⋃e∈X e| is a 2-polymatroid. Moreover, a matching of P is a matching of G and a spanning
set of P is an edge cover of G. We have already mentioned that the following holds:

Lemma 1.0.8 (Gallai’s identity). IfG is a graph without isolated vertices, then α′(G)+β′(G) =
|V (G)|.

In fact, Lovász provided the following generalization (see [132]):
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Theorem 1.0.9. For any 2-polymatroid P = (S, f), we have ρ(P ) + ν(P ) = f(S).

Proof. Let M be a matching of P of maximum size ν(P ). It is easy to see that the function
fM : 2S\M → Z defined by fM (X) = f(M ∪ X) − f(M) satisfies (P1) to (P3). Moreover,
by maximality, we have fM ({x}) = f(M ∪ {x}) − f(M) ≤ 1, for any x ∈ S \ M . We
claim that fM (X) = max{|Y | : Y ⊆ X, fM (Y ) = |Y |}, for every X ⊆ S \M . Indeed, let
X ⊆ S \M and Y ⊆ X of maximum size such that fM (Y ) = |Y |. By maximality, we have
fM (Y ∪ {x}) < |Y | + 1, for every x ∈ X \ Y . But then (P2) implies that fM (Y ∪ {x}) = |Y |
and repeated applications of (P3) give fM (X) = |Y |.

Consider now a subset B ⊆ S \ M of maximum size such that fM (B) = |B|. By the
previous claim, we have that fM (B) = fM (S \M) and so f(M ∪ B) = f(M) + fM (B) =
f(M) + fM (S \M) = f(S). Therefore, M ∪B is a spanning set of P and we have

ρ(P ) ≤ |M ∪B| = |M |+ fM (S \M) = |M |+ f(S)− f(M) = f(S)− |M | = f(S)− ν(P ).

Conversely, let T be a spanning set of P of minimum size and consider a subset M ⊆ T of
maximum size such that f(M) = 2|M |. By maximality, the function fM : 2T\M → Z defined
by fM (X) = f(M ∪X) − f(M) satisfies (P1) to (P3) and fM ({x}) ≤ 1, for any x ∈ T \M .
Therefore, we have that

f(S) = f(T ) = f(M ∪ (T \M)) = fM (T \M) + f(M) ≤ |T \M |+ 2|M | ≤ |T |+ |M |.

But then ρ(P ) = |T | ≥ f(S)− |M | ≥ f(S)− ν(P ).

In Section 3.4.1, we will see that also feedback vertex sets and nonseparating independent
sets can be interpreted as spanning sets and matchings of a certain 2-polymatroid, respec-
tively.

A 2-polymatroid (S, f) is linearly representable (over a field F) if there exists a matrix
A = (Ae)e∈S ∈ Fd×2S obtained by concatenating d × 2 matrices Ae ∈ Fd×2 and such that
f(X) = rank A(X), for any X ⊆ S, where d is a positive integer and A(X) = (Ae)e∈X
denotes the submatrix of A obtained by selecting the corresponding columns.

Tree-width and Clique-width. Graphs of bounded tree-width are particularly interesting
from an algorithmic point of view: many NP-complete problems can be solved in linear time
for them. The notion of tree-width was introduced by Robertson and Seymour [162] in their
seminal work on graph minors:

A tree decomposition of a graph G = (V,E) is a pair (X,T ), where T = (I, F ) is a tree and
X = {Xi : i ∈ I} is a family of subsets of V such that:

• ⋃i∈I Xi = V ;

• for all edges vw ∈ E, there is an i ∈ I such that {v, w} ⊆ Xi;

• for all vertices v ∈ V , the set {i ∈ I : v ∈ Xi} forms a connected subtree of T .

The width of the tree decomposition (X,T ) is maxi∈I |Xi|−1 and the tree-width of a graph
G is the minimum width among all tree decompositions of G. It is easy to see that forests
have tree-width at most 1 and the tree-width measures, loosely speaking, how far a given
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graph is from a tree. In fact, the graphs having tree-width at most k are exactly the so-called
partial k-trees (see, e.g., [26] for a proof and other characterizations).

The rough idea is that, for certain problems, once a tree decomposition of the input graph
with small width is found, it can be used in a dynamic programming algorithm to solve the
original problem (see, e.g., [64] for some examples). For a fixed k, it is in fact possible to test
in linear time whether a graph has tree-width at most k and, if so, to find a tree-decomposition
with width at most k [25]. A celebrated algorithmic meta-theorem of Courcelle [46] provides
a way to quickly establish that a certain problem is decidable in linear time on graphs of
bounded tree-width: all (graph) problems expressible in monadic second-order logic with
edge-set quantification are decidable in linear time on graphs of bounded tree-width, assum-
ing a tree decomposition is given (see also [14]). Let us briefly recall that monadic second-
order logic is an extension of first-order logic by quantification over sets. The language of
monadic second-order logic of graphs (MSO1 in short) contains the expressions built from the
following elements:

• Variables x, y, . . . for vertices and X,Y, . . . for sets of vertices;

• Predicates x ∈ X and adj(x, y);

• Equality for variables, standard Boolean connectives and the quantifiers ∀ and ∃.

By considering edges and sets of edges as other sorts of variables and the incidence predicate
inc(v, e), we obtain monadic second-order logic of graphs with edge-set quantification (MSO2 in
short).

A notion related to tree-width is that of clique-width, introduced by Courcelle et al. [48].
The clique-width of a graph G is the minimum number of labels needed to construct G using
the following operations:

• Creation of a new vertex v with label i;

• Disjoint union of two labelled graphs G and H;

• Joining by an edge each vertex with label i to each vertex with label j;

• Renaming label i to j.

Every graph can be defined by an algebraic expression using these four operations and such
an expression is a k-expression if it uses k different labels. As shown by Courcelle and Olariu
[47], every graph of bounded tree-width has bounded clique-width but there are graphs of
bounded clique-width having unbounded tree-width (for example, complete graphs). There-
fore, clique-width can be viewed as a more general concept than tree-width. An important
class of graphs having bounded clique-width is that of cographs: it directly follows from the
definition that cographs have clique-width at most 2. We refer to [103] for other examples of
graph classes of bounded clique-width.

Similarly to tree-width, having bounded clique-width has interesting algorithmic implica-
tions. If a graph property is expressible in the more restricted MSO1, then Courcelle et al. [49]
showed that it is decidable in linear time even for graphs of bounded clique-width, assum-
ing a k-expression of the graph is explicitly given. On the other hand, for fixed k, Oum and
Seymour [152] provided a polynomial-time algorithm that given a graph G either decides G
has clique-width at least k+ 1 or outputs a 23k+2− 1-expression. Therefore, a graph property
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expressible in MSO1 is decidable in polynomial time for graphs of bounded clique-width. We
will see several applications of this result in Chapter 4.

Discrete geometry. The usual scalar product in Rd is denoted by 〈·, ·〉. A closed half-space
in Rd is a set of the form {x ∈ Rd : 〈a, x〉 ≥ b}, for some a ∈ Rd \ {0} and b ∈ R. An axis-
parallel box in Rd is a set of the form [a1, b1]× · · · × [ad, bd], with {a1, . . . , ad, b1, . . . , bd} ⊆ Rd.

A set C ⊆ Rd is convex if for every two points x and y of C and for every t ∈ [0, 1], the
point tx+ (1− t)y belongs to C. The convex hull conv(X) of a set X ⊆ Rd is the intersection
of all the convex sets in Rd containing X. The following is a basic property of convexity in
Rd:

Theorem 1.0.10 (Radon’s Theorem). IfX is a set of d+2 points inRd, there exists a partition
of X into sets X1 and X2 such that conv(X1) ∩ conv(X2) 6= ∅.
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FEEDBACK VERTEX SET

Instance: A graph G and a positive integer k.
Question: Does G contain a feedback vertex set of size at most k?

HAMILTONIAN PATH

Instance: A graph G.
Question: Does G contain a Hamiltonian path?

HAMILTONIAN CYCLE

Instance: A graph G.
Question: Does G contain a Hamiltonian cycle?

HAMILTONIAN CYCLE THROUGH SPECIFIED EDGE

Instance: A graph G = (V,E) and e ∈ E.
Question: Does G contain a Hamiltonian cycle through e?

CLIQUE COVER

Instance: A graph G and a positive integer k.
Question: Does G contain a clique cover of size at most k?

DOMINATING SET

Instance: A graph G and a positive integer k.
Question: Does G contain a dominating set of size at most k?

CONNECTED DOMINATING SET

Instance: A graph G and a positive integer k.
Question: Does G contain a connected dominating set of size at most k?

VERTEX COVER

Instance: A graph G and a positive integer k.
Question: Does G contain a vertex cover of size at most k?

CONNECTED VERTEX COVER

Instance: A graph G and a positive integer k.
Question: Does G contain a connected vertex cover of size at most k?

Table 1.1 – The decision problems considered in the thesis.
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Line graphs constitute a rich and well-studied class of graphs. In this chapter, we
focus on line graphs of subcubic triangle-free graphs and show that any such graph
G has an independent set of size at least 3

10 |V (G)|, the bound being sharp. As
an immediate consequence, any subcubic triangle-free graph G with ni vertices of
degree i has a matching of size at least 3

20n1 + 3
10n2 + 9

20n3.
Then we study the complexity of FEEDBACK VERTEX SET, HAMILTONIAN CYCLE and
HAMILTONIAN PATH for subclasses of line graphs of subcubic triangle-free graphs:
we show that these problems remain NP-hard and we provide an inapproximability
result for FEEDBACK VERTEX SET.
Finally, we consider the class of k-line graphs, a generalization of line graphs, and
make some observations which will be used in Chapter 3.

2.1 Introduction

The line graph L(G) of a graph G is the graph having as vertices the edges of G, two vertices
being adjacent if the corresponding edges intersect. Line graphs constitute a rich and ubiq-
uitous class of graphs. They were introduced by Whitney [183] who showed that, with the
exception of K3 and K1,3, any two connected graphs having isomorphic line graphs are iso-
morphic. Krausz [116] characterized line graphs as those graphs admitting a partition of the
edges into complete subgraphs such that every vertex belongs to at most two of them. What
is arguably a cornerstone in the whole theory of graph classes is Beineke’s characterization in
terms of forbidden induced subgraphs:

Theorem 2.1.1 (Beineke [19]). G is a line graph if and only if it does not contain any of the
graphs depicted in Figure 2.1 as an induced subgraph.

Theorem 2.1.1 immediately implies that line graphs can be recognized in polynomial
time. The trivial algorithm was improved by Roussopoulos [165] and Lehot [126], who

19
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Figure 2.1: The minimal forbidden induced subgraphs for the class of line graphs.

showed that recognition is possible in linear time. To further emphasize the importance of
having a forbidden subgraph characterization, let us remark the following anecdote reported
in [110]. In 1969, the “Journal of Combinatorial Theory” published a paper entitled “An
interval graph is a comparability graph” while one year later the same journal published
another paper entitled “An interval graph is not a comparability graph”. Having an induced
subgraph characterization at hand would have prevented this situation since it is easy to see
that Free(M1) ⊆ Free(M2) if and only if for every graph G ∈M2 there is a graph H ∈M1 such
that H is an induced subgraph of G.

In Section 2.2, we concentrate on line graphs of subcubic triangle-free graphs. Specifically,
in Section 2.2.1 we provide several characterizations of this class and we observe it coincides
with the class of (K4, claw,diamond)-free graphs. Moreover, we show that the line graphs of
cubic triangle-free graphs are exactly those 4-regular graphs for which every edge belongs to
exactly one K3.

In Section 2.2.2, we consider the independence number. The famous Brooks’ Theorem
asserts that every connected graph G which is neither a complete graph nor an odd cycle
must be ∆(G)-colourable and so α(G) ≥ |V (G)|/∆(G). Following this result, several authors
considered the problem of finding tight lower bounds for the independence number of graphs
having bounded maximum degree and not containing cliques on 3 or 4 vertices [66, 67, 93,
129, 176]. Kang et al. [104] showed that if G is a connected (K4, claw)-free 4-regular graph
on n vertices then, apart from three exceptions, α(G) ≥ (8n−3)/27. Motivated by this result,
we show that if G is a (K4, claw,diamond)-free graph on n vertices, then α(G) ≥ 3n/10. This
gives a tight bound, as can be seen by considering the following:

Example 2.1.2. LetG be the graph depicted in Figure 2.2. Since |E(G)| = 10 and α′(G) = 3,
we have that L(G) has 10 vertices and α(L(G)) = α′(G) = 3.

Figure 2.2: A subcubic triangle-free graph G with 10 edges and α′(G) = 3.

The well-known Petersen’s Theorem asserts that every 3-regular bridgeless graph has a
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perfect matching and the question of whether a graph admits a perfect matching has been
deeply investigated (see [3] for a survey). On the other hand, not much is known about
general lower bounds for the matching number. Biedl et al. [24] showed that any subcubic
graph G has a matching of size (|V (G)| − 1)/3 and that any cubic graph G has a matching
of size (4|V (G)| − 1)/9. Henning et al. [95] investigated lower bounds in the case of cubic
graphs with odd girth. In particular, they showed that any connected cubic triangle-free graph
G has a matching of size (11|V (G)| − 2)/24. By recalling that the matchings of a graph G are
in bijection with the independent sets of its line graph L(G), our result on the independence
number of (K4, claw,diamond)-free graphs directly translates into a tight lower bound for
the matching number. Indeed, we show that if G is a subcubic triangle-free graph with ni
vertices of degree i, then α′(G) ≥ 3n1/20 + 3n2/10 + 9n3/20.

Consider now FEEDBACK VERTEX SET: the problem of deciding, given a graph G and an
integer k, whether τc(G) ≤ k. Ueno et al. [180] showed that FEEDBACK VERTEX SET can be
solved in polynomial time for subcubic graphs by a reduction to a matroid parity problem
(see Sections 3.4.1 and 5.3 for a proof). On the other hand, FEEDBACK VERTEX SET becomes
NP-hard for graphs with maximum degree 4, even if restricted to be planar, as shown by
Speckenmeyer [174, 175]. In Section 2.2.3, we strengthen this result by showing the NP-
hardness for line graphs of planar cubic bipartite graphs. This is done in two steps. We first
show that if G is the line graph of a cubic triangle-free graph H, then τc(G) ≥ |V (G)|/3 + 1,
with equality if and only if H contains a Hamiltonian path. We then show that the well-
known HAMILTONIAN PATH remains NP-hard even for planar cubic bipartite graphs. This
matches the fact that even HAMILTONIAN CYCLE remains NP-hard for that class [4] and may
be of independent interest. We conclude the section with an inapproximability result for
FEEDBACK VERTEX SET restricted to line graphs of subcubic triangle-free graphs.

Despite the fact that Hamiltonicity in line graphs has been widely investigated, beginning
with the works of Chartrand [34, 35] and Harary and Nash-Williams [86], to the best of our
knowledge no result is known on HAMILTONIAN CYCLE restricted to line graphs. Concerning
HAMILTONIAN PATH, Bertossi [23] showed that the problem is NP-complete for line graphs.
Lai and Wei [119] strengthened this result by showing that it remains NP-hard even when
restricted to line graphs of bipartite graphs. In Section 2.2.4, we prove that HAMILTONIAN

CYCLE remains NP-hard for line graphs of 1-subdivisions of planar cubic bipartite graphs
and for line graphs of planar cubic bipartite graphs. Finally, we show that HAMILTONIAN

PATH remains NP-hard for line graphs of 1-subdivisions of planar cubic bipartite graphs, thus
strengthening the result by Lai and Wei [119].

As a side remark, note that line graphs of subcubic triangle-free graphs are not necessarily
3-colourable, as Example 2.1.2 shows. In fact, 3-COLOURABILITY remains NP-hard even when
restricted to line graphs of cubic triangle-free graphs [114]: if G is the line graph of a cubic
triangle-free graph H, then G is 3-colourable if and only if H is of class 1.

One possible generalization of line graphs is given by the following construction: For an
integer k ≥ 2, the k-line graph Lk(G) of a graph G is the graph having as vertices the cliques
of G of size k, two vertices being adjacent if the corresponding cliques intersect in a clique
of size k − 1. This notion has been introduced independently and with different motivations
by several authors [43–45]. Clearly, 2-line graphs are the usual line graphs, whereas 3-line
graphs are also known as triangle graphs. Unlike line graphs, the class of k-line graphs with
k ≥ 3 is not hereditary, as will become evident in the next paragraph. Nevertheless, it is
still of interest to find forbidden induced subgraphs for this class. In particular, it follows
directly from the definition that every k-line graph is K1,k+1-free and in Section 2.3 we will
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expand this list. Our main motivation for studying k-line graphs is the relation between
triangle graphs and Tuza’s Conjecture (Conjecture 3.3.1), which asserts that the minimum
number of edges of a graph whose deletion results in a triangle-free graph is at most two
times the maximum number of edge-disjoint triangles. In the case of K4-free graphs, triangle-
transversals and triangle-packings correspond to clique covers and independent sets of the
triangle graph, respectively. The list of forbidden induced subgraphs obtained in Section 2.3
will then be used in Section 3.3 in the context of Tuza’s Conjecture.

Two interesting classes of spanning subgraphs of k-line graphs are defined as follows. The
k-Gallai graph Γk(G) of a graph G is the graph having as vertices the cliques of G of size
k, two vertices being adjacent if the corresponding cliques intersect in a clique of size k − 1
but their union is not a clique of size k + 1. Conversely, the anti-k-Gallai graph ∆k(G) of G
is the graph having as vertices the cliques of G of size k, two vertices being adjacent if the
union of the corresponding cliques is a clique of size k+ 1. Clearly, ∆k(G) is the complement
of Γk(G) in Lk(G). 2-Gallai graphs are simply known as Gallai graphs and were introduced
by Gallai [73] in his work on comparability graphs. Anti-2-Gallai graphs are also known as
anti-Gallai graphs or triangular line graphs [9]. The classes of k-Gallai graphs and anti-k-
Gallai graphs are not hereditary: for every graph G, the k-Gallai graph Γk(G ∨ Kk−1) has
a component isomorphic to G and the anti-k-Gallai graph ∆k(G ∨ Kk−1) contains G as an
induced subgraph. On the other hand, Le [124] gave a Krausz-type characterization of these
two classes. Anand et al. [9] showed that recognizing anti-Gallai graphs is NP-complete. In
fact, they showed that even deciding whether a connected graph is the anti-Gallai graph of
some K4-free graph is NP-complete. This was recently used by Lakshmanan et al. [120] in
order to show that, for every fixed k ≥ 3, deciding whether a given graph is the k-line graph of
a Kk+1-free graph is NP-complete. Quite surprisingly, this is in sharp contrast with the case
of line graphs mentioned above. Moreover, they completed the picture about generalized
anti-Gallai graphs by showing that, for every fixed k ≥ 3, recognizing anti-k-Gallai graphs is
NP-complete. On the other hand, the recognition of k-Gallai graphs remains a major open
problem.

2.2 Line graphs of subcubic triangle-free graphs

2.2.1 Characterizations

The purpose of this section is to characterize line graphs of subcubic triangle-free graphs.
Most of the stated results are not original and our goal is to put them under a unified frame-
work.

Let F be a family of non-empty sets. The intersection graph GF of F is the graph having
as vertices the sets in F , two vertices being adjacent if the corresponding sets intersect. The
set

⋃
F∈F F is the ground set of GF . If a graph G is the intersection graph of a family F , then

F is a realization of G.
Clearly, the line graph of G is the intersection graph of the family E(G). An equivalent

definition of line graphs is that of 2-intersection graphs: a graph is a 2-intersection graph if it
is the intersection graph of a family of subsets of positive integers, each of size 2.

We now consider a geometric realization. A graph G of order n is a 2-interval graph if
it is the intersection graph of a set of n unions of two disjoint intervals on the real line, i.e.
each vertex corresponds to a union of two disjoint intervals Ik = Ik` ∪ Ikr and there is an edge
between Ij and Ik if and only if Ij ∩ Ik 6= ∅. Note that the two intervals corresponding to
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a vertex are naturally ordered into a left interval and a right interval. A 2-interval graph is
(x, x)-interval if it has a realization in which the intervals of the ground set have length x,
integral endpoints and they are open1. Note that the class of (1, 1)-interval graphs coincides
with that of 2-intersection graphs (and so with line graphs). This can be seen by associating
to each vertex {x, y} ⊆ N of a 2-intersection graph the union (x − 1, x) ∪ (y − 1, y) and,
conversely, after an appropriate translation of the intervals, by associating to each vertex
(x, x+ 1) ∪ (y, y + 1) the set {x+ 1, y + 1} of the right endpoints of the two intervals.

Line graphs of bipartite graphs have another interesting geometric characterization: they
are equivalent to gridline graphs (see, e.g., [156]). A gridline graph is a graph whose vertices
correspond to distinct points in R2 and such that (x, y) and (x′, y′) are adjacent if and only if
x = x′ or y = y′, i.e. two vertices are adjacent if and only if they are on a common horizontal
or vertical line. Note that the vertices of a gridline graph may be assumed to lie in N2.

Before stating our characterization, we need some more definitions. If F is the realization
of a 2-intersection graph G, an incidence matrix M = [mij ] of F is a (0, 1)-matrix whose rows
correspond to the vertices of G (i.e. two-element subsets Si ⊂ N), whose columns correspond
to the elements of the ground set of G (i.e. integers j ∈ ⋃Si) and such that mij = 1 if and
only if j ∈ Si. Let now A, B and C be matrices. B is a submatrix of A if it can be obtained
by deleting some rows and columns of A. The matrix A is C-free if C is not a submatrix of A.
Similarly, for a set S of matrices, A is S-free if A is M -free, for any M ∈ S. Moreover, let F
be defined as follows:

F =

{


1 1 0
1 0 1
0 1 1


 ,




1 0 1
1 1 0
0 1 1


 ,




1 1 0
0 1 1
1 0 1


 ,




1 0 1
0 1 1
1 1 0


 ,




0 1 1
1 0 1
1 1 0


 ,




0 1 1
1 1 0
1 0 1


 ,




1
1
1
1




}
.

Note that the 3×3 matrices in F are the cycle matrices of order 3, i.e. the edge-vertex incidence
matrices of cycles of length 3.

Theorem 2.2.1. The following are equivalent, for any graph G:

(a) G is a (K4, claw, diamond)-free graph.

(b) G is the line graph of a subcubic triangle-free graph.

(c) G is a (1, 1)-interval graph such that there do not exist four vertices sharing the same
interval and there do not exist three vertices such that any two of them share a different
interval.

(d) G is a 2-intersection graph such that any incidence matrix of the realization of G is F -free.

Proof. (a) ⇒ (b): By Theorem 2.1.1, we have G = L(H), for some graph H. Let H ′ be the
graph obtained from H by replacing each component isomorphic to K3 with a claw. Clearly,
G = L(H) = L(H ′). Since G is K4-free, H ′ is subcubic. Suppose now H ′ contains a triangle
T . By construction, there exists a vertex v ∈ V (H ′) \ V (T ) which is adjacent to a vertex of
T and so there exists an induced diamond in L(H ′), a contradiction. Therefore, G is the line
graph of a subcubic triangle-free graph.

1 We refer the reader to [74] for a survey on 2-interval graphs.
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(b)⇒ (c): Let G = L(H), for a subcubic triangle-free graph H with V (H) = {v1, . . . , vn}.
By associating to each vertex eij = vivj of L(H), with i < j, the union Iij = (2i, 2i + 1) ∪
(2j, 2j + 1), it is easy to see that G is (1, 1)-interval. Since G is subcubic, there do not exist
four vertices sharing the same interval. Moreover, since G is triangle-free, there do not exist
three vertices such that any two of them share a different interval.

(c)⇒ (d): By appropriately translating the intervals and associating to each vertex (i, i+
1) ∪ (j, j + 1) of G the set {i + 1, j + 1} of the right endpoints of the two intervals, it is easy
to see that G is 2-intersection. Since there do not exist four vertices sharing the same interval
and there do not exist three vertices such that any two of them share a different interval, any
incidence matrix of the realization of G is F -free.

(d) ⇒ (a): Let M be an F -free incidence matrix of the realization of G and, for any
v ∈ V (G), let Sv be the two-element set corresponding to v. It is easy to see that no 2-
intersection graph contains an induced claw. Suppose now G contains a copy H of K4. For
v ∈ V (H), the sets Sv are pairwise intersecting and |Sv| = 2. But then

⋂
v∈V (H) Sv 6= ∅,

contradicting the fact that M is F -free. Finally, if G contains an induced diamond H, there
exists a triangle T ⊆ H such that

⋂
v∈V (T ) Sv = ∅. This means that a cycle matrix of order 3

is a submatrix of M , a contradiction.

The observation that a graph is (claw,diamond)-free if and only if it is the line graph of
a triangle-free graph is probably due to Harary and Holzmann [85]. Let us now recall the
following well-known characterization of diamond-free graphs:

Theorem 2.2.2 (Folklore). A graph G is diamond-free if and only if it can be obtained as the
edge-disjoint union of complete subgraphs of order at least 3 plus possibly some edges which are
not in any triangle and isolated vertices such that each triangle of G is contained in one of the
complete subgraphs.

Proof. The “if” part is trivial. Conversely, we claim that if G′ is an inclusion-wise maximal
complete subgraph of the diamond-free graph G, then each triangle of G is either contained
in G′ or edge-disjoint from it. Indeed, if G is triangle-free, the statement is vacuously true.
Therefore, suppose there exists a triangle uvw having exactly one edge in E(G′), say uv ∈
E(G′) and w /∈ V (G′). By maximality, |V (G′)| ≥ 3. Moreover, every w′ ∈ V (G′) \ {u, v} is
adjacent to both u and v and so, since G is diamond-free, every w′ ∈ V (G′)\{u, v} is adjacent
to w as well. Therefore, V (G′) ∪ {w} is a clique, contradicting the maximality of G′.

We now claim that the graph G′′ obtained from G by deleting the edges of G′ is diamond-
free. Indeed, since G is diamond-free, a diamond K4 − e can arise in G′′ only if e ∈ E(G′)
and the two remaining vertices of the diamond are not in V (G′). This means there exists a
triangle with exactly one edge in G′, contradicting the paragraph above.

Since G′′ is diamond-free, an easy induction shows that G can be obtained as the edge-
disjoint union of complete subgraphs of order at least 3 plus possibly some edges which are
not in any triangle and isolated vertices such that each triangle of G is contained in one of
the complete subgraphs.

Corollary 2.2.3. Let G be a (K4, claw, diamond)-free graph. For v ∈ V (G), the possible sub-
graphs induced by N [v] are exactly those depicted in Figure 2.3.

Proof. By Theorem 2.2.2, G can be obtained as the edge-disjoint union of triangles plus



2.2. Line graphs of subcubic triangle-free graphs 25

possibly some edges which are not in any triangle. Moreover, each v ∈ V (G) belongs to at
most two edge-disjoint triangles and d(v) ≤ 4. If v ∈ V (G) belongs to no triangle, then
d(v) ≤ 2. If it belongs to exactly one triangle, then G[N(v)] is isomorphic to either K2 or
K2 +K1. Finally, if it belongs to exactly two triangles, then G[N(v)] = 2K2.

Figure 2.3: The possible subgraphs induced by the closed neighbourhood of a vertex of a (K4, claw, diamond)-
free graph.

A graph G is locally linear if the subgraph induced by NG(v) is 1-regular, for every v ∈
V (G). Clearly, a locally linear graph has no odd degree vertices. Fronček [68] observed that
a graph is locally linear if and only if every edge belongs to exactly one triangle. Using this,
he showed that there exists a k-regular locally linear graph, for any even k. This can be seen
by considering the following recursive construction. K3 is clearly 2-regular and locally linear.
A (k + 2)-regular locally linear graph is then obtained by taking the cartesian product of a
k-regular locally linear graph with K3. Combining Theorem 2.2.1 and Corollary 2.2.3, we
immediately get the following:

Theorem 2.2.4. The following are equivalent, for any 4-regular graph G:

(a) G is a (K4, claw, diamond)-free graph.

(b) G is the line graph of a cubic triangle-free graph.

(c) G is a locally linear graph.

(d) G is such that each e ∈ E(G) belongs to exactly one triangle.

2.2.2 Independence number

For a graph G, we denote by i(G) the independence ratio α(G)/|V (G)| of G. The well-known
Brooks’ Theorem asserts that every connected graph G which is neither a complete graph
nor an odd cycle must be ∆(G)-colourable and so i(G) ≥ 1/∆(G). If G is Kk-free, Brooks’
bound can be strengthen to i(G) ≥ 2/(∆(G) + k), as shown by Fajtlowicz [62], who also
provided some cases for which equality holds [61]. Staton [176] improved both Brooks’ and
Fajtlowicz’s results in the case of subcubic triangle-free graphs by showing that i(G) ≥ 5/14,
for any such graph G. Moreover, Heckman [92] showed that there are exactly two connected
subcubic triangle-free graphs with independence ratio equal to 5/14. Fraughnaugh and Locke
[66] proved that every connected subcubic triangle-free graph G on n vertices has α(G) ≥
11n/30 − 2/15. Fraughnaugh Jones [67] improved Fajtlowicz’s result in the case of triangle-
free graphs with maximum degree 4 by showing that i(G) ≥ 4/13, for any such graph G.
Locke and Lou [129] showed that if G is a connected K4-free 4-regular graph with n vertices,
then α(G) ≥ (7n − 4)/26. Kang et al. [104] studied the independence number of 4-regular
(K4, claw)-free graphs. In particular, they proved the following:
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Theorem 2.2.5 (Kang et al. [104]). If G is a connected (K4, claw)-free 4-regular graph on n
vertices then, apart from three exceptions, α(G) ≥ (8n− 3)/27. Moreover, equality holds only if
G is the line graph of a cubic graph.

If we further assume the graph G in Theorem 2.2.5 to be 2-connected, then α(G) =
bn/3c [105]. Motivated by these results, we seek a tight lower bound for the indepen-
dence number of (K4, claw,diamond)-free graphs. It appears that forbidding diamonds is
stronger than relaxing the regularity assumption, in the sense that the independence ratio of
(K4, claw,diamond)-free graphs is strictly bigger than the independence ratio of (K4, claw)-
free 4-regular graphs:

Theorem 2.2.6. If G is a (K4, claw, diamond)-free graph on n vertices, then α(G) ≥ 3
10n.

Moreover, the bound is tight, as shown by the graph in Example 2.1.2.

Recall that there is a bijection between the matchings of a graph G and the independent
sets of its line graph L(G). Biedl et al. [24] showed that every subcubic graph G has a
matching of size (|V (G)|−1)/3 and that every cubic graphG has a matching of size (4|V (G)|−
1)/9. Moreover, O and West [149] characterized the cubic graphs G with α′(G) = (4|V (G)| −
1)/9. Henning et al. [95] showed that α′(G) ≥ (11|V (G)| − 2)/24, for any connected cubic
triangle-free graphG, and characterized the graphs attaining equality. If we consider subcubic
triangle-free graphs then, as a direct consequence of Theorem 2.2.6, we obtain the following
tight lower bound:

Corollary 2.2.7. If G is a subcubic triangle-free graph with ni vertices of degree i, then α′(G) ≥
3
20n1 + 3

10n2 + 9
20n3.

Note that Corollary 2.2.7 is similar in nature to a series of results by Haxell and Scott [90]:
they completely characterized the set of 3-tuples of real coefficients (α, β, γ) for which there
exists a constant K such that α′(G) ≥ αn1 + βn2 + γn3 − K for every connected subcubic
graph G.

As a side remark, note that INDEPENDENT SET is polynomial for claw-free graphs: Minty
[139] reduced this problem to a matching problem in an auxiliary graph and this can be
solved by Edmonds’ algorithm (see, e.g., [28, 182]). Another proof was given, independently,
by Sbihi [167].

By further exploiting the relation between matchings of G and independent sets of L(G),
we can obtain the following simple lemma, already implicitly stated in [105], and which will
be used in the proof of Theorem 2.2.6:

Lemma 2.2.8. If G is a 2-connected 4-regular (K4, claw, diamond)-free graph, then α(G) =
|V (G)|

3 .

Proof. By Theorem 2.2.4, G is the line graph of a cubic triangle-free graph H. Moreover,
since G is 2-connected, H is bridgeless. Therefore, by Petersen’s Theorem, H has a perfect
matching and α(G) = α′(H) = |V (H)|

2 = |V (G)|
3 .

We can finally proceed to the proof of Theorem 2.2.6:
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Proof of Theorem 2.2.6. Without loss of generality, we may assume G to be connected. Recall
that, for v ∈ V (G), the possible subgraphs induced by N [v] are exactly those depicted in
Figure 2.3. We proceed by induction on the number of vertices and we will repeatedly make
use of the following simple claim:

Claim 1. If there exists an independent set S of G such that |S| ≥ 3
10 |NG[S]|, then α(G) ≥ 3

10n.

Indeed, suppose such an S exists and let G′ = G − NG[S]. By the induction hypothesis,
there exists an independent set I ′ of G′ of size at least 3

10(n− |NG[S]|). But then I ′ ∪ S is an
independent set of G of size at least 3

10(n− |NG[S]|) + |S| ≥ 3
10n. �

By Brooks’ Theorem, if ∆(G) ≤ 3, then G is 3-colourable and so α(G) ≥ n
3 . Therefore, we

may assume there exists a 4-vertex v ∈ V (G) and let NG(v) = {v1, v2, v3, v4}. We have that
G[N(v)] = 2K2 and, without loss of generality, E(G[N(v)]) = {v1v2, v3v4}. We distinguish
the following cases:

Case 1: There exists a vertex vi, with i ∈ {1, 2}, such that dG(vi) = 2 (see Figure 2.4(a)).
Then S = {vi} is clearly an independent set with |NG[S]| = 3.

Case 2: dG(v1) = 3 and dG(v2) = 3 (see Figure 2.4(b)).
Let NG(v1) \ {v, v2} = {u1} and NG(v2) \ {v, v1} = {u2}. Clearly, u1 6= u2. Let G′ be the
graph obtained from G by deleting the set of vertices {v, v1, v2} and by adding, if neces-
sary (i.e. without creating multiple edges), the edge u1u2. Suppose first such a graph is
(K4, claw,diamond)-free. By the induction hypothesis, there exists an independent set I of
G′ of size at least 3

10(n− 3). Clearly, at most one of u1 and u2 belongs to I. But then, if u1 or
u2 is in I, we have that I ∪ {v2} or I ∪ {v1} is an independent set of G, respectively, of size at
least 3

10(n− 3) + 1 > 3
10n.

v

v1 v2

v3v4

(a)

v4 v3

v1 v2

v

u1 u2

(b)

v4 v3

v1 v2

v

u1 u2

u3

(c)

Figure 2.4: Three cases in the proof of Theorem 2.2.6.

It remains to consider the case of G′ not being (K4, claw,diamond)-free. Note that, in this
case, u1u2 /∈ E(G). Since G− {v, v1, v2} is diamond-free, then G′ is K4-free. Moreover, since
G[N(ui)] is isomorphic to either K1, 2K1 or K2 + K1, then G′ is claw-free. Therefore, only
diamonds containing u1u2 may arise in G′. In order for this to happen, it must be that one of
G[N(u1)] and G[N(u2)] is isomorphic to K2 +K1. Without loss of generality, suppose that w1

and w′1 are the remaining neighbours of u1. But then u2 must be adjacent to either w1 or w′1.
Therefore, since S = {v, u1, u2} is an independent set of G and |NG[S]| ≤ 10, we conclude by
Claim 1.

Case 3: dG(v1) = 3 and dG(v2) = 4 (see Figure 2.4(c)).
Let NG(v1)\{v, v2} = {u1} and NG(v2)\{v, v1} = {u2, u3}. Note that {u1}∩{u2, u3} = ∅ and
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u2u3 ∈ E(G). The reasoning is similar to the one adopted in the previous case. Let G1 be the
graph obtained from G by deleting the set of vertices {v, v1, v2} and by adding, if necessary
(i.e. without creating multiple edges), the edges u1u2 and u1u3. Suppose first such a graph
is (K4, claw,diamond)-free. By the induction hypothesis, there exists an independent set I of
G1 of size at least 3

10(n− 3). Clearly, at most one of u1, u2 and u3 belongs to I. But then, if u1

or a vertex in {u2, u3} belongs to I, we have that I ∪ {v2} or I ∪ {v1} is an independent set of
G, respectively, of size at least 3

10(n− 3) + 1 > 3
10n.

It remains to consider the case ofG1 not being (K4, claw,diamond)-free. Since bothG and
G− {v, v1, v2} are diamond-free, then G1 is K4-free. Moreover, since G[N(u1)] is isomorphic
to either K1, 2K1 or K2 + K1 and G[N(u2)] and G[N(u3)] are isomorphic to either K2,
K2 + K1 or 2K2, then G1 is claw-free. Therefore, only diamonds containing newly added
edges may arise in G1. It is easy to see that this implies there exists w ∈ V (G) \ {u1, u2, u3}
such that u1w ∈ E(G) and either u2w ∈ E(G) or u3w ∈ E(G). By symmetry, we may assume
u2w ∈ E(G). Suppose w ∈ {v3, v4}, say without loss of generality w = v3. Then u1u2 ∈ E(G)
and S = {u1, v2, v4} is an independent set of G with |NG[S]| ≤ 10.

Therefore, we may assume w /∈ {v3, v4}. Consider now the 4-vertex v2. We have that
v1 is a 3-vertex and v is a 4-vertex. Let G2 be the graph obtained from G by deleting the
set of vertices {v, v1, v2} and by adding, if necessary (i.e. without creating multiple edges),
the edges u1v3 and u1v4. By the reasoning above, if G2 is (K4, claw,diamond)-free we are
done. Otherwise, as we have already seen, the only possibility is that a diamond arises
in G2. But this means there exists w′ ∈ V (G) \ {u1, v3, v4} such that u1w

′ ∈ E(G) and
either v3w

′ ∈ E(G) or v4w
′ ∈ E(G), say without loss of generality v4w

′ ∈ E(G). Since G is
(K4, claw,diamond)-free, it is easy to see that w′ /∈ {u2, u3}. Therefore, suppose first w = w′.
Then either u1v4 ∈ E(G), u1u2 ∈ E(G) or u2v4 ∈ E(G). If u1v4 ∈ E(G), then S = {v, u1, u2}
is an independent set of G with |NG[S]| ≤ 10. If u1u2 ∈ E(G), then S = {u2, v1, v4} is an
independent set of G with |NG[S]| ≤ 10. Finally, if u2v4 ∈ E(G), then S = {u1, v2, v4} is an
independent set of G with |NG[S]| ≤ 10.

Therefore, we may further assume w 6= w′. But then ww′ ∈ E(G). We now claim we may
assume that u2 and v4 have both degree 4. Indeed, if dG(u2) = 3, then S = {v, u1, u2} is
an independent set of G with |NG[S]| ≤ 10. Moreover, if dG(v4) = 3, then S = {u1, v2, v4}
is an independent set of G with |NG[S]| ≤ 10. This means that w′ and v4 have a common
neighbour and the same holds for w and u2. Suppose now the common neighbour of w′ and
v4 is u3. Then S = {u1, v2, v4} is an independent set of G with |NG[S]| ≤ 10. Similarly, if the
common neighbour of w and u2 is v3, then S = {v, u1, u2} is an independent set of G with
|NG[S]| ≤ 10. Therefore, we may assume that the common neighbour a of w′ and v4 and the
common neighbour b of w and u2 are such that {a, b} ∩ {v, v1, v2, v3, v4, u1, u2, u3, w, w

′} = ∅.
Moreover, since G is (K4, claw,diamond)-free and ww′ ∈ E(G), we have a 6= b.

Consider now the graphG3 obtained fromG by deleting the set {v, v1, v2, v3, v4, u1, u2, u3, w, w
′}

and by adding, if necessary (i.e. without creating multiple edges), the edge ab. Suppose first
such a graph is (K4, claw,diamond)-free. By the induction hypothesis, there exists an inde-
pendent set I of G3 of size at least 3

10(n − 10). Clearly, at most one of a and b belongs to I.
But then, if a or b is in I, we have that I ∪ {u1, u2, v} or I ∪ {v2, v4, u1} is an independent set
of G, respectively, of size at least 3

10(n− 10) + 3 ≥ 3
10n.

It remains to consider the case of G3 not being (K4, claw,diamond)-free. Note that, in this
case, ab /∈ E(G). Clearly, G3 is K4-free. Moreover, since G[N(a)] and G[N(b)] are isomorphic
to either K2, K2 + K1 or 2K2, then G3 is claw-free. Therefore, only diamonds containing ab
may arise in G3. In order for this to happen, it must be that there exist two distinct vertices
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a1 ∈ V (G3) and a2 ∈ V (G3), with {a1, a2} ∩ {a, b} = ∅, such that {a1a, a1b} ⊆ E(G) and a2

is a common neighbour of either {a1, a} or {a1, b}. By symmetry, we may assume that a2 is a
common neighbour of {a1, a}.

Now we repeat once again the reasoning of the previous paragraphs. Let G4 be the graph
obtained from G by deleting the set of vertices {v, v1, v2, v4, u1, u2, w, w

′, a, b} and by adding,
if necessary (i.e. without creating multiple edges), the edge u3v3. Suppose first such a graph
is (K4, claw,diamond)-free. By the induction hypothesis, there exists an independent set I
of G4 of size at least 3

10(n − 10). Clearly, at most one of u3 and v3 belongs to I. But then,
if u3 or v3 is in I, we have that I ∪ {v1, v4, w} or I ∪ {v1, u2, w

′} is an independent set of G,
respectively, of size at least 3

10(n− 10) + 3 ≥ 3
10n.

It remains to consider the case of G4 not being (K4, claw,diamond)-free. Note that, in
this case, u3v3 /∈ E(G). Moreover, we have that G4 is K4-free and claw-free. Therefore,
only diamonds containing u3v3 may arise in G4. In order for this to happen, it must be
that there exist v5 ∈ V (G4) and v6 ∈ V (G4) such that {v5v3, v5u3} ⊆ E(G) and v6 is a
common neighbour of either {v3, v5} or {u3, v5}. In the following, we assume that v6 is a
common neighbour of {v3, v5}. The remaining case can be treated similarly and we leave its
verification to the interested reader. Clearly, v5 6= a2 and {v5, v6} ∩ {a1} = ∅. Moreover,
if v6 = a2, then S = {v, u1, u2, a, v5} is an independent set of G with |NG[S]| ≤ 16 and we
conclude by Claim 1. Therefore, we may assume {v5, v6} ∩ {a1, a2} = ∅. We now claim
that v5 and a1 both have degree 4. Indeed, if dG(v5) = 3, then S = {v, u1, u2, a, v5} is an
independent set of G with |NG[S]| ≤ 16. Moreover, if dG(a1) = 3, then S = {a1, v1, v3, u2, w

′}
is an independent set of G with |NG[S]| ≤ 16.

Therefore, v5 and a1 both have degree 4. This means there exist vertices x and y such
that x is the common neighbour of {a1, b} and y is the common neighbour of {v5, u3}. If
x = v6, then S = {a1, v1, v3, u2, w

′} is an independent set of G with |NG[S]| ≤ 16. More-
over, if y = a2, then S = {a2, v1, v3, u2, w

′} is an independent set of G with |NG[S]| ≤ 16.
Therefore, {x, y} ∩ {v, v1, v2, v3, v4, v5, v6, u1, u2, u3, w, w

′, a, b, a1, a2} = ∅. If x = y, then
S = {x, a2, v1, u2, v3, w

′} is an independent set of G with |NG[S]| ≤ 19. Finally, if x 6= y, then
S = {u2, v1, v3, w

′, a1, y} is an independent set of G with |NG[S]| ≤ 20.

Case 4: dG(v1) = 4 and dG(v2) = 4.
By the previous cases, we may assume that each neighbour of a 4-vertex is a 4-vertex. There-
fore, by connectedness, we have that G is 4-regular. If G is also 2-connected, we conclude by
Lemma 2.2.8.

It remains to consider the case of G having a cut-vertex v. Let G1 and G2 be two non-
trivial induced subgraphs of G such that G = G1 ∪ G2 and V (G1) ∩ V (G2) = {v}. Suppose
that |V (G1)| = 10k1 + a and |V (G2)| = 10k2 + b, with 1 ≤ a, b ≤ 10. Therefore, 3

10 |V (G)| =
3k1 + 3k2 + 3

10(a + b − 1). By the induction hypothesis, there exist an independent set I1 of
G1 − v of size at least d 3

10(|V (G1)| − 1)e = d3k1 + 3
10(a − 1)e and an independent set I2 of

G2− v of size at least d 3
10(|V (G2)|− 1)e = d3k2 + 3

10(b− 1)e. Clearly, I1∪ I2 is an independent
set of G. It is enough to distinguish the following cases:

Subcase 4.1: 1 ≤ a− 1 ≤ 3.
We have d3k1 + 3

10(a− 1)e = 3k1 + 1. If 1 ≤ b− 1 ≤ 3, then

|I1 ∪ I2| ≥
¢

3k1 +
3

10
(a− 1)

•
+

¢
3k2 +

3

10
(b− 1)

•
= 3k1 + 3k2 + 2 ≥ 3k1 + 3k2 +

3

10
(a+ b− 1),

except when a− 1 = b− 1 = 3. In that case, let I ′1 be an independent set of G1 of size at least
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d 3
10 |V (G1)|e = 3k1 + d 3

10ae and I ′2 be an independent set of G2 of size at least d 3
10 |V (G2)|e =

3k2 + d 3
10be. By eventually removing v from I ′1 ∪ I ′2, we get an independent set of G of size at

least Ç
3k1 +

¢
3

10
a

•
+ 3k2 +

¢
3

10
b

•å
− 1 ≥ 3k1 + 3k2 + 3 ≥ 3k1 + 3k2 +

3

10
(a+ b− 1).

If 4 ≤ b− 1 ≤ 6, then

|I1 ∪ I2| ≥
¢

3k1 +
3

10
(a− 1)

•
+

¢
3k2 +

3

10
(b− 1)

•
= 3k1 + 3k2 + 3 ≥ 3k1 + 3k2 +

3

10
(a+ b− 1).

If 7 ≤ b− 1 ≤ 9, then

|I1 ∪ I2| ≥
¢

3k1 +
3

10
(a− 1)

•
+

¢
3k2 +

3

10
(b− 1)

•
= 3k1 + 3k2 + 4 ≥ 3k1 + 3k2 +

3

10
(a+ b− 1).

Subcase 4.2: 4 ≤ a− 1 ≤ 6.
We have d3k1 + 3

10(a− 1)e = 3k1 + 2. If 4 ≤ b− 1 ≤ 6, then

|I1 ∪ I2| ≥
¢

3k1 +
3

10
(a− 1)

•
+

¢
3k2 +

3

10
(b− 1)

•
= 3k1 + 3k2 + 4 ≥ 3k1 + 3k2 +

3

10
(a+ b− 1).

If 7 ≤ b− 1 ≤ 9, then

|I1 ∪ I2| ≥
¢

3k1 +
3

10
(a− 1)

•
+

¢
3k2 +

3

10
(b− 1)

•
= 3k1 + 3k2 + 5 ≥ 3k1 + 3k2 +

3

10
(a+ b− 1).

Subcase 4.3: 7 ≤ a− 1 ≤ 9.
We have d3k1 + 3

10(a− 1)e = 3k1 + 3. If 7 ≤ b− 1 ≤ 9, then

|I1 ∪ I2| ≥
¢

3k1 +
3

10
(a− 1)

•
+

¢
3k2 +

3

10
(b− 1)

•
= 3k1 + 3k2 + 6 ≥ 3k1 + 3k2 +

3

10
(a+ b− 1).

Subcase 4.4: a− 1 = 0.
Let I ′1 be an independent set of G1 of size at least d 3

10 |V (G1)|e = 3k1 + 1 and I ′2 be an
independent set of G2 of size at least d 3

10 |V (G2)|e = 3k2 + d 3
10be. By eventually removing v

from I ′1 ∪ I ′2, we get an independent set of G of size at leastÇ
3k1 + 1 + 3k2 +

¢
3

10
b

•å
− 1 ≥ 3k1 + 3k2 +

3

10
b =

3

10
|V (G)|.

This concludes the proof.

We leave as an open problem the characterization of graphs attaining equality in Theo-
rem 2.2.6:

Problem 2.2.9. Characterize the (K4, claw,diamond)-free graphsG such that α(G) = 3
10 |V (G)|.
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2.2.3 Complexity of Feedback Vertex Set

Ueno et al. [180] showed that FEEDBACK VERTEX SET can be solved in polynomial time for
subcubic graphs. In this section, strengthening a result by Speckenmeyer [175], we show the
NP-hardness for line graphs of planar cubic bipartite graphs, a subclass of 4-regular planar
graphs.

We begin by considering (vertex) triangle-transversals of (K4, claw,diamond)-free graphs
or, equivalently, line graphs of subcubic triangle-free graphs (Theorem 2.2.1). Given a subset
of vertices S of a graph G, an S-cover of G is a subset of E(G) covering each vertex in S.
Clearly, V (G)-covers are the usual edge covers of G. Recall that dk(G) = {v ∈ V (G) :
dG(v) = k}.

Lemma 2.2.10. For a subcubic triangle-free graph H, there is a bijection between the d3(H)-
covers of H and the triangle-transversals of L(H).

Proof. Using the bijection between edges of H and vertices of L(H), the assertion follows
from the fact that the triangles of L(H) are in bijection with the cubic vertices of H.

Given a graph G, let us now introduce the graph T ′(G) defined as follows: the vertices of
T ′(G) are the triangles of G, two vertices being adjacent if the corresponding triangles share
a vertex (in Section 2.3, we will study the “edge analogue” of T ′(G)). Note that if G is the
line graph of a subcubic triangle-free graph H, then T ′(G) is nothing but the subgraph of H
induced by the cubic vertices. Lemma 2.2.10 immediately tells us that a triangle-transversal
of a (K4, claw,diamond)-free graph G essentially corresponds to an edge cover of T ′(G):

Corollary 2.2.11. If G is a (K4, claw, diamond)-free graph, then τ∆(G) = β′(T ′(G)−S)+ |S|,
where S is the set of isolated vertices of T ′(G).

Another consequence is that finding a minimum-size triangle-transversal of a (K4, claw,diamond)-
free graph is polynomial:

Corollary 2.2.12. It is possible to find a minimum-size triangle-transversal of a (K4, claw, diamond)-
free graph with n vertices in O(n3) time.

Proof. Let G be a (K4, claw,diamond)-free graph of order n and size m. By Corollary 2.2.11,
it is enough to find a minimum-size edge cover of T ′(G) − S, where S denotes the set of
isolated vertices of T ′(G). This can be done by Edmonds’ maximum matching algorithm in
O(n3) time.

The following lower bound on the size of a feedback vertex set will be crucial for our
NP-hardness proof of FEEDBACK VERTEX SET restricted to line graphs.

Lemma 2.2.13. Let H be a subcubic triangle-free graph with δ(H) ≥ 2 and let G = L(H) be
its line graph. We have τc(G) ≥ |d3(H)|

2 +1, with equality if and only if H contains a Hamiltonian
path.

Proof. By Lemma 2.2.10, there exists a bijection between the triangle-transversals of G and
the d3(H)-covers of H. Therefore, we have τc(G) ≥ τ∆(G) ≥ |d3(H)|

2 and the last inequality is
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an equality if and only if the induced subgraph H[d3(H)] contains a 1-factor.
Suppose, to the contrary, that τc(G) = |d3(H)|

2 . This means there exists a minimum triangle-
transversal T of G (of size |d3(H)|

2 ) which is also a feedback vertex set of G. Moreover, T
corresponds to a 1-factor H ′ of H[d3(H)] and so, since δ(H) ≥ 2, we have that H − E(H ′) is
2-regular. But then there exists a cycle in G − T , a contradiction. This implies that τc(G) ≥
|d3(H)|

2 + 1.
Suppose now equality holds, i.e. τc(G) = |d3(H)|

2 + 1, and let T be a minimum feedback
vertex set of G. Moreover, let T∆ be a triangle-transversal of G having minimum size among
those contained in T . Clearly, we have |d3(H)|

2 ≤ |T∆| ≤ |d3(H)|
2 + 1. If |T∆| = |d3(H)|

2 , then
T∆ corresponds to a 1-factor H ′ of H[d3(H)] and so H − E(H ′) is a 2-factor F with p ≥ 1
components. Since the components of F give rise to p vertex-disjoint cycles in G − T∆, then
τc(G) = |d3(H)|

2 + 1 implies that p = 1 and so F ⊆ H is a Hamiltonian cycle.
Suppose now that T∆ has size |d3(H)|

2 + 1 (in particular, T = T∆), and let T ′ be the cor-
responding d3(H)-cover of H. We have that T ′ contains at most two edges with an endpoint
not in d3(H). If T ′ contains only edges of H[d3(H)] then, by the minimality of T∆, we have
that T ′ consists of a maximum matching M of size |d3(H)|

2 − 1 together with two edges, each
one covering exactly one vertex uncovered by M . If T ′ contains exactly one edge e with an
endpoint not in d3(H), then T ′ \ {e} consists of a maximum matching M of H[d3(H)] of size
|d3(H)|

2 − 1 and an edge of H[d3(H)] covering the vertex uncovered by M ∪ {e}. Finally, if
T ′ contains exactly two edges e1 and e2 with an endpoint not in d3(H), then e1 and e2 cover
distinct cubic vertices. Moreover, T ′ \ {e1, e2} consists of a maximum matching of H[d3(H)]

of size |d3(H)|
2 − 1. It is easy to see that, in all the three cases above, the graph H − T ′ either

contains a single isolated vertex and all the remaining vertices have degree 2, or it contains
exactly two 1-degree vertices with all the remaining ones having degree 2. On the other hand,
H − T ′ is a forest, or else there would be a cycle in G − T . This implies that all the vertices
of H − T ′ have degree 2, except two of them having degree 1, and that H − T ′ is a path.
Therefore, H contains a Hamiltonian path.

Conversely, suppose that H contains a Hamiltonian path P . The number of edges in
E(H) \ E(P ) is |d2(H)| + 3

2 |d3(H)| − (|d2(H)| + |d3(H)| − 1) = |d3(H)|
2 + 1 and these edges

constitute a d3(H)-cover of H. If T is the corresponding triangle-transversal of G of size
|d3(H)|

2 + 1, we have that G− T ⊆ L(P ) and so T is in fact a feedback vertex set.

The strategy becomes evident: we would like to reduce from HAMILTONIAN PATH restricted
to planar cubic bipartite graphs. Therefore, we now deal with the hardness of this problem.
In order to do so, we first need an auxiliary result related to the following:

HAMILTONIAN CYCLE THROUGH SPECIFIED EDGE

Instance: A graph G = (V,E) and e ∈ E.
Question: Does G contain a Hamiltonian cycle through e?

HAMILTONIAN CYCLE THROUGH SPECIFIED EDGE was shown to be NP-complete even when
restricted to planar cubic bipartite graphs [118]. We find useful to present the proof, since
it introduces an operation which will be used in Section 2.2.4 as well. Given a graph G
and a 3-vertex u, a hexagon implant is the operation replacing u by the gadget depicted in
Figure 2.5.
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Figure 2.5: Hexagon implant: the cubic vertex u is replaced by a gadget containing 7 vertices.

Theorem 2.2.14 (Labarre [118]). HAMILTONIAN CYCLE THROUGH SPECIFIED EDGE is NP-
complete even for planar cubic bipartite graphs.

Proof. We reduce from HAMILTONIAN CYCLE, known to be NP-complete even for planar cubic
bipartite graphs [4]. Given a planar cubic bipartite graph G, we apply a hexagon implant to a
vertex u ∈ V (G) (see Figure 2.5) and we set e = u′2z. Clearly, the resulting graph G′ is planar,
cubic and bipartite. Moreover, it is easy to see that G′ contains a Hamiltonian cycle through
e if and only if G contains a Hamiltonian cycle.

We can now prove that HAMILTONIAN PATH remains NP-hard for planar cubic bipartite
graphs. This comes as no surprise, since the related HAMILTONIAN CYCLE is NP-hard for the
same class [4]. It is worth noticing, and an easy exercise, that a connected cubic bipartite
graph is always 2-connected.

Theorem 2.2.15. HAMILTONIAN PATH is NP-complete even for planar cubic bipartite graphs.

Proof. We reduce from HAMILTONIAN CYCLE THROUGH SPECIFIED EDGE restricted to planar
cubic bipartite graphs, which is NP-complete by Theorem 2.2.14. Given an instance of this
problem, i.e. a graph G as above and uv ∈ E(G), we build a graph G′ by substituting the
edge uv with the gadget depicted in Figure 2.6. It is easy to see that G′ is planar, cubic and
bipartite. We claim that G contains a Hamiltonian cycle through uv if and only if G′ contains
a Hamiltonian path.

u v

a1 a2

b1 b2

x y

Ga

Gb

GcGd

Figure 2.6: The gadget in G′ replacing the edge uv.

Suppose first G contains a Hamiltonian cycle C through uv. It is easy to see that C − uv
can be extended to a Hamiltonian a1, b2-path in G′.

Conversely, suppose G′ contains a Hamiltonian path P . It is easy to see that |E(P ) ∩
{a1x, a2y, b1x, b2y}| is either 2 or 3. If it is equal to 2, then E(P ) contains exactly one edge
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incident to the subgraph Ga and exactly one edge incident to the subgraph Gb. This im-
plies that both Ga and Gb contain a vertex of degree 1 in P . Suppose now that |E(P ) ∩
{a1x, a2y, b1x, b2y}| = 3, say without loss of generality E(P ) contains {a1x, a2y, b2y}. By the
reasoning above, both Gb and Gc contain a vertex of degree 1 in P . This means that, in either
case, the vertices of degree 1 in P belong to the gadget in G′ replacing uv and so there exists
a Hamiltonian u, v-path in G. The conclusion immediately follows.

We finally have all the machinery to address FEEDBACK VERTEX SET:

Theorem 2.2.16. FEEDBACK VERTEX SET remains NP-complete even for line graphs of planar
cubic bipartite graphs.

Proof. We reduce from HAMILTONIAN PATH, which is NP-complete even when restricted to
planar cubic bipartite graphs (Theorem 2.2.15). Given such a graph H, consider its line graph
G = L(H). By Lemma 2.2.13, we know that τc(G) ≤ |V (G)|

3 + 1 if and only if H contains a
Hamiltonian path. This concludes the proof.

Given the NP-hardness of FEEDBACK VERTEX SET restricted to (K4, claw,diamond)-free
graphs, it is natural to ask whether the problem admits a PTAS. We now show that this is not
the case, unless P = NP. To this end, let us recall the following problem:

E3-OCC-MAX-E2-SAT

Instance: A formula Φ with variable set X and clause set C, such that each
variable has exactly three literals (in three different clauses) and each
clause is the disjunction of exactly two literals (of two different vari-
ables).

Task: Find a truth assignment maximizing the number of satisfied clauses.

Berman and Karpinski [21] showed that, for every sufficiently small ε > 0, it is NP-hard
to distinguish between those instances of E3-OCC-MAX-E2-SAT for which there is a truth
assignment satisfying at least (788

792 − ε)|C| clauses and those for which every truth assignment
satisfies at most (787

792 + ε)|C| clauses.
Let Φ be an instance of E3-OCC-MAX-E2-SAT. Let t(f) be the number of clauses of Φ

satisfied by a truth assignment f and let t(Φ) be the maximum value of t(f), taken over all
truth assignments f of Φ. Clearly, we may assume that the three literals of each variable
are neither all positive nor all negative. Moreover, by eventually replacing each variable
x appearing twice negated and once unnegated by x, we obtain a new instance Φ′ with
t(Φ) = t(Φ′) and such that each variable appears twice unnegated and once negated.

Theorem 2.2.17. FEEDBACK VERTEX SET is not approximable within 2117
2116 , unless P = NP,

even when restricted to (K4, claw, diamond)-free graphs.

Proof. We construct a gap-preserving reduction from E3-OCC-MAX-E2-SAT. Given a formula
Φ with variable set X and clause set C, we build a graph G as follows. First, for any variable
x ∈ X, we introduce the gadget Gx depicted in Figure 2.7: the literal vertices x1 and x2

correspond to the unnegated occurrences of x, while the literal vertex x1 corresponds to the
negated one. Finally, for any clause c = x ∨ y, we create a triangle having as vertices the
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literal vertices x and y and a new vertex vc. It is easy to see that the resulting graph G is
(K4, claw,diamond)-free. We claim that τc(G) = 4|X|+ |C| − t(Φ).

x1 x2

x1

a

b

c

d

e

Figure 2.7: The variable gadget Gx.

Given a truth assignment f of Φ such that t(f) = t(Φ), we build a feedback vertex set T
of G as follows. For any variable x, we add to T either {x1, x2, b, e}, if x evaluates to true,
or {x1, a, c, d}, otherwise. Clearly, it only remains to check whether T intersects the cycles
corresponding to clauses. If a clause c is satisfied, the corresponding triangle already contains
a vertex in T . Otherwise, we simply add to T one literal vertex belonging to c, thus obtaining
a feedback vertex set of G. Therefore, we have τc(G) ≤ 4|X|+ |C| − t(Φ).

Conversely, let T be a feedback vertex set of G such that |T | = τc(G). Note that |T ∩
V (Gx)| ≥ 4, for any variable x. We define a truth assignment f of Φ as follows: we set x
to true if T ∩ {x1, x2} 6= ∅, and to false otherwise. Consider now a clause c not satisfied
by f . If vc /∈ T then, since the literal vertex corresponding to an unnegated literal (which
evaluates to false under f) does not belong to T , it must be that c contains a negated literal
x1 such that the corresponding literal vertex belongs to T . Moreover, since x is set to true,
T ∩{x1, x2} 6= ∅. Therefore, T contains both an unnegated and a negated literal vertex of Gx
and so it is easy to see that |T ∩ V (Gx)| ≥ 5. Summarizing, we have that for each unsatisfied
clause c, either vc ∈ T or c contains a negated literal x1 and |T ∩ V (Gx)| ≥ 5. But then,
denoting by p the number of unsatisfied clauses c such that vc ∈ T , we have

τc(G) = |T |
≥ p+ 5(|C| − t(f)− p) + 4(|X| − (|C| − t(f)− p))
= 4|X|+ |C| − t(f)

≥ 4|X|+ |C| − t(Φ).

Now let m = |C| and n = |X|. Clearly, 3n = 2m. Recall that it is NP-hard to distinguish
between those instances Φ of E3-OCC-MAX-E2-SAT for which t(Φ) ≥ (788

792 −ε)m and those for
which t(Φ) ≤ (787

792 + ε)m. On the other hand, if t(Φ) ≥ (788
792 − ε)m, then

τc(G) ≤ 4 · 2

3
m+m−

Ç
788

792
− ε
å
m =

Ç
2116

792
+ ε

å
m

and if t(Φ) ≤ (787
792 + ε)m, then

τc(G) ≥ 4 · 2

3
m+m−

Ç
787

792
+ ε

å
m =

Ç
2117

792
− ε
å
m.

Therefore, there is no 2117
2116 -approximation algorithm for FEEDBACK VERTEX SET restricted to

(K4, claw,diamond)-free graphs, unless P = NP.
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Note that we made no effort in optimizing the constant in Theorem 2.2.17. In fact, it
could be improved by using the improved inapproximability result for E3-OCC-MAX-E2-SAT

obtained in [22]. An even stronger improvement could be possibly obtained by a direct gap-
preserving reduction from the problem E3-OCC-E2-LIN-2 (see [22]).

A planarity constraint cannot be added to Theorem 2.2.17, since Demaine and Hajiaghayi
[50] showed that FEEDBACK VERTEX SET admits a PTAS when restricted to planar graphs.
Moreover, we leave as an open problem to determine the approximation hardness of FEED-
BACK VERTEX SET restricted to line graphs of cubic bipartite graphs.

Bafna et al. [17] showed that FEEDBACK VERTEX SET has a 2-approximation for general
graphs. Given the fact that we can find a minimum-size triangle-transversal of a (K4, claw,diamond)-
free graph in polynomial time, if we want to approximate FEEDBACK VERTEX SET for that same
class, it is natural to consider the following algorithm:

Algorithm 1

Require: A (K4, claw,diamond)-free graph G.
Ensure: A feedback vertex set of G.

1: Find a minimum-size triangle-transversal T∆ of G.
2: Find a minimum-size feedback vertex set T of G− T∆.
3: return TG = T ∪ T∆.

Unfortunately, Algorithm 1 does not improve on the factor 2 algorithm for general graphs.
Indeed, there exists an infinite sequence of graphs for which the approximation factor r of
Algorithm 1 gets arbitrarily close to 2: just consider the graph depicted in Figure 2.8 and
containing 2k triangles. Algorithm 1 returns a feedback vertex set of size k + 2k−2

2 , whereas
an optimum solution has size 2k−2

2 + 2.

· · ·
Figure 2.8: A graph with r arbitrarily close to 2.

On the other hand, if we consider 4-regular graphs, we obtain a 3
2 -approximation algo-

rithm:

Theorem 2.2.18. Algorithm 1 is a 3
2 -approximation algorithm for 4-regular (K4, claw, diamond)-

free graphs. It runs in O(n3) time, where n is the number of vertices of the input graph.

Proof. Algorithm 1 clearly returns a feedback vertex set of G. Consider now the approxima-
tion factor r. Let τc(G) = τ∆(G) + a, for some a ≥ 0, and let TG = T ∪ T∆ be the feedback
vertex set found by Algorithm 1, where T∆ is a minimum-size triangle-transversal of G and T
is a minimum-size feedback vertex set of G− T∆. We have that

r =
|TG|
τc(G)

=
τ∆(G) + |T |
τ∆(G) + a

≤ 1 +
|T |

τ∆(G)
.

Recall now that G = L(H), for a cubic triangle-free graph H. By Corollary 2.2.11 and Gallai’s
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identity, we have τ∆(G) = |V (H)| − α′(H) ≥ |V (H)|
2 . Moreover, |T | ≤ |V (G)|−τ∆(G)

4 and so

|TG|
τc(G)

≤ 1 +
|T |

τ∆(G)
≤ 1 +

1

4

Ç |V (G)|
τ∆(G)

− 1

å
≤ 1 +

1

4

Ç
3

2
· |V (H)|
τ∆(G)

− 1

å
≤ 3

2
.

As for the running time, since G − T∆ has maximum degree 2, we can find in linear time a
minimum-size feedback vertex set of G − T∆. Therefore, by Corollary 2.2.12, Algorithm 1
runs in O(n3) time.

2.2.4 Complexity of Hamiltonian Cycle and Hamiltonian Path

In this section, we investigate the computational complexity of HAMILTONIAN CYCLE and
HAMILTONIAN PATH when restricted to line graphs. The topic of Hamiltonicity in line graphs
has a rich history, dating back to the works of Chartrand [34, 35] and Harary and Nash-
Williams [86]. At its core lies the concept of sequential ordering. A sequential ordering of the
m edges of a graph G is an ordering e0, e1, . . . , em−1 such that ei and ei+1 are incident, for any
i ∈ {0, . . . ,m−1} (indices are taken modulo m). A graph admitting such an ordering is called
sequential. It is easy to see that every Hamiltonian graph is sequential and the following result
reveals the relevance of sequential graphs.

Theorem 2.2.19 (Chartrand [34]). Given a graph G, its line graph L(G) is Hamiltonian if
and only if G is sequential.

In particular, Theorem 2.2.19 implies that if G is Hamiltonian then L(G) is Hamiltonian
too. The converse is in general not true, as can be seen by considering K2,3, which is bipartite,
or the Petersen graph, which is cubic. It is not the case even if G is cubic and bipartite, as
can be seen by considering [57, Figure 4]. On the other hand, passing to a 1-subdivision, we
obtain the following:

Lemma 2.2.20. Let G be a subcubic graph and let G′ be a 1-subdivision of G. If L(G′) is
Hamiltonian, then G is Hamiltonian too.

Proof. If L(G′) is Hamiltonian then, by Theorem 2.2.19,G′ is sequential and let e0, e1, . . . , em−1

be a sequential ordering of G′. Clearly, δ(G) ≥ 2 and consider a 3-vertex u ∈ V (G′) ∩ V (G),
i.e. u is not the result of an edge subdivision. Let a1, a2 and a3 be the neighbours of u in
G′. It is not difficult to see that the edges ua1, ua2 and ua3 are consecutive (modulo m)
in the sequential ordering, say ei = ua1, ei+1 = ua2 and ei+2 = ua3. But then ei−1 = a1v
and ei+3 = a3w, for some {v, w} ⊆ V (G′) ∩ V (G) with {uv, uw} ⊆ E(G). Therefore, for
each 3-vertex u ∈ V (G), we select the edges in E(G) which correspond to the “leftmost” and
“rightmost” edge incident to u in the sequential ordering of G′. A similar reasoning applies to
2-vertices. The resulting subgraph is 2-regular and connected.

Note that Lemma 2.2.20 does not hold if G contains vertices of degree 4, as can be seen
by considering a 1-subdivision of the bowtie (see Figure 1.1).

It is easy to see that if a graph G is Hamiltonian, then a 1-subdivision of G is sequential.
Therefore, Theorem 2.2.19 and Lemma 2.2.20 imply the following:

Corollary 2.2.21. Let G be a subcubic graph and let G′ be a 1-subdivision of G. We have that
L(G′) is Hamiltonian if and only if G is.
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We can now state our first result, which implies that HAMILTONIAN CYCLE remains NP-
hard for planar cubic line graphs.

Theorem 2.2.22. HAMILTONIAN CYCLE is NP-complete even for line graphs of 1-subdivisions
of planar cubic bipartite graphs.

Proof. It is known that HAMILTONIAN CYCLE is NP-complete even for planar cubic bipar-
tite graphs [4]. Given an instance G of this problem, consider the line graph L(G′) of a
1-subdivision G′ of G. The statement follows by Corollary 2.2.21.

Note that the construction in the proof of Theorem 2.2.22 can be rephrased in terms of
the following operation. Given a cubic graph G, a Y -extension of G consists in replacing each
u ∈ V (G) by a triangle Tu, where each x ∈ V (Tu) corresponds to an edge incident to u, and
connecting the vertices of the triangles which correspond to the same edge.

We now proceed with the case of line graphs of planar cubic bipartite graphs, for which
the hexagon implant operation defined in Section 2.2.3 comes in handy (see Figure 2.5).

Theorem 2.2.23. HAMILTONIAN CYCLE is NP-complete even for line graphs of planar cubic
bipartite graphs.

Proof. Once again, we reduce from HAMILTONIAN CYCLE restricted to planar cubic bipartite
graphs [4]. Given an instance G of this problem, we build a graph G′ as follows: G′ = L(H),
where H is the graph obtained from G by applying a hexagon implant to each vertex of G.
Since G is planar, cubic and bipartite, the same holds for H. We claim that G is Hamiltonian
if and only if G′ is.

Suppose first G is Hamiltonian. It is easy to see that H is Hamiltonian too (in fact, also
the converse holds) and so, by Theorem 2.2.19, G′ = L(H) is Hamiltonian.

Conversely, suppose G′ has a Hamiltonian cycle C ′. At this point, it is useful to consider
an equivalent construction of G′. Starting from G, we first replace each u ∈ V (G) by the
gadget Gu depicted in Figure 2.9(a). It has three specified vertices, called the gates, each one
corresponding to a different edge incident to u. Finally, we identify corresponding gates. It is
easy to see that the resulting graph is isomorphic to G′.

e1

e2 e3Gu

(a)

e2

u v

e3e2

e1

e4

e5
=⇒

e1 e5

e4

e3

Gu Gv

(b)

Figure 2.9: (a) The gadget Gu corresponding to u ∈ V (G): the gate ei ∈ V (Gu) corresponds to the edge
ei ∈ E(G) incident to u. (b) The construction of G′.

We say that the Hamiltonian cycle C ′ crosses the gate ei if the two edges of C ′ incident to
ei belong to different gadgets. It is not difficult to see that, for each gadget, C ′ crosses exactly
two of its gates. But then, by selecting the edges in G corresponding to the crossed gates in
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G′, we obtain a Hamiltonian cycle in G.

As an immediate consequence of Theorem 2.2.23, we can state the following:

Corollary 2.2.24. Let G be a cubic graph and let G′ be the graph obtained from G by applying
a hexagon implant to each vertex of G. We have that L(G′) is Hamiltonian if and only if G is.

We can finally show an analogue of Theorem 2.2.22 for HAMILTONIAN PATH which strength-
ens the result in [119].

Theorem 2.2.25. HAMILTONIAN PATH is NP-complete even for line graphs of 1-subdivisions of
planar cubic bipartite graphs.

Proof. We reduce from HAMILTONIAN PATH restricted to planar cubic bipartite graphs, shown
to be NP-complete in Theorem 2.2.15. Given an instance G of this problem, the graph G′ is
obtained by a Y -extension of G. Note that there is a bijection between the edges of G and
the edges of G′ which do not belong to any triangle and a bijection between the vertices of G
and the triangles of G′. We denote by Tu the triangle of G′ corresponding to u ∈ V (G) and
let V (Tu) = {u1, u2, u3}. Clearly, G′ is isomorphic to the line graph of a 1-subdivision of G.
We claim that G has a Hamiltonian path if and only if G′ has.

Suppose first G has a Hamiltonian path P between a and b. By Corollary 2.2.21, we may
assume a 6= b. We start by selecting the edges of G′ corresponding to those of E(P ). For each
u ∈ V (G) \ {a, b}, the selected edges are incident to exactly two vertices of Tu, say without
loss of generality u1 and u2. For each such triangle, we now select the edges u3u1 and u3u2.
In this way, we obtain a path P ′ containing all but four vertices (two vertices of Ta and two
vertices of Tb). But then it is easy to extend P ′ to a Hamiltonian path in G′.

Conversely, suppose G′ has a Hamiltonian a1, b1-path P (recall this means a1 ∈ V (Ta) and
b1 ∈ V (Tb)). By Corollary 2.2.21, we may assume a1 6= b1 and a1b1 /∈ E(G′). In particular,
a 6= b. For u ∈ V (G) \ {a, b}, we have that E(P ) contains exactly two edges incident to Tu
and P [V (Tu)] is connected. Suppose first that, for each u ∈ {a, b}, the neighbour of u1 in P
belongs to Tu. ThenE(P ) contains exactly one edge incident to Tu and P [V (Tu)] is connected.
Therefore, by contracting each triangle to a single vertex, we obtain a Hamiltonian a, b-path
in G. Suppose now there exists u ∈ {a, b} such that the neighbour of u1 in P does not belong
to Tu. Without loss of generality, we may assume u = a and let the neighbour of a1 in P
belong to Tv. If the vertices of Tv do not occur consecutively in P , then b1 ∈ V (Tv) (and
so v = b). In this case, it is easy to see that, by deleting the edge of P incident to a1 and
contracting each triangle to a single vertex, we obtain a Hamiltonian cycle in G. On the other
hand, if the vertices of Tv occur consecutively in P , then v 6= b and consider Tb. By the same
reasoning as above, we may assume that either the neighbour of b1 in P belongs to Tb and
P [V (Tb)] is connected, or the neighbour of b1 in P belongs to Tw, with w 6= b, and the vertices
of Tw occur consecutively in P . In the former case, we delete the edge of P incident to a1

and we contract each triangle to a single vertex. In the latter case, we delete the edges of P
incident to a1 and to b1 and we contract each triangle to a single vertex. In either case, it is
easy to see that we obtain a Hamiltonian path in G.
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2.3 k-Line graphs

Recall that, for an integer k ≥ 2, the k-line graph Lk(G) of a graph G is the graph having as
vertices the cliques of G of size k, two vertices being adjacent if the corresponding cliques
intersect in a clique of size k−1. A 2-line graph is the usual line graph and we refer to a 3-line
graph as a triangle graph, denoting it by T (G).

In this section, we show some basic properties of k-line graphs. Despite the fact that this
class is not hereditary, we provide a partial list of forbidden induced subgraphs. As remarked
in Section 2.1, our main motivation for studying k-line graphs is that Tuza’s Conjecture (Con-
jecture 3.3.1), in the case of K4-free graphs, can be expressed in terms of the triangle graph.
Let us briefly explain this (a more detailed discussion is postponed to Chapter 3).

In Section 2.2.3, we have introduced vertex triangle-transversals. Similarly, we define an
edge triangle-transversal of a graph G as a subset of E(G) whose deletion results in a triangle-
free graph. We denote by τ ′∆(G) the minimum size of an edge triangle-transversal of G and
by ν ′∆(G) the maximum number of edge-disjoint triangles of G. Clearly, the following holds:

Fact 2.3.1. For any graph G, we have ν ′∆(G) = α(T (G)).

This is the “higher dimensional” analogue of the bijection between the matchings of a
graph and the independent sets of its line graph. But what about τ ′∆(G)? Continuing with the
analogy, the case k = 2 gives us the following well-known fact:

Fact 2.3.2. If G is a triangle-free graph, then β(G) = θ(L(G)).

The proof of Fact 2.3.2 follows by noticing that there are two types of cliques in a line
graph G. Moreover, if G is the line graph of a triangle-free graph H, then a clique of G
corresponds to the edges incident to a fixed vertex of H. The same situation occurs for k ≥ 3:

Observation 2.3.3 (Lakshmanan et al. [120]). Every n-clique of a k-line graph Lk(G) either
corresponds to n k-cliques of G sharing a fixed (k − 1)-clique or to n k-cliques contained in a
common (k + 1)-clique.

Proof. Let c1, . . . , cn be the vertices of a n-clique of Lk(G) and let C1, . . . , Cn be the cor-
responding k-cliques of G. Moreover, let C1 = {v1, . . . , vk}. Since c1 and c2 are adjacent
in Lk(G), we have |C1 ∩ C2| = k − 1 and so we may assume C2 = {u, v2, . . . , vk}, for some
u /∈ C1. Suppose now there exists a Ci with i > 2 such that {v2, . . . , vk} * Ci, say without loss
of generality vk /∈ Ci. Since ci is adjacent to both c1 and c2, we have Ci = {u, v1, . . . , vk−1}.
But then, any other Cj must be a subset of the clique {u, v1, v2, . . . , vk}.

Observation 2.3.3 tells us that if G is a K4-free graph, then a clique of T (G) corresponds
to a set of triangles of G sharing a common edge and so a clique cover of T (G) corresponds
to an edge triangle-transversal of G:

Fact 2.3.4 (Lakshmanan et al. [122]). If G is a K4-free graph, then τ ′∆(G) = θ(T (G)).

Fact 2.3.1 and Fact 2.3.4 will be repeatedly used in Section 3.3 in order to reduce Tuza’s
Conjecture to a more manageable statement about bounded clique covers (see Section 3.2).
In this context, it is useful to see which graphs cannot appear as induced subgraphs in a tri-
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angle graph. The same can be asked, more generally, for k-line graphs. In fact, the definition
immediately implies the following:

Observation 2.3.5. Every k-line graph is K1,k+1-free.

Clearly, any two triangles of a graph share at most one edge and so Observation 2.3.3
implies the following:

Observation 2.3.6. If G is a K4-free graph, then two maximal cliques of T (G) cannot have
more than one vertex in common. In particular, T (G) is diamond-free.

Observation 2.3.6 shows once again that the class of triangle graphs is not hereditary: a
diamond is not a triangle graph, whereas it is an induced subgraph of T (K2 ∨ P3).

Observation 2.3.7 (Le and Prisner [125]). If c1 and c2 are two non-adjacent vertices of a
k-line graph G = Lk(H), then G[N(c1) ∩N(c2)] is an induced subgraph of C4.

Proof. Let C1 and C2 be the k-cliques of H corresponding to c1 and c2 and suppose that
N(c1) ∩ N(c2) 6= ∅. It is easy to see that |C1 ∩ C2| = k − 2 and so we may assume C1 =
{u1, u2, a1, . . . , ak−2} and C2 = {v1, v2, a1, . . . , ak−2}. On the other hand, there are exactly
four sets of size k having k − 1 elements in common with both C1 and C2, namely the sets of
the form {ui, vj , a1, . . . , ak−2} for {i, j} ⊆ {1, 2}, and the conclusion follows.

Corollary 2.3.8. Every k-line graph is K2,3-free and K2 ∨ P3-free.

We now show that the graph depicted in Figure 2.10 does not appear as an induced
subgraph.

c1

c2

c3c4

c5

c6

Figure 2.10: Twin-C5.

Observation 2.3.9. Every k-line graph is twin-C5-free.

Proof. Suppose G = Lk(H) is a k-line graph containing an induced twin-C5 with vertex
set {c1, . . . , c6}, as depicted in Figure 2.10. For 1 ≤ i ≤ 6, let Ci be the k-clique of H
corresponding to ci. Since c1 and c6 are both adjacent to c5 and c2 but c1c6 /∈ E(G) and
c2c5 /∈ E(G), it is easy to see that C1 = {u1, u2, a1, . . . , ak−2}, C6 = {v1, v2, a1, . . . , ak−2},
C5 = {u1, v1, a1, . . . , ak−2} and C2 = {u2, v2, a1, . . . , ak−2}, where {u1, u2} ∩ {v1, v2} = ∅.

Suppose now the clique C4 does not contain some ai, say ak−2. Since |C4∩C5| = k−1 and
|C4∩C2| = k−2, we have eitherC4 = {u1, v1, u2, a1, . . . , ak−3} orC4 = {u1, v1, v2, a1, . . . , ak−3}.
In either case we obtain a contradiction to the fact that c4c1 /∈ E(G) and c4c6 /∈ E(G). There-
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fore, we have {a1, . . . , ak−2} ⊆ C4. On the other hand, since c4c1 /∈ E(G) and c4c6 /∈ E(G),
then C4 ∩ {u1, u2, v1, v2} = ∅, a contradiction to the fact that c4c5 ∈ E(G).

As noticed in the proof of Observation 2.3.9, an induced C4 in a triangle graph T (G)
corresponds to a W4 in G. Let us now consider an induced C5:

Lemma 2.3.10. An induced C5 in the triangle graph of a K4-free graph G corresponds to an
induced W5 in G.

Proof. Let uvwxy be the 5-cycle in T (G). It is easy to see that the 4-path uvwx corresponds
either to the subgraph depicted in Figure 2.11(a) or to the one in Figure 2.11(b) (note that
these subgraphs are not necessarily induced).

a b

c d

e f
u

v

w

x

(a)

a b

c d

e f
u

v

w

x

(b)

Figure 2.11: The two not necessarily induced subgraphs of G corresponding to an induced P4 in T (G).

Suppose first the latter situation occurs. The triangle y shares edges with u and x but not
with v and w and so it has to contain two edges in the set {ab, ac, df, ef}, which is clearly
impossible. Therefore, uvwx corresponds to the subgraph in Figure 2.11(a). Again, the
triangle y shares edges with u and x but not with v and w and so it contains two edges in the
set {ab, bd, df, ef}. This can happen only if {b, d, f} induces a triangle, therefore giving rise
to a W5.

Note that if G is not K4-free, then an induced C5 in T (G) may also correspond to a K5 in
G. For general Cn, the situation becomes even more complicated. Nevertheless, Lakshmanan
et al. [121] provided a forbidden subgraph characterization of graphs with Cn-free triangle
graphs, for any specified n ≥ 3.

Let us now consider anti-Gallai graphs. Recall that the anti-Gallai graph ∆(G) of G is
the graph having as vertices the edges of G, two vertices being adjacent if the corresponding
edges are incident and span a triangle in G. It directly follows from the definition that every
edge of an anti-Gallai graph belongs to at least one triangle. Moreover, if G is K4-free, it is
easy to see that every edge of ∆(G) belongs to at most one triangle. Recall that a graph G is
locally linear if each edge of G belongs to exactly one triangle or, equivalently, if G[N(v)] is
1-regular for every v ∈ V (G) (see Section 2.2.1). Therefore, the following holds:

Observation 2.3.11. If G is a K4-free graph, then ∆(G) is locally linear.

If G is K4-free, it is not difficult to interpret edge triangle-transversals and edge-disjoint
triangles of G in terms of the anti-Gallai graph of G. Indeed, by Observation 2.3.11, the map
f which sends a triangle of G with edge set {e1, e2, e3} to the triangle of ∆(G) with vertex
set {e1, e2, e3} is a bijection between the triangles of G and those of ∆(G). This implies that
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ν ′∆(G) = ν∆(∆(G)) and τ ′∆(G) = τ∆(∆(G)).
Recall now that the clique graph K(G) of G is the graph having as vertices the maximal

cliques ofG, two vertices being adjacent if the corresponding cliques share at least one vertex.
If G is K4-free, Observation 2.3.11 implies that ∆(G) is K4-free as well and, if every edge
of G belongs to a triangle, the triangles of ∆(G) are exactly its maximal cliques. Therefore,
the map f introduced above gives a bijection between the vertices of T (G) (i.e. the triangles
of G) and the vertices of K(∆(G)) which clearly preserves adjacency. This implies that the
following holds:

Observation 2.3.12. If G is a K4-free graph such that each edge belongs to a triangle, then
T (G) ∼= K(∆(G)).

In fact, Lakshmanan et al. [120] showed that the converse holds as well: a connected
graph F is the anti-Gallai graph of a K4-free graph G such that every edge of G belongs to
a triangle if and only if K(F ) ∼= T (G). This was used in order to reduce the recognition of
anti-Gallai graphs of K4-free graphs to that of triangle graphs. As mentioned in Section 2.1,
the former is NP-complete [9] and so they showed that recognizing triangle graphs is NP-
complete as well.

We conclude this chapter with the following observation, which will be used in Sec-
tion 3.3.1:

Observation 2.3.13 (Lakshmanan et al. [120]). IfG is the k-line graph of aKk+1-free graph,
then it is also the k′-line graph of a Kk′+1-free graph, for any k′ > k.

Proof. Let G = Lk(H), for a Kk+1-free graph H, and consider the join H ′ = H ∨ Kk′−k.
Since H is Kk+1-free, we have that H ′ is Kk′+1-free and every k′-clique of H ′ corresponds
to a k-clique of H. Moreover, two k′-cliques of H ′ intersect in a clique of size k′ − 1 if and
only if the corresponding k-cliques of H intersect in a clique of size k− 1. Therefore, we have
Lk′(H

′) = Lk(H) = G.
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In this chapter, we consider three hypergraphs having the Erdős-Pósa Property and
we seek to determine the optimal bounding functions. First, extending a result by
Henning et al. [95], we show that f(x) = b3

2xc is a θ-bounding function for the class
of subcubic graphs and that it is best possible. Moreover, we provide a θ-bounding
function for the class of graphs with maximum degree at most 4. Finally, we study
CLIQUE COVER and show it admits a PTAS for planar graphs.
Then we consider Tuza’s Conjecture, which asserts that the minimum number of
edges of a graph whose deletion results in a triangle-free graph is at most twice
the maximum number of edge-disjoint triangles. We show that the constant 2 can
be improved for some K4-free graphs whose edges are contained in at most four
triangles and graphs obtained by forbidding certain odd-wheels.
Finally, we consider Jones’ Conjecture: the minimum number of vertices of a planar
graph whose deletion makes it acyclic is at most twice the maximum number of
vertex-disjoint cycles. We show it holds for claw-free graphs with maximum degree
at most 4 and we make some observations for subcubic graphs.

3.1 Introduction

The chromatic number χ(G) of a graphG is the minimum number of independent sets needed
to cover the vertices of G, while the clique number ω(G) is the maximum size of a clique of
G. Since any independent set contains at most one vertex of a clique, we have χ(G) ≥ ω(G).
A class of graphs G is χ-bounded if there exists a function f : N → R such that for all G ∈ G
and all induced subgraphs H of G, we have χ(H) ≤ f(ω(H)). Such a function f is a χ-
bounding function for G. Note that not all graphs are χ-bounded: the so-called Mycielski’s
construction provides triangle-free graphs with arbitrarily large chromatic number (see, e.g.,

45



46 Chapter 3. Approximate Min-Max Theorems

[182]). Gyárfás [81] introduced the concept of χ-bounded class in order to provide a natural
extension of the class of perfect graphs: indeed, this class is exactly the class of graphs χ-
bounded by the identity function. The notion of χ-bounded class has been extensively studied,
especially in the context of hereditary classes (see, e.g., [81, 161]), and many conjectures on
the χ-boundedness of certain classes have been formulated [81].

By substituting χ with θ and ω with α, we obtain the notion of θ-boundedness and the
two are complementary, in the sense that G is χ-bounded if and only if G is θ-bounded. In
[81], Gyárfás formulated the following meta-question: given a class G, what is the smallest
θ-bounding function for G, if any? In Section 3.2, we consider this question for classes of
graphs having bounded maximum degree. It is easy to see that θ(G) ≤ kα(G), for any graph
G with maximum degree at most k. Indeed, given a maximal independent set I of G, we have
that the edges incident to I constitute a clique cover of G and their number is at most kα(G).
On the other hand, for k = 3, we show that this bound is far from optimal: f(x) = b3

2xc is
a θ-bounding function for the class of subcubic graphs and it is best possible. Moreover, we
give some insight for the case of graphs with maximum degree four. The study of these two
cases is also motivated by a result of Henning et al. [95] showing that θ(G) ≤ 3

2α(G), for any
subcubic triangle-free graph G, and by a result of Joos [101] showing that θ(G) ≤ 7

4α(G),
for any triangle-free graph G with maximum degree four. In Section 3.2, we also treat some
algorithmic aspects related to clique covering: in particular, answering a question by Cerioli
et al. [31], we provide a PTAS for CLIQUE COVER when restricted to planar graphs.

Let us now give an equivalent formulation of the concept of θ-boundedness (and, similarly,
of χ-boundedness) as a “packing and covering relation”. In fact, all the problems we treat
in this chapter can be expressed in this way and in order to give the global picture, we first
recall some definitions. A packing of a hypergraph H = (V,E) is a set of pairwise disjoint
edges of H and a transversal (also known as hitting set or covering) of H is a subset X ⊆ V
intersecting each edge of H. The packing number ν(H) of H is the number of edges in a
packing of H of maximum size (a maximum packing) and the transversal number τ(H) of H
is the number of vertices in a transversal of H of minimum size (a minimum transversal).

We can now reformulate the notion of θ-boundedness as follows. Given a graph G, the
clique hypergraph H(G) of G is the hypergraph having as vertices the vertices of G and as
edges the maximal cliques of G. Consider its dual H(G)∗: we have that θ(G) = τ(H(G)∗)
and α(G) = ν(H(G)∗). Therefore, a class of graphs G is θ-bounded if and only there ex-
ists a function f such that for all G ∈ G and all induced subgraphs H of G, we have
τ(H(H)∗) ≤ f(ν(H(H)∗). A similar relation can be obtained for χ-boundedness by con-
sidering the hypergraphs having as edges the maximal independent sets.

Let us now come back to the general packing and covering setting. Since no vertex covers
two edges of a packing, we have τ(H) ≥ ν(H). This implies that obtaining a packing and
a transversal of the same size proves each of them to be optimal. A family of hypergraphs
satisfies the Min-Max Property if ν(H) = τ(H), for each member H of the family. There
are several families of hypergraphs satisfying the Min-Max Property and the most prominent
example is probably given by the following well-known result (see, e.g., [182]):

Theorem 3.1.1 (König-Egerváry Theorem). The family of bipartite graphs satisfies the Min-
Max Property.

Another example is given by Menger’s Theorem (Theorem 1.0.3). Indeed, given a graphG
and vertices x and y ofG, consider the hypergraph on the vertex set ofG having as hyperedges
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the vertex sets of x, y-paths. Clearly, the transversals of this hypergraph are exactly the x, y-
cuts of G and the packings are exactly the families of independent x, y-paths in G.

The Min-Max Property allows a good characterization of the packing and transversal num-
bers. Indeed, to show that ν(H) ≤ k or τ(H) ≥ k, it is enough to exhibit a transversal or
a packing of size k, respectively. Unfortunately, most families of hypergraphs do not satisfy
the Min-Max Property, but it is still of interest to find an upper bound for τ in terms of ν, if
any. If we have this sort of approximate min-max relation, we usually say that the family of
hypergraphs satisfies the Erdős-Pósa Property (this naming will appear consistent in the fol-
lowing paragraphs): a family of hypergraphs satisfies the Erdős-Pósa Property if there exists a
function f such that τ(H) ≤ f(ν(H)), for each member H of the family. This implies that one
parameter is characterized by its obstructing analogue, or dual: either H contains a packing
of size k or it contains a transversal of size f(k).

The family of r-uniform hypergraphs satisfies the Erdős-Pósa Property. Indeed, consider
an r-uniform hypergraph H and a maximal packing of H. Since the union of the edges in this
packing intersects all the edges of H, we have

τ(H) ≤ rν(H). (3.1)

Note that (3.1) is tight. A first example is given by the hypergraph Pr consisting of the lines
of some projective plane of order r − 1: indeed, ν(Pr) = 1 and τ(Pr) = r. Since projective
planes do not exist for every value of r, it is worth considering also the following construction.
Let H be the hypergraph consisting of all the subsets of size r of a set of size kr − 1. Clearly,
we have ν(H) = k − 1 and τ(H) = r(k − 1).

A long-standing open problem known as Ryser’s Conjecture and formulated in [94] asserts
that (3.1) can be improved if the hypergraph is r-partite. Recall that a hypergraph is r-partite
if the vertex set can be partitioned into r classes such that each edge of the hypergraph
contains at most one vertex for each class.

Conjecture 3.1.2 (Ryser’s Conjecture). IfH is an r-uniform r-partite hypergraph, then τ(H) ≤
(r − 1)ν(H).

Note that Theorem 3.1.1 is the case r = 2 of Conjecture 3.1.2. Besides this, not much
is known and the only other solved case is r = 3, settled by Aharoni [2] through a nice
topological argument.

Theorem 3.1.3 (Aharoni [2]). If H is a 3-uniform 3-partite hypergraph, then τ(H) ≤ 2ν(H).

In Section 3.3, we are interested in another family of hypergraphs constructed from graphs
and which, contrary to clique hypergraphs, turns out to be uniform. Given a graph G, the
triangle hypergraphH(G) of G is the hypergraph whose vertices are the edges of G and whose
edges are the subsets spanning triangles in G. Since H(G) is 3-uniform, (3.1) implies that
τ(H(G)) ≤ 3ν(H(G)). This observation can be rephrased as follows: the minimum number
of edges of a graph G whose deletion results in a triangle-free graph is at most three times
the maximum number of edge-disjoint triangles of G. Considering the complete graphs on
4 and 5 vertices, it is clear that τ(H(G)) may be as large as 2ν(H(G)) and Tuza conjectured
that these cases are extremal:

Conjecture 3.1.4 (Tuza’s Conjecture [178]). For any graphG, we have τ(H(G)) ≤ 2ν(H(G)).
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Note that, although similar in nature, Conjecture 3.1.4 is essentially different from The-
orem 3.1.3, since a triangle hypergraph is in general not 3-partite. However, we will see in
Section 3.3 that Theorem 3.1.3 has indeed some interesting consequences for Tuza’s Conjec-
ture.

Several partial results on Tuza’s Conjecture have been obtained: for example, it is known
to be true for graphs on n vertices with at least 7

16n
2 edges [178], for 4-colourable graphs

[122] and for graphs with maximum average degree less than 7 [159]. All these classes
contain the complete graph K4 and so the constant 2 in Conjecture 3.1.4 is optimal for them.
But a natural question arises: What happens if we forbid K4? Haxell et al. [91] showed that
the constant 2 cannot essentially be improved: for every ε > 0, there exists a K4-free graph
G such that τ(H(G)) > (2− ε)ν(H(G)).

In Section 3.3, we consider subclasses of K4-free graphs and we see how the results
proved in Section 3.2 turn out to be useful in the context of packing and covering triangles.
The main idea comes from Section 2.3, where we showed that if G is a K4-free graph, then
the size of a minimum triangle transversal of G is equal to the size of a minimum clique
cover of the triangle graph T (G). Moreover, for any graph G, the size of a maximum tri-
angle packing of G is equal to the size of a maximum independent set of T (G). Therefore,
Tuza’s Conjecture restricted to K4-free graphs translates into the following equivalent asser-
tion: θ(T (G)) ≤ 2α(T (G)), for any K4-free graph G. The classes we consider in Section 3.3
are essentially of two kinds: graphs with edges in few triangles (at most four) and graphs
obtained by forbidding certain odd-wheels. We show that, in these cases, it is in fact possible
to considerably reduce the constant 2 in Conjecture 3.1.4.

As a side remark, Krivelevich [117] proved that the two fractional relaxations of Tuza’s
Conjecture obtained by replacing τ with τ∗ and ν with ν∗ indeed hold. Moreover, Chapuy
et al. [33] showed that these fractional versions hold even for graphs with multiple edges.

Let us now consider another family of hypergraphs arising from graphs. Given a graph G,
the cycle hypergraph H(G) of G is the hypergraph whose vertices are the vertices of G and
whose edges are the vertex sets of cycles of G. Note that a transversal of H(G) is nothing but
a feedback vertex set of G. Contrary to the triangle hypergraph, the cycle hypergraph need
not be uniform. Nevertheless, a fundamental result by Erdős and Pósa [59] shows that cycle
hypergraphs indeed admit an approximate Min-Max Property:

Theorem 3.1.5 (Erdős and Pósa [59]). For any graphG, we have τ(H(G)) = O(ν(H(G)) log ν(H(G))).
Moreover, the bound is sharp.

Kloks et al. [107] conjectured that cycle hypergraphs of planar graphs admit a consider-
ably smaller bounding function1:

Conjecture 3.1.6 (Jones’ Conjecture [107]). IfG is a planar graph, then τ(H(G)) ≤ 2ν(H(G)).

If true, Conjecture 3.1.6 would be sharp, as can be seen by considering wheel graphs.
Kloks et al. [107] showed that it holds for outerplanar graphs and, in general, they proved
the weaker τ(H(G)) ≤ 5ν(H(G)). The factor 5 was later improved to 3 by a series of authors
[32, 36, 134] and it currently gives the best general bound. To the best of our knowledge,
these are the only works related to Conjecture 3.1.6.

In Section 3.4, we show that Jones’ Conjecture indeed holds for claw-free graphs with
1 In fact, this conjecture is known as Jones’ Conjecture, where Jones is an alternate name for C. M. Lee (see [32]).
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maximum degree 4. Moreover, we consider the case of subcubic graphs and we provide some
properties a minimum counterxample must have, if any.

3.2 Bounded clique cover

As we have seen in Section 3.1, a class of graphs G is θ-bounded if there exists a function
f : N → R such that for all G ∈ G and all induced subgraphs H of G, we have θ(H) ≤
f(α(H)). Such a function f is a θ-bounding function for G. The notion of θ-boundedness
and its complementary χ-boundedness were introduced by Gyárfás [81] in order to provide
a natural extension of the class of perfect graphs. In this section, we consider the following
question formulated in [81]: given a class G, what is the smallest θ-bounding function for G,
if any? In particular, we give an answer for the class of subcubic graphs:

Theorem 3.2.1. If G is a subcubic graph, then θ(G) ≤ 3
2α(G). Moreover, f(x) = b3

2xc is the
smallest θ-bounding function for the class of subcubic graphs.

Elaborating on a result by Choudum et al. [39], Pedersen conjectured that θ(G) ≤ 3
2α(G),

for any subcubic triangle-free graph G (see [95]). Recall that, if G is a triangle-free graph and
α′(G) denotes the maximum size of a matching inG, then θ(G) = α′(G)+(|V (G)|−2α′(G)) =
|V (G)| − α′(G). Pedersen’s conjecture was confirmed by Henning et al. [95], who actually
proved the following generalization:

Theorem 3.2.2 (Henning et al. [95]). If G is a subcubic graph, then

3

2
α(G) + α′(G) +

1

2
t(G) ≥ |V (G)|,

where t(G) denotes the maximum number of vertex-disjoint triangles of G. Moreover, equality
holds if and only if every component of G is in {K3,K4, C5, G11} (see Figure 3.1).

G11 G13

Figure 3.1: The graphs G11 and G13.

Theorem 3.2.2 implies that f(x) = b3
2xc is the smallest θ-bounding function for the class

of subcubic triangle-free graphs. Consider now the class C containing those graphs G such
that α(H) ≥ |V (H)|

3 , for every induced subgraph H of G. Gyárfás et al. [82] showed that
f(x) = b8

5xc is the smallest θ-bounding function for the class C. In particular, they proved the
following:

Theorem 3.2.3 (Gyárfás et al. [82]). If G ∈ C, then θ(G) ≤ 8
5α(G).
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By Brooks’ Theorem, every subcubic graph different from K4 belongs to C and so f(x) =
b8

5xc is a θ-bounding function for the class of subcubic graphs as well. On the other hand,
Gyárfás et al. [83] provided evidence for the following meta-statement: the graphs for which
the difference θ − α is large are triangle-free. It would therefore be natural to expect that
the ratio θ

α is maximum for triangle-free graphs and Theorem 3.2.1 partially confirms this
intuition.

Our proof of Theorem 3.2.1 in Section 3.2.1 is inspired by that of Theorem 3.2.3. The main
idea is rather simple and it is based on the notion of θ-criticality, a graph G being θ-critical
if θ(G − v) < θ(G), for every v ∈ V (G). First, we show that a minimum counterexample is
connected and θ-critical. We then rely on the following result by Gallai (see [177] for a short
proof and an extension):

Theorem 3.2.4 (Gallai [72]). If v is any vertex of a connected θ-critical graph G, then G has a
minimum-size clique cover in which v is the only isolated vertex. In particular, θ(G) ≤ |V (G)|+1

2 .

The final contradiction is then reached by using an appropriate lower bound for the in-
dependence number of a subcubic graph. Note that the following statement implies Theo-
rem 3.2.1: for every subcubic graph G, either α(G) > |V (G)|

3 or θ(G) < |V (G)|+1
2 . Moreover,

Brooks’ Theorem and Theorem 3.2.4 imply that Theorem 3.2.1 is equivalent to the fact that
there is no subcubic connected θ-critical graph G with α(G) = |V (G)|

3 and θ(G) = |V (G)|+1
2 .

Let us now consider the class of graphs with maximum degree at most 4. Joos [101]
relaxed the degree condition in Theorem 3.2.2 and showed that θ(G) ≤ 7

4α(G), for any
triangle-free graph G with ∆(G) ≤ 4.

Theorem 3.2.5 (Joos [101]). If G is a triangle-free graph with ∆(G) ≤ 4, then 7
4α(G) +

α′(G) ≥ |V (G)|. Moreover, equality holds if and only if every component C of G has order 13,
α(C) = 4 and α′(C) = 6.

It would be tempting to extend Theorem 3.2.5 to the class of graphs with maximum degree
4 in the same way we extend Theorem 3.2.2 to the class of subcubic graphs. Unfortunately, the
method adopted in the proof of Theorem 3.2.1 does not seem to be powerful enough for this
purpose and the price we have to pay is a bigger θ-bounding function (see Theorem 3.2.8),
likely to be far from the optimal.

We close Section 3.2.1 with an observation related to Theorems 3.2.1 and 3.2.2. We have
seen in Theorem 3.2.2 that there are exactly two connected subcubic triangle-free graphs for
which θ ≤ 3

2α holds with equality: C5 and G11. Both of them clearly contain an induced C5

and so it is natural to ask what happens by forbidding C5. We show that if G is a subcubic
(K3, C5)-free graph, then θ(G) ≤ 10

7 α(G).
In Section 3.2.2, we consider the problem of finding a clique cover of minimum size for

graphs with bounded maximum degree and for planar graphs. The decision version of this
well-known NP-complete problem is formulated as follows:

CLIQUE COVER

Instance: A graph G and a positive integer k.
Question: Does θ(G) ≤ k hold?

Since any subset of a clique is again a clique, CLIQUE COVER is equivalent to the following
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problem:

CLIQUE PARTITION

Instance: A graph G and a positive integer k.
Question: Does there exist a partition of V (G) into k disjoint cliques?

Moreover, CLIQUE PARTITION is clearly equivalent to the well-known COLOURING problem
on the complement graph.

Cerioli et al. [31] studied CLIQUE COVER on planar graphs and on subclasses of subcubic
graphs. In particular, they showed that CLIQUE COVER is NP-complete even for planar cubic
graphs and that the optimization version is MAX SNP-hard for cubic graphs. Moreover, they
asked whether the problem admits a PTAS for planar cubic graphs and conjectured that it
has a polynomial-time approximation algorithm with a fixed ratio for graphs with bounded
maximum degree. In Section 3.2.2, we answer both questions in the affirmative. We also
provide some hardness results for subclasses of planar graphs and subcubic graphs.

3.2.1 θ-Bounding functions

We begin this section with a proof of Theorem 3.2.1. As mentioned in Section 3.2, our proof
makes use of an appropriate lower bound for the independence number given by Harant et
al. [84]. In order to state their result, we need the following definitions. A block of a graph
is difficult if it is isomorphic to one of the four graphs depicted in Figure 3.2. Moreover, a
connected graph is bad if its blocks are either difficult or are edges between difficult blocks.
For a graph G, the number of bad components of G is denoted by λ(G) and the maximum
number of vertex-disjoint triangles of G is denoted by t(G).

Figure 3.2: The difficult blocks.

Theorem 3.2.6 (Harant et al. [84]). Every subcubic K4-free graph G has an independent set
of size at least 1

7(4n(G)−m(G)− λ(G)− t(G)).

We also require the notion of distance between sets of vertices of a graph. Given two sub-
sets X and Y of V (G), the distance from X to Y is the quantity d(X,Y ) = minx∈X,y∈Y d(x, y),
i.e. it is the minimum length of a path between a vertex in X and a vertex in Y . With a slight
abuse of notation, if T is a triangle, we write d(T, Y ) instead of d(V (T ), Y ).

We can finally proceed to the proof of Theorem 3.2.1:

Proof of Theorem 3.2.1. Let us begin by showing that θ(G) ≤ 3
2α(G), for any subcubic graph

G. Suppose, by contradiction, that G is a counterexample with the minimum number of
vertices. In the following, we deduce some structural properties of G and we show how they
lead to a contradiction. Each claim is followed by a short proof.

Claim 2. G is connected.
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Otherwise, G is the disjoint union of two non-empty graphs G1 and G2. By minimality,
we have

θ(G) = θ(G1) + θ(G2) ≤ 3

2
(α(G1) + α(G2)) =

3

2
α(G),

a contradiction. �

Claim 3. G is θ-critical.

Indeed, suppose there exists a vertex v ∈ V (G) such that θ(G) = θ(G− v). By minimality,
we have

θ(G) = θ(G− v) ≤ 3

2
α(G− v) ≤ 3

2
α(G),

a contradiction. �

Claim 4. G has minimum degree at least 2.

Suppose there exists a 1-vertex u of G. By minimality, we have

θ(G) ≤ θ(G−N [u]) + 1 ≤ 3

2
α(G−N [u]) + 1 ≤ 3

2
(α(G)− 1) + 1 <

3

2
α(G),

a contradiction. �

Claim 5. G is 2-connected.

Since every connected subcubic bridgeless graph is 2-connected, it is enough to show that
G has no cut-edges. Therefore, suppose e = u1u2 is a cut-edge and let G1 be the component
of G − e containing u1 and G2 = G − V (G1) (therefore, u2 ∈ V (G2)). Clearly, θ(G) ≤
θ(G1) + θ(G2). If there exists i ∈ {1, 2} such that a maximum independent set of Gi avoids
ui, then α(G) ≥ α(G1) + α(G2) and so, by minimality,

θ(G) ≤ θ(G1) + θ(G2) ≤ 3

2
α(G1) +

3

2
α(G2) ≤ 3

2
α(G),

a contradiction. Therefore, for each i ∈ {1, 2}, every maximum independent set ofGi contains
ui. This means that α(Gi − ui) = α(Gi) − 1, for each i ∈ {1, 2}. Moreover, denoting by Ii a
maximum independent set of Gi, we have that I1 ∪ (I2 \ {u2}) is an independent set of G and
so α(G) ≥ α(G1) + α(G2)− 1. But then, by minimality,

θ(G) ≤ θ(G1 − u1) + θ(G2 − u2) + 1

≤ 3

2
α(G1 − u1) +

3

2
α(G2 − u2) + 1

=
3

2
(α(G1)− 1) +

3

2
(α(G2)− 1) + 1

=
3

2
(α(G1) + α(G2))− 2

<
3

2
α(G),

a contradiction. �
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Claim 6. G does not contain a diamond.

Suppose G contains a diamond and let u and v be its 2-vertices. Since G is connected and
θ(K4) = α(K4), we have uv /∈ E(G). Therefore, by minimality,

θ(G) ≤ θ(G−N [u]−N [v]) + 3 ≤ 3

2
α(G−N [u]−N [v]) + 3 ≤ 3

2
(α(G)− 2) + 3 ≤ 3

2
α(G),

a contradiction. �

Claim 7. d(u, T ) ≥ 4, for any 2-vertex u ∈ V (G) and any triangle T ⊆ G.

Suppose first a triangle T contains a 2-vertex. By minimality, we have

θ(G) ≤ θ(G− V (T )) + 1 ≤ 3

2
α(G− V (T )) + 1 ≤ 3

2
(α(G)− 1) + 1 <

3

2
α(G),

a contradiction. Therefore, we have d(u, T ) ≥ 1, for any 2-vertex u ∈ V (G) and any triangle
T ⊆ G. Suppose now d(u, T ) = 1, for a triangle T ⊆ G and a 2-vertex u ∈ V (G) \ V (T ). This
means T contains a vertex v such that uv ∈ E(G) and let v′ ∈ V (T ) \ {v}. By Claim 6, we
have uv′ /∈ E(G) and so, by minimality,

θ(G) ≤ θ(G−N [u]−N [v′]) + 3 ≤ 3

2
α(G−N [u]−N [v′]) + 3 ≤ 3

2
(α(G)− 2) + 3 ≤ 3

2
α(G),

a contradiction. Using a similar argument, it is an easy but tedious task to check the two
remaining cases and we leave it to the interested reader. �

Claim 8. d(u, v) ≥ 3, for any two distinct 2-vertices u and v of G.

Suppose first there exist two adjacent 2-vertices u and v and let u′ ∈ N(u) \ {v} and
v′ ∈ N(v) \ {v}. By Claim 7, we have u′ 6= v′. If there exists a vertex w ∈ V (G) adjacent to
both u′ and v′ then, by minimality,

θ(G) ≤ θ(G−N [u]−N [w]) + 3 ≤ 3

2
α(G−N [u]−N [w]) + 3 ≤ 3

2
(α(G)− 2) + 3 ≤ 3

2
α(G),

a contradiction. Therefore, no vertex of G is adjacent to both u′ and v′.
Consider now the graph G′ obtained from G by deleting {u, v} and by adding, if necessary,

the edge u′v′. The graph G′ is clearly simple and subcubic. Since a maximum independent
set I ′ of G′ is also an independent set of G−{u, v} and I ′ contains at most one of the vertices
u′ and v′, we have α(G) ≥ α(G′) + 1. Moreover, we claim that θ(G) ≤ θ(G′) + 1. Indeed,
consider a minimum clique cover C ′ of G′. If no clique in C ′ contains {u′, v′}, then C ′∪{u, v}
is a clique cover of G of size θ(G′) + 1. On the other hand, by the paragraph above, if a clique
in C ′ contains {u′, v′}, then it must be of size 2. Therefore, (C ′ \ {u′, v′}) ∪ {u′, u} ∪ {v′, v} is
a clique cover of G of size θ(G′) + 1 and we have established our claim. But then, again by
minimality, we have

θ(G) ≤ θ(G′) + 1 ≤ 3

2
α(G′) + 1 ≤ 3

2
(α(G)− 1) + 1 <

3

2
α(G),

a contradiction.
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Suppose now there exist two 2-vertices u and v such that d(u, v) = 2. Since uv /∈ E(G)
then, by minimality, we have

θ(G) ≤ θ(G−N [u]−N [v]) + 3 ≤ 3

2
α(G−N [u]−N [v]) + 3 ≤ 3

2
(α(G)− 2) + 3 ≤ 3

2
α(G),

a contradiction. �

Claim 9. d(T1, T2) ≥ 3, for any two distinct triangles T1 and T2 of G.

By Claim 6 and since G is subcubic, we have d(T1, T2) ≥ 1. Suppose first there exist two
triangles T1 and T2 at distance 1 and let u1 ∈ V (T1) and u2 ∈ V (T2) be such that d(u1, u2) = 1.
Moreover, consider a vertex u′2 ∈ V (T2) \ {u2}. By minimality,

θ(G) ≤ θ(G−N [u1]−N [u′2]) + 3 ≤ 3

2
α(G−N [u1]−N [u′2]) + 3 ≤ 3

2
(α(G)− 2) + 3 ≤ 3

2
α(G),

a contradiction. The remaining case can be treated similarly, leading again to a contradiction.
�

Claim 10. Each cycle of G on four vertices contains only cubic vertices.

Indeed, suppose there exists a cycle C ⊆ G on four vertices containing a 2-vertex u of G.
Let v ∈ V (C) be such that d(u, v) = 2. By minimality,

θ(G) ≤ θ(G−N [u]−N [v]) + 3 ≤ 3

2
α(G−N [u]−N [v]) + 3 ≤ 3

2
(α(G)− 2) + 3 ≤ 3

2
α(G),

a contradiction. �

Claim 11. n2(G) > 0.

Suppose this is not the case. By Claim 4 and Claim 5, G is a cubic bridgeless graph and the
well-known Petersen’s Theorem implies it has a perfect matching. But then θ(G) ≤ n(G)

2 ≤
3
2α(G), a contradiction. �

Claim 12. 6t(G) ≤ n3(G)− 6.

Let u be a 2-vertex of G. We first show that the set S = {v ∈ V (G) : d(v, u) = 2} of
vertices at distance 2 from u has size 4. Indeed, by Claim 8, the neighbours u′ and u′′ of u
are cubic vertices and, by Claim 7, u′u′′ /∈ E(G). Moreover, by Claim 10, no neighbour of u′

different from u is also a neighbour of u′′ and so |S| = 4. Note that, by Claim 8, each v ∈ S is
a cubic vertex.

Consider now the triangles of G. By Claim 7 and Claim 6, each vertex of a triangle T has a
neighbour not in T and any two such neighbours are distinct. Moreover, by Claim 9, the set of
neighbours of T1 does not intersect the set of neighbours of T2, for any two (vertex-disjoint)
triangles T1 and T2 of G. Finally, by Claim 7, no vertex in S ∪ {u′, u′′} belongs to a triangle or
is a neighbour of a triangle and each neighbour of a triangle is a cubic vertex. Therefore, we
have 6t(G) ≤ n3(G)− 6. �
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We are finally in a position to conclude our proof. By Claim 5, G is 2-connected and since
no graph in Figure 3.2 is a counterexample, we have λ(G) = 0. Therefore, by Theorem 3.2.6
and recalling that n(G) = n3(G) + n2(G) and 6t(G) ≤ n3(G)− 6, we get

α(G) ≥
¢

1

7

Ç
4n(G)−m(G)− t(G)

å•
=

¢
1

7

Ç
4n3(G) + 4n2(G)

å
− 1

7

Ç
3

2
n3(G) + n2(G)

å
− 1

7
t(G)

•
≥
¢

1

7

Ç
4n3(G) + 4n2(G)

å
− 1

7

Ç
3

2
n3(G) + n2(G)

å
− 1

42
(n3(G)− 6)

•
=

¢
1

3
n3(G) +

3

7
n2(G) +

1

7

•
. (3.2)

We now claim that ¢
1

3
n3(G) +

3

7
n2(G) +

1

7

•
≥ 1

3
(n3(G) + n2(G) + 1). (3.3)

This can be easily seen if n2(G) ≥ 2. Therefore, suppose n2(G) = 1 and let n3(G) = 3k + a,
for some integer 0 ≤ a ≤ 2. Inequality (3.3) is then equivalent to¢

7a+ 12

21

•
≥ a+ 2

3
,

which clearly holds for 0 ≤ a ≤ 2.
On the other hand, by Claim 2 and Claim 3, G is a connected θ-critical graph and so, by

Theorem 3.2.4, we have θ(G) ≤ n(G)+1
2 . Therefore, combining this with (3.2) and (3.3), we

have

3

2
α(G) ≥ 3

2

¢
1

3
n3(G) +

3

7
n2(G) +

1

7

•
≥ 1

2
(n3(G) + n2(G) + 1) =

1

2
(n(G) + 1) ≥ θ(G),

a contradiction. This concludes the proof of the first statement in Theorem 3.2.1.
As for the second statement, we need to show that, for each integer x ≥ 0, there exists a

subcubic graph G such that α(G) = x and θ(G) = b3
2α(G)c. If x is even, we construct G as

the disjoint union of x
2 copies of C5. On the other hand, if x is odd, it is enough to construct

G as the disjoint union of bx2 c copies of C5 together with an isolated vertex.

As mentioned in Section 3.2, the ratio θ
α should be maximum for triangle-free graphs and

so we propose the following:

Conjecture 3.2.7. If G is a subcubic graph, then θ(G) = 3
2α(G) if and only if every component

of G is either C5 or G11.

Let us now consider the class of graphs with maximum degree at most 4. Joos [101]
relaxed the degree condition in Theorem 3.2.2 and showed that θ(G) ≤ 7

4α(G), for any
triangle-free graph G with ∆(G) ≤ 4. Following the intuition expressed in Section 3.2, it
would be natural to expect that the previous inequality holds for any graph with maximum
degree at most 4. Unfortunately, the method adopted in the proof of Theorem 3.2.1 gives
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an upper bound for the ratio θ(G)
α(G) which gets larger as the size of a maximum clique of G

increases. Since we believe the maximum is attained by triangle-free graphs, we present only
the bound for K4-free graphs, which is already substantially larger than the expected 7

4 .

Theorem 3.2.8. IfG is aK4-free graph with maximum degree at most 4, then θ(G) ≤ 193
98 α(G).

As mentioned above, our proof of Theorem 3.2.8 resembles that of Theorem 3.2.1: a
counterexampleGwith minimum order must be connected and θ-critical; Theorem 3.2.4 then
guarantees the existence of a clique cover of size at most n(G)+1

2 and by using an appropriate
lower bound on the independence number, we derive a contradiction, assuming the value
of α(G) is large enough. On the other hand, if the value of α(G) is small, then n(G) is
small and it is useful to consider several results on the covering gap (the difference between
the minimum size of a clique cover and the maximum size of an independent set) of small
graphs, as stated in the following theorem:

Theorem 3.2.9 (Gyárfás et al. [83]). The graph G13 in Figure 3.1 is the only graph on 13
vertices with covering gap 3. Moreover, for any graph G, the following hold:

• If n(G) ≤ 22, then θ(G)− α(G) ≤ 5;

• If n(G) ≤ 19, then θ(G)− α(G) ≤ 4;

• If n(G) ≤ 16, then θ(G)− α(G) ≤ 3;

• If n(G) ≤ 12, then θ(G)− α(G) ≤ 2;

• If n(G) ≤ 9, then θ(G)− α(G) ≤ 1.

We can finally proceed to the proof of Theorem 3.2.8.

Proof of Theorem 3.2.8. Suppose, by contradiction, thatG is a counterexample with the mini-
mum number of vertices. As in the proof of Theorem 3.2.1, it is easy to see thatG is connected
and θ-critical. On the other hand, Locke and Lou [129] showed that, for any connected K4-
free graph G with ∆(G) ≤ 4, we have α(G) ≥ 7n(G)−4

26 . Combining this with Theorem 3.2.4,
and if α(G) ≥ 7, we get

θ(G) ≤ n(G) + 1

2
≤ 26α(G) + 11

14
≤ 193

98
α(G).

For the small values of α(G), we rely on Theorem 3.2.9. If α(G) = 6, then n(G) ≤ 22 and
so θ(G) ≤ 11. If α(G) = 5, then n(G) ≤ 19 and so θ(G) ≤ 9. If α(G) = 4, then n(G) ≤ 15
and so θ(G) ≤ 7. If α(G) = 3, then n(G) ≤ 11 and so θ(G) ≤ 5. If α(G) = 2, then n(G) ≤ 8
and so θ(G) ≤ 3. Finally, if α(G) ≤ 1, then G is complete and θ(G) = α(G). It immediately
follows that, for all the values of α(G), we have θ(G) ≤ 193

98 α(G), a contradiction.

As remarked before, we believe 7
4 should be the optimal constant:

Conjecture 3.2.10. If G is a graph with maximum degree at most 4, then θ(G) ≤ 7
4α(G), with

equality if and only if every component of G is G13.
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It is worth noticing that a slight modification of the proof of Theorem 3.2.8 gives a short
proof of Theorem 3.2.5:

Proof of Theorem 3.2.5. Suppose, by contradiction, that G is a counterexample with the min-
imum number of vertices. As we have seen above, G is a connected θ-critical graph. On the
other hand, Fraughnaugh Jones [67] showed that α(G) ≥ 4

13n(G), for any triangle-free graph
G with ∆(G) ≤ 4. Combining this with Theorem 3.2.4, and if α(G) > 4, we get

θ(G) ≤ n(G) + 1

2
≤ 13α(G) + 4

8
<

7

4
α(G).

For the remaining values of α(G), we use again Theorem 3.2.9. If α(G) = 4, then n(G) ≤
13 and so θ(G) ≤ 7. If α(G) = 3, then n(G) ≤ 9 and so θ(G) ≤ 4. If α(G) = 2, then n(G) ≤ 6
and so θ(G) ≤ 3. Finally, if α(G) ≤ 1, then G is complete and θ(G) = α(G). It immediately
follows that θ(G) ≤ 7

4α(G), a contradiction.
Note that, if G is connected and θ-critical, then equality holds only if α(G) = 4 and

n(G) = 13. But the graph G13 in Figure 3.1 (also known as the (3, 5)-Ramsey graph) is the
only graph G such that ω(G) = 2, ω(G) = α(G) = 4 and n(G) = 13 (see [160]). On the other
hand, it is easy to see that equality cannot hold if G is not θ-critical.

We conclude this section with two observations on the subcubic case we treated above.
Theorem 3.2.1 (or, alternatively, Theorem 3.2.2) implies that f(x) = b3

2xc is a θ-bounding
function for the class of subcubic triangle-free graphs. This class is equivalent to Free(K1,4,K3)
and the same function is θ-bounding for the superclass Free(K1,4, paw):

Lemma 3.2.11. If G is a (K1,4, paw)-free graph, then θ(G) ≤ 3
2α(G). Equality holds if and

only if every component of G is either C5 or G11.

Proof. Clearly, it is enough to show the assertion for a connected G. A well-known result by
Olariu [150] states that a connected graph is paw-free if and only if it is either triangle-free or
complete multipartite. Suppose first G is triangle-free. Since G is K1,4-free as well, it must be
subcubic and so, by Theorem 3.2.2, we have that θ(G) ≤ 3

2α(G). Moreover, we know equality
holds if and only if G is either C5 or G11.

Finally, if G is a complete multipartite graph, then G is a disjoint union of cliques and so
θ(G) = χ(G) = ω(G) = α(G).

We have seen in Theorem 3.2.2 that there are exactly two connected subcubic triangle-
free graphs for which θ ≤ 3

2α holds with equality: the 5-cycle C5 and the graph G11. Both of
them clearly contain an induced C5 and so it is natural to ask whether forbidding this graph
leads to a smaller bounding function. It appears this is indeed the case, as shown by the
following:

Theorem 3.2.12. If G is a subcubic (K3, C5)-free graph, then θ(G) ≤ 10
7 α(G).

As we have seen throughout the section, our approach for proving such statements ulti-
mately relies on a good lower bound for the independence number. For a triangle-free graph
G, Theorem 3.2.6 implies Staton’s bound α(G) ≥ 5

14n(G) [176] and Heckman [92] showed
that there are exactly two graphs attaining equality. They both have 14 vertices and contain
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an induced C5 (one such graph is the so-called generalized Petersen graph P (7, 2)). Fraugh-
naugh and Locke [66] showed that, for graphs with more than 14 vertices, a better lower
bound is possible: α(G) ≥ 11

30n(G) − 2
15 , for any connected subcubic triangle-free graph.

Moreover, they showed that if G is not cubic and does not belong to a certain family, the
previous bound can be further improved. Let us now define this special family.

We denote by F11 the class of graphs obtained by the following construction. Given any
tree T with maximum degree at most four, we replace each vertex of T of degree at least two
by a copy of G8 (see Figure 3.3) and each vertex of degree one by a copy of either G8 or G11

(see Figure 3.1). For each vertex v of T replaced by G ∈ {G8, G11}, the edges of T incident
to v become incident to vertices of degree two in G, at most one such edge to each vertex of
degree two in G. Clearly, every graph G ∈ F11 thus obtained is subcubic and triangle-free
and it is not difficult to see that m(G)− 7n(G) + 15α(G) = −1.

Figure 3.3: The graph G8.

Denoting by γ(G) the quantity m(G) − 7n(G) + 15α(G), Fraughnaugh and Locke [66]
showed the following:

Theorem 3.2.13 (Fraughnaugh and Locke [66]). Let G be a connected subcubic triangle-
free graph. If G is cubic, then γ(G) ≥ −2. If G ∈ F11, then γ(G) = −1. Finally, if G is not cubic
and G /∈ F11, then γ(G) ≥ 0.

The following corollary is immediate:

Corollary 3.2.14. Let G be a connected subcubic triangle-free graph. If G is cubic, then α(G) ≥
11n(G)−4

30 , while if G is not cubic and G /∈ F11, then α(G) ≥ 11n(G)+1
30 .

Note that if G is C5-free, then G /∈ F11, as both G8 and G11 contain induced copies of C5.
We can finally proceed to the proof of Theorem 3.2.12.

Proof of Theorem 3.2.12. Suppose, by contradiction, that G is a counterexample with the
minimum number of vertices. As we have repeatedly seen in the previous paragraphs, G is
connected and θ-critical. We now show it is in fact 2-connected. The proof is almost identical
to the one of Claim 5 in Theorem 3.2.1.

Claim 13. G is 2-connected.

Since every connected subcubic bridgeless graph is 2-connected, it is enough to show that
G has no cut-edges. Therefore, suppose e = u1u2 is a cut-edge and let G1 be the component
of G− e containing u1 and G2 = G−V (G1) (therefore, u2 ∈ V (G2)). Since G is triangle-free,
we have that G − e is triangle-free and C5-free as well. Moreover, θ(G) ≤ θ(G1) + θ(G2). If
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there exists i ∈ {1, 2} such that a maximum independent set of Gi avoids ui, then α(G) ≥
α(G1) + α(G2) and so, by minimality,

θ(G) ≤ θ(G1) + θ(G2) ≤ 10

7
α(G1) +

10

7
α(G2) ≤ 10

7
α(G),

a contradiction. Therefore, for each i ∈ {1, 2}, every maximum independent set ofGi contains
ui. This means that α(Gi − ui) = α(Gi) − 1, for each i ∈ {1, 2}. Moreover, denoting by Ii a
maximum independent set of Gi, we have that I1 ∪ (I2 \ {u2}) is an independent set of G and
so α(G) ≥ α(G1) + α(G2)− 1. But then, by minimality,

θ(G) ≤ θ(G1 − u1) + θ(G2 − u2) + 1

≤ 10

7
α(G1 − u1) +

10

7
α(G2 − u2) + 1

=
10

7
(α(G1)− 1) +

10

7
(α(G2)− 1) + 1

=
10

7
(α(G1) + α(G2))− 13

7

<
10

7
α(G),

a contradiction. �

Claim 14. G is cubic.

Suppose it is not. Since G is C5-free, we have that G /∈ F11 and so, by Corollary 3.2.14,
we have α(G) ≥ 11n(G)+1

30 . Combining this with Theorem 3.2.4 and if α(G) ≥ 7, we obtain

θ(G) ≤ n(G) + 1

2
≤ 30α(G) + 10

22
≤ 10

7
α(G).

For the remaining values of α(G), we rely on Theorem 3.2.9:

• If α(G) = 6, then n(G) ≤ 16 and θ(G) ≤ 9. Suppose now that θ(G) = 9. This means
that θ(G) = 3

2α(G) and so, by Theorem 3.2.2, we have G ∈ {C5, G11}, a contradiction
to the fact that G is C5-free. Therefore, θ(G) ≤ 8 < 10

7 α(G).

• If α(G) = 5, then n(G) ≤ 13 and θ(G) ≤ 8. Since G13 is the only graph on 13 vertices
with covering gap 3 and since it contains an induced C5, we have that θ(G) ≤ 7 <
10
7 α(G).

• If α(G) = 4, then n(G) ≤ 10 and θ(G) ≤ 6. By the same argument as in the case
α(G) = 6, we have that θ(G) ≤ 5 < 10

7 α(G).

• If α(G) = 3, then n(G) ≤ 8 and so θ(G) ≤ 4 < 10
7 α(G).

• If α(G) = 2, then n(G) ≤ 5 and θ(G) ≤ 3. As above, by Theorem 3.2.2, we have that
θ(G) = 2.

• Finally, if α(G) ≤ 1, then G is complete and again θ(G) = α(G).
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In all the cases we have θ(G) ≤ 10
7 α(G), a contradiction. �

We are now in a position to conclude our proof. Since G is cubic and 2-connected, Pe-
tersen’s Theorem implies it has a perfect matching. Moreover, by Corollary 3.2.14, we have
that α(G) ≥ 11n(G)−4

30 . Therefore, if α(G) ≥ 3, we obtain

θ(G) =
n(G)

2
≤ 30α(G) + 4

22
<

10

7
α(G).

If α(G) = 2, then n(G) ≤ 5 and sinceG � C5, we have θ(G) = 2. Finally, if α(G) ≤ 1, then
G is complete and θ(G) = α(G). In all the cases we have θ(G) < 10

7 α(G), a contradiction.
This concludes the proof.

We do not have any example of a graph attaining equality in Theorem 3.2.12. In fact,
considering C7, we believe the optimal constant is 4

3 :

Conjecture 3.2.15. If G is a subcubic (K3, C5)-free graph, then θ(G) ≤ 4
3α(G).

3.2.2 Algorithmic aspects of Clique Cover

CLIQUE COVER is a well-known NP-complete problem polynomially equivalent to COLOURING.
Cerioli et al. [31] showed that the optimization version of CLIQUE COVER is MAX SNP-hard
for cubic graphs. We begin this section with an inapproximability gap result for CLIQUE COVER

restricted to subcubic line graphs:

Theorem 3.2.16. CLIQUE COVER is not approximable within 391
390 , unless P = NP, even when

restricted to line graphs of 2-subdivisions of cubic triangle-free graphs.

Proof. Chlebík and Chlebíková [38] showed that it is NP-hard to approximate VERTEX COVER

within 391
390 , even for 2-subdivisions of cubic graphs: they construct a gap-preserving reduction

from VERTEX COVER restricted to cubic graphs (for which they provided an NP-hard gap in
[37]) just by a 2-subdivision of the input graph. Since their NP-hard gap result for VERTEX

COVER in [37] holds for cubic triangle-free graphs as well, it follows that it is NP-hard to
approximate VERTEX COVER within 391

390 , even for 2-subdivisions of cubic triangle-free graphs.
Therefore, given a 2-subdivision of a cubic triangle-free graph G, we simply construct its line
graph L(G). Since θ(L(G)) = β(G) (Fact 2.3.2), the conclusion immediately follows.

We now turn to the decision version of CLIQUE COVER when restricted to planar line
graphs with maximum degree at most 4.

Theorem 3.2.17. CLIQUE COVER is NP-complete even for line graphs of 2-subdivisions of pla-
nar cubic triangle-free graphs.

Proof. Note that, given a graphG and a 2-subdivisionG′ ofG, we have β(G′) = β(G)+|E(G)|
(see [38] for the short proof). Since VERTEX COVER is NP-hard for planar cubic triangle-free
graphs [179], it is NP-hard for 2-subdivisions of planar cubic triangle-free graphs and, by
Fact 2.3.2, we can easily obtain the claimed NP-hardness of CLIQUE COVER.
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Cerioli et al. [31] showed that CLIQUE COVER is NP-hard for planar cubic graphs. Not
surprisingly, it remains NP-hard even for planar 4-regular graphs, as implied by the following
theorem. The proof immediately follows by the result in [179] mentioned above.

Theorem 3.2.18. CLIQUE COVER remains NP-complete even when restricted to line graphs of
planar cubic triangle-free graphs.

It is therefore natural to look for approximation algorithms for CLIQUE COVER when re-
stricted to graphs having bounded maximum degree or to planar graphs. Cerioli et al. [31]
showed that CLIQUE COVER admits a polynomial-time 5

4 -approximation algorithm for subcu-
bic graphs and they conjectured it has a polynomial-time approximation algorithm with a
fixed ratio for graphs with bounded maximum degree. This can be easily verified once we
notice the close relation between θ-boundedness of a certain class of graphs and approxima-
tion algorithms for CLIQUE COVER for that class. Indeed, since α(G) ≤ θ(G), if we could
show “algorithmically” that a class of graphs is θ-bounded by a linear function, we would ob-
tain a constant-factor approximation algorithm for CLIQUE COVER. This algorithmic feature
of θ-boundedness was first observed by Gyárfás [81]. Note that it is not clear whether the
proofs of Theorems 3.2.1 and 3.2.8 can be turned into “algorithmic” ones. Nevertheless, the
following holds:

Theorem 3.2.19. CLIQUE COVER admits a linear-time k-approximation algorithm for graphs
with maximum degree at most k.

Proof. Consider the following greedy algorithm: first, find a maximal independent set I of
the input graph G and set C = ∅; then, for each v ∈ I, add the edges incident to v to the set
C and return C. Clearly, the algorithm runs in linear time and it returns a clique cover of G.
Moreover, we have

|C| ≤ k|I| ≤ kα(G) ≤ kθ(G),

and so this greedy algorithm is indeed a k-approximation algorithm for graphs with maximum
degree at most k.

Theorem 3.2.16 shows that CLIQUE COVER admits no PTAS, even for subcubic graphs.
Cerioli et al. [31] asked whether this could be possible in the special case of planar cubic
graphs. In the rest of this section, using Baker’s well-known technique [18], we show that
CLIQUE COVER indeed admits a PTAS even for planar graphs. The idea of Baker’s technique
is the following: partition the planar graph into k-outerplanar graphs, solve the problem
optimally for each k-outerplanar graph and finally show that the union of these solutions is in
fact a “near-optimal solution” for the original graph. As it stands, k-outerplanar graphs play
a key role in the reasoning and so let us recall their definition. Given a planar graph G and a
fixed planar drawing Γ of G, we define L1 to be the set of vertices incident to the outer face
and, for i > 1, Li is defined recursively as the set of vertices on the outer face of the planar
drawing obtained by deleting the vertices in

⋃i−1
j=1 Lj . We call Li the i-th layer of the drawing

Γ and a graph is k-outerplanar if it has a planar drawing with at most k layers.
Bodlaender [26, 27] showed that k-outerplanar graphs have tree-width at most 3k − 1.

Moreover, using dynamic programming, it is possible to determine θ(G) in polynomial time
for any graph G of bounded tree-width (see, e.g., [80]). In fact, many other problems are
solvable in polynomial time for graphs of bounded tree-width (see Chapter 1) and this led
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Baker [18] to design the mentioned technique, which allows a PTAS for some of them (for
example, INDEPENDENT SET and VERTEX COVER), when restricted to planar graphs. From the
sketch of the technique we gave above, it should be clear that the problems which can be
treated are those for which the local solutions can be combined into a global solution. We
now show that CLIQUE COVER is indeed one of them:

Theorem 3.2.20. CLIQUE COVER admits a PTAS for planar graphs.

Proof. Given a planar drawing Γ of the input graph G, we construct the layers Li as defined
above. Note that the neighbours of a vertex vi ∈ Li must be in Li−1 ∪Li ∪Li+1. Finally, given
ε > 0, we set k = d2

εe.
A slice Gij is an induced subgraph defined as follows. For 1 ≤ i ≤ k, we denote by Gi0 the

subgraph of G induced by the vertices which belong to the consecutive layers between the
first and the i-th. Moreover, for a fixed 1 ≤ i ≤ k and a j ≥ 1, we denote by Gij the subgraph
of G induced by the vertices which belong to the k consecutive layers whose indices range
between (j − 1)(k − 1) + i and j(k − 1) + i (note that j runs until each vertex of G belongs
to at least one Gij). By definition, each slice is k-outerplanar and so we can determine in
polynomial time a minimum-size clique cover Cij of Gij , for each 1 ≤ i ≤ k and j ≥ 0.
Finally, for each i, we set Ci =

⋃
j≥0Cij . By construction,

⋃
j≥0 V (Gij) = V (G) and so each

Ci is a clique cover of G. We return the one with minimum size.
Let now Q denote a minimum-size clique cover of G and, for 0 ≤ i ≤ k − 1, denote by Qi

the set of cliques in Q which contain at least one vertex in
⋃
j≡i (mod k) Lj . Clearly,

⋃
Qi = Q

and each clique in Q belongs to at most two distinct Qi’s. But then there exists an index `
such that

|Q`| ≤
2

k
|Q| ≤ ε|Q|.

Let Q`j denotes the set of cliques in Q containing at least one vertex in V (G`j) (if ` = 0,
we set G`j = Gkj). Since C`j is a minimum-size clique cover of G`j , then |C`j | ≤ |Q`j |, for
each j ≥ 0. Consider now the sum

∑
j |Q`j |. Each clique is counted exactly once, except

those which contain vertices from layers Lj with j ≡ ` (mod k) (i.e. those in Q`), which are
counted exactly twice. But then

∑
j |Q`j | = |Q|+ |Q`|. Summarizing, we have

|C`| ≤
∑

j

|C`j | ≤
∑

j

|Q`j | = |Q|+ |Q`| ≤ |Q|+ ε|Q| = (1 + ε)|Q|.

Therefore, the algorithm above is a polynomial-time approximation scheme.

3.3 On Tuza’s Conjecture

What is the minimum number of edges of a graph whose deletion results in a triangle-free
graph? An obvious obstruction to a small set of edges meeting all the triangles is the presence
of a large family of edge-disjoint triangles. On the other hand, deleting the edge set of a family
of edge-disjoint triangles of maximum size results in a triangle-free graph. In Section 3.1, we
have phrased this approximate Min-Max Property in terms of the triangle hypergraphs. For
our purposes, it is convenient to stick to the underlying graph and we recall that, for a graph
G, we denote by τ ′∆(G) the transversal number of the triangle hypergraph of G and by ν ′∆(G)
its packing number. Therefore, Tuza’s Conjecture can be rewritten as follows:
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Conjecture 3.3.1 (Tuza’s Conjecture [178]). For any graph G, we have τ ′∆(G) ≤ 2ν ′∆(G).

Note that, in this section, a triangle-transversal of G is intended to be a transversal of the
triangle hypergraph of G, i.e. a subset of E(G) whose deletion results in a triangle-free graph.

Despite having received considerable attention, Conjecture 3.3.1 is still open. To date,
the best non-trivial bound is τ ′∆(G) ≤ (3 − 3

23)ν ′∆(G), as shown by Haxell [89]. Moreover,
several graph classes for which it holds are known. Tuza [178] proved it for planar graphs
and for “dense” graphs, specifically for graphs on n vertices and with at least 7

16n
2 edges. It is

well-known that every graph G has a bipartite subgraph with at least |E(G)|
2 edges (see, e.g.,

[182]). Since the complement of this edge set is clearly a triangle-transversal of G, we have
that Tuza’s Conjecture holds if G has many edge-disjoint triangles, more precisely at least
|E(G)|

4 . We now present a proof of Tuza’s Conjecture for complete graphs, due to Sebő [172],
and which uses exactly this reasoning.

Theorem 3.3.2. For any integer n, we have τ ′∆(Kn) ≤ 2ν ′∆(Kn).

Proof. Let Kn = (V,E) and t = bn2 c. Moreover, let A = {ai : i ∈ {0, 1, . . . , t − 1}} and
B = {bi : i ∈ {0, 1, . . . , t − 1}}. In order to highlight the fact that for some values of n the
constant 2 can be improved 2, we distinguish several cases according to the parity of n. Note
that, in the following, addition of indices is considered modulo t.

Case 1: n is even.
We have that n = 2t and we may assume V = A ∪B. Clearly, the triangles in the family

T = {aiajbi+j : i 6= j and {i, j} ⊆ {0, . . . , t− 1}}

are edge-disjoint and |T | = t(t−1)
2 . Moreover, the set of edges E \ [A,B] meets all the triangles

of Kn and it has size t(t− 1). Therefore, τ ′∆(Kn) ≤ 2ν ′∆(Kn).

Case 2: n ≡ 3 (mod 4), i.e. t is odd.
We have that n = 2t+ 1 and we may assume V = A∪B ∪ {v}, for some v /∈ A∪B. It is easy
to see that

T1 = {aiajbi+j : i 6= j and {i, j} ⊆ {0, . . . , t− 1}} and T2 = {vaib2i : i ∈ {0, . . . , t− 1}}

are families of edge-disjoint triangles and that their union is again a family of edge-disjoint
triangles. Clearly, |T1 ∪ T2| = t(t+1)

2 . Moreover, the set of edges E \ [A ∪ {v}, B] meets all the
triangles of Kn and it has size t2. Therefore, we have τ ′∆(Kn) ≤ t2 < 2 t(t+1)

2 ≤ 2ν ′∆(Kn).

Case 3: n ≡ 1 (mod 4), i.e. t is even.
As above, we have that n = 2t+ 1 and V = A ∪B ∪ {v}.

T1 = {aiajbi+j : i 6= j and {i, j} ⊆ {0, . . . , t− 1}} and T2 = {vaib2i : i ∈ {0, . . . , t
2
− 1}}

are families of edge-disjoint triangles and their union is again a family of edge-disjoint trian-
gles. Clearly, |T1 ∪ T2| = t2

2 . Moreover, E \ [A ∪ {v}, B] meets all the triangles of Kn and its
size is t2. Therefore, we have τ ′∆(Kn) ≤ 2ν ′∆(Kn).

This concludes the proof.
2 In fact, Tuza [178] showed that limn→∞ τ

′
∆(Kn)/ν

′
∆(Kn) =

3
2
.
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Corollary 3.3.3. If G is the line graph of a triangle-free graph, then τ ′∆(G) ≤ 2ν ′∆(G).

Proof. Let G = L(H), for a triangle-free graph H. Each star in H corresponds to a clique in
G and these cliques partition the edges of G. The conclusion follows by Theorem 3.3.2.

Lakshmanan et al. [122] showed that Tuza’s Conjecture holds for the class of triangle-3-
colourable graphs, where a graph G is triangle-3-colourable if its edges can be coloured with
three colours so that the edges of each triangle receive three distinct colours. This is a direct
consequence of the case r = 3 of Ryser’s Conjecture proved by Aharoni [2] (Theorem 3.1.3):
indeed, if G is triangle-3-colourable, then the triangle hypergraph of G is clearly 3-uniform
and 3-partite. Since the class of triangle-3-colourable graphs contains that of 4-colourable
graphs [122], this is a generalization of the planar case mentioned above. Another genera-
lization of the planar case was given by Krivelevich [117], who showed Tuza’s Conjecture
holds for graphs with no K3,3-subdivision. Recently, this was further generalized by Puleo
[159] who showed, using the discharging method, that it holds for graphs having maximum
average degree less than 7, where the maximum average degree of a graph G is defined as
max{2|E(H)|/|V (H)| : H ⊆ G}.

For all the classes mentioned so far, Conjecture 3.3.1 is tight, since they all contain the
complete graph K4. Therefore, a natural question arises: What happens if we forbid K4?
Haxell et al. [91] showed that the constant 2 cannot essentially be improved: for every ε > 0,
there exists aK4-free graphG such that τ ′∆(G) > (2−ε)ν ′∆(G). Note thatK4 can be viewed as
the 3-wheel. For a reason which will become apparent in the next paragraphs, we now show
that the situation does not change even if we further forbid the 4-wheel and the 5-wheel. We
follow the reasoning by Haxell et al. [91].

Lemma 3.3.4. For each ε > 0, there exists a (W3,W4,W5)-free graph G such that τ ′∆(G) >
(2− ε)ν ′∆(G).

Proof. Erdős [58] showed that, for any fixed k and sufficiently large n, there exists a graph
on n vertices with girth greater than k and independence number smaller than n

2k
2k+1 . For

k = 5, let Gn be such a graph. We construct G by adding a universal vertex v0 to Gn, i.e. a
new vertex adjacent to all the vertices of Gn. Clearly, since Gn has girth at least 6, the graph G
is (W3,W4,W5)-free. Moreover, every triangle of G contains v0 and so ν ′∆(G) = α′(Gn) ≤ n

2 .
We now claim there exists a minimum-size triangle-transversal of G containing only edges
incident to v0. Indeed, if T is a triangle-transversal containing uv ∈ E(Gn), we have that
(T \{uv})∪{v0v} is a triangle-transversal ofG having size at most |T |. On the other hand, it is
easy to see that a subset F ⊆ V (Gn) is a vertex cover of Gn if and only if the set {v0v : v ∈ F}
is a triangle-transversal of G. Therefore, we have τ ′∆(G) = n − α(Gn) > n − n 10

11 . But then,
for each ε > 0, we can find an n such that n− n 10

11 > (2− ε)n2 .

There are two quantities which is natural to consider when dealing with packing and
covering of triangles in a graph G: the number of triangles containing a certain edge and
the number of edges shared by a certain triangle with other triangles. These quantities are in
some sense dual to each other: the former corresponds to the degree of a vertex in the triangle
hypergraph H(G) while the latter corresponds to the degree of a vertex in the subhypergraph
of H(G)∗ consisting of those hyperedges of size greater than 1.

Let us begin by considering graphs with edges in few triangles. Suppose we are given a
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graph G such that each of its edges belongs to at most one triangle, i.e. G is the edge-disjoint
union of triangles plus possibly some edges that do not belong to any triangle. Clearly, we
have τ ′∆(G) = ν ′∆(G). It is then natural to consider the “next case”: What happens if each
edge of G belongs to at most two triangles? Following [88], we refer to graphs having this
property as flat graphs. Note that, ifG is flat, each edge of aK4 subgraph ofG is in no triangle
other than those contained in K4 and so we may restrict ourselves to consider K4-free flat
graphs. In this case, Haxell et al. [88] showed that the constant 2 can be dropped to 3/2:

Theorem 3.3.5 (Haxell et al. [88]). If G is a K4-free flat graph, then τ ′∆(G) ≤ 3
2ν
′
∆(G).

Equality holds if and only if G is the edge-disjoint union of 5-wheels plus possibly edges which
are not in any triangle.

Using Theorem 3.3.5, Haxell et al. [88] showed that the same bound holds for K4-free
planar graphs: If G is a K4-free planar graph, then τ ′∆(G) ≤ 3

2ν
′
∆(G).

Note that flatness can be easily expressed in terms of the triangle graph3 and passing to
triangle graphs will be a recurrent theme of this section. By Observation 2.3.3, a K4-free
graph G is flat if and only if T (G) is triangle-free.

The bound in Theorem 3.3.5 actually holds for the superclass of K4-free graphs such that
each triangle shares its edges with at most three other triangles. We can express this property
succintly by invoking the triangle graph: each triangle ofG shares its edges with at most three
other triangles if and only if T (G) is subcubic. In Section 3.2.1, we showed that f(x) = 3

2x is
a θ-bounding function for the class of subcubic graphs and so we can immediately state the
following generalization of Theorem 3.3.5:

Theorem 3.3.6. If G is a K4-free graph such that T (G) is subcubic, then τ ′∆(G) ≤ 3
2ν
′
∆(G).

Indeed, we have seen in Section 2.3 that if G is a K4-free graph, we can translate an
approximate min-max relation for τ ′∆ and ν ′∆ into an equivalent one for θ and α in the tri-
angle graph T (G). Since this reasoning will be extensively used throughout the section, it is
convenient to restate it properly: By Fact 2.3.1 and Fact 2.3.4, if G is K4-free, then

ν ′∆(G) = α(T (G)) = ω(T (G)) and τ ′∆(G) = θ(T (G)) = χ(T (G)). (3.4)

Note that if G is a graph having a subcubic triangle graph, then each triangle in a K4

subgraph of G shares its edges only with the other triangles in K4 and so a K4 in G gives rise
to a component of T (G).

Let us now consider the second quantity mentioned above: the number of edges shared by
a triangle with other triangles. Suppose we are given a graphG and a maximal family of edge-
disjoint triangles. If every triangle of G shares (at most) one edge with other triangles, it is
enough to take one edge for each triangle in the family in order to obtain a triangle-transversal
of G. Therefore, in this case, we have τ ′∆(G) = ν ′∆(G). Moreover, if every triangle of G shares
at most two edges with other triangles, the reasoning above gives us τ ′∆(G) ≤ 2ν ′∆(G). Quite
surprisingly, this trivial observation guarantees an essentially tight bound for the class in
question. Indeed, it is easy to see that each triangle of the graph constructed in Lemma 3.3.4
shares at most two edges with other triangles. Nevertheless, as we will see in Section 3.3.1,
if in addition each edge is in at most four triangles, the constant 2 can be dropped to 3/2:
3 Recall that the triangle graph T (G) of G is the graph having as vertices the triangles of G, two vertices being
adjacent if the corresponding triangles share an edge.
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Theorem 3.3.7. If G is a (K4-free) graph such that each triangle shares at most two of its edges
with other triangles and each edge belongs to at most four triangles (or, equivalently, T (G) is
(K5, claw)-free), then τ ′∆(G) ≤ 3

2ν
′
∆(G). Equality holds if and only if each component of T (G)

is either C5 or L(G13).

For the classes we consider, the constant 2 in Conjecture 3.3.1 can be improved and we
try to provide the optimal one, in the spirit of the following problem:

Problem 3.3.8 (Lakshmanan et al. [122]). Given a class of graphs G in which at least one
G ∈ G is not triangle-free, determine the infimum of constants c such that τ ′∆(G) ≤ cν ′∆(G)
holds for every G ∈ G.

For the classes of graphs in Theorems 3.3.5 to 3.3.7, we have c = 3/2. In general, for the
class of all graphs, Tuza’s Conjecture claims the answer is c = 2 and we certainly have c ≥ 2 for
every class containingK4. Moreover, Lemma 3.3.4 tells us that even for G = Free(W3,W4,W5)
we cannot expect c < 2. On the other hand, forbidding all odd-wheels could lead to a c < 2.
Lakshmanan et al. [122] showed that Tuza’s Conjecture holds for the class of odd-wheel-free
graphs and they noticed that the odd-wheel-free graph C7 implies c ≥ 4/3. The nice feature
of this class is that a triangle-transversal and a triangle-packing witnessing τ ′∆ ≤ 2ν ′∆ can be
easily constructed from a “local optimum”, as we show in the following:

Theorem 3.3.9 (Lakshmanan et al. [122]). If G is an odd-wheel-free graph, then τ ′∆(G) ≤
2ν ′∆(G).

Proof. Note first that every subgraph (not necessarily induced) of an odd-wheel-free graph is
odd-wheel-free. Suppose now, to the contrary, that G is a counterexample with the minimum
number of edges.

Consider a non-isolated vertex v ∈ V (G) and the subgraph Gv of G induced by N(v).
Since G is odd-wheel-free, we have that Gv is bipartite and so the König-Egerváry Theorem
(Theorem 3.1.1) implies that β(Gv) = α′(Gv). Consider now the graph G′ obtained from G
by deleting the edges incident to v and the edges in a maximum matching M of Gv. Clearly,
we have ν ′∆(G) ≥ ν ′∆(G′) + α′(Gv). On the other hand, as we have seen in the proof of
Lemma 3.3.4, a vertex cover of Gv corresponds to a set of edges which meets all the triangles
having v as a vertex. Therefore, if we additionally add this edge set to the edges in M and to
those in a triangle-transversal of G′, we obtain a triangle-transversal of G. This implies that
τ ′∆(G) ≤ τ ′∆(G′) + β(Gv) + α′(Gv) = τ ′∆(G′) + 2α′(Gv). But then, by minimality, we have

τ ′∆(G) ≤ τ ′∆(G′) + 2α′(Gv) ≤ 2ν ′∆(G′) + 2α′(Gv) ≤ 2ν ′∆(G),

a contradiction.

Theorem 3.3.9 was generalized by Puleo [159], who showed the following:

Theorem 3.3.10 (Puleo [159]). If G is a graph with no subgraph isomorphic to any odd-
wheel Wn, for n ≥ 5, then τ ′∆(G) ≤ 2ν ′∆(G).

The main idea (used also in his proof of the fact that Tuza’s Conjecture holds for graphs
with maximum average degree less than 7) revolves around the concept of reducible set,
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which is in some sense a “local optimum”. Let us briefly sketch some details. Given a set S of
triangles of a graph G, an S-edge is an edge of some triangle in S. A non-empty set V0 ⊆ V (G)
is reducible if there exist a set S of edge-disjoint triangles of G and a set X ⊆ E(G) such that
the following conditions hold:

• |X| ≤ 2|S|;

• G−X has no triangle containing a vertex of V0;

• X contains every S-edge whose endpoints are both outside V0.

When V0, S and X satisfy the conditions above, V0 is said to be reducible using S and X.
Note that in the proof of Theorem 3.3.9 we showed, thanks to the König-Egerváry Theorem,
that any non-isolated vertex v is reducible using the following S and X: the set S is formed
by the triangles having v as one vertex and having one edge in a maximum matching M of
Gv; the set X is the union of M with the set {vw : w is in a minimum vertex cover of Gv}.
We then saw how the existence of such a reducible set leads to a contradiction. In a similar
fashion, one can show that a minimal counterexample to Tuza’s Conjecture has no reducible
set:

Lemma 3.3.11 (Puleo [159]). Let G be a graph and let V0 ⊆ V (G) be reducible using S and
X. Moreover, let G′ = (G−X)− V0. If τ ′∆(G′) ≤ 2ν ′∆(G′), then τ ′∆(G) ≤ 2ν ′∆(G).

Following the reasoning in the proof of Theorem 3.3.9, it is easy to see that a suffi-
cient condition for a vertex v ∈ V (G) (belonging to at least one triangle) to be reducible
is that β(G[N(v)]) = α′(G[N(v)]). A graph G such that β(G) = α′(G) is usually called
König-Egerváry [51]. In other words, using the terminology introduced in Section 3.1, the
class of König-Egerváry graphs is exactly the class of graphs satisfying the Min-Max Property.
Puleo [159] introduced a generalization of König-Egerváry graphs: a graph G is weak König-
Egerváry if G has a matching M and a vertex set Q ⊆ V (G) such that |Q| ≤ |M | and Q is a
vertex cover of G −M . Following the proof of Theorem 3.3.9, it is not difficult to see that
this relaxed notion is still sufficient to guarantee reducibility: for any graph G and v ∈ V (G),
if G[N(v)] is weak König-Egerváry then {v} is reducible [159]. He then showed that every
graph with no odd cycle of length greater than 3 is weak König-Egerváry. This fact, together
with the previous remarks, immediately implies Theorem 3.3.10.

In Section 3.3.2, motivated by the previous discussion, we are interested in graphs without
the odd-wheels W3 and W5. As a partial result towards a proof of Tuza’s Conjecture for this
class, we obtain the following:

Theorem 3.3.12. IfG is a (W3,W5)-free graph such that T (G) is co-banner-free, then τ ′∆(G) ≤
10
7 ν
′
∆(G).

Consider now the class of K4-free graphs with odd-hole-free triangle graph. It is easy to
see that this is a subclass of odd-wheel-free graphs. In this case, the Strong Perfect Graph
Theorem [41] implies that the equality τ ′∆ = ν ′∆ holds:

Theorem 3.3.13 (Lakshmanan et al. [122]). IfG is aK4-free graph such that T (G) isC2k+1-
free for all k ≥ 2, then τ ′∆(G) = ν ′∆(G).
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Indeed, we know that if G is K4-free, then T (G) is diamond-free (Observation 2.3.6)
and so C2k+1-free, for any k ≥ 3. Therefore, recalling (3.4), we have τ ′∆(G) = θ(T (G)) =
α(T (G)) = ν ′∆(G).

Theorem 3.3.13 implies in particular that the equality τ ′∆ = ν ′∆ holds for the K4-free
graphs with a P4-free triangle graph. In Section 3.3.2, we show the following tight bound for
the “next case”:

Theorem 3.3.14. If G is a K4-free graph such that T (G) is P5-free, then τ ′∆(G) ≤ 3
2ν
′
∆(G).

Most of the results on Tuza’s Conjecture in Sections 3.3.1 and 3.3.2 are in fact obtained
by providing θ-bounding functions for classes related to triangle graphs. In this context, we
will see how the (partial) list of forbidden induced subgraphs for triangle graphs given in
Section 2.3 ({K1,4,K2,3,diamond, twin-C5}) comes in handy.

We conclude this section with a table summarizing the results we are going to prove. All
the classes of K4-free graphs which we study in relation to Problem 3.3.8 can actually be
characterized in terms of the triangle graph.

G T (G) Upper bound for τ ′∆(G)/ν ′∆(G) Reference

K4-free subcubic 3/2 Theorem 3.3.6
K4-free K4-free, maximum degree 4 193/98 Theorem 3.3.16
K4-free (K5, claw)-free 3/2 Theorem 3.3.7
K4-free (C5, co-banner)-free 10/7 Theorem 3.3.12
K4-free P5-free 3/2 Theorem 3.3.14

It is easy to see that the classes above are mutually incomparable with respect to set
inclusion.

3.3.1 Graphs with edges in few triangles

In this section, we consider K4-free graphs having edges in at most four triangles and we
address Problem 3.3.8. Our results are mostly simple consequences of those obtained in
Section 3.2.1. The equality τ ′∆(G) = ν ′∆(G) trivially holds if every edge of G is in at most one
triangle and Haxell et al. [88] showed that τ ′∆(G) ≤ 3

2ν
′
∆(G), for any K4-free graph such that

each edge is in at most two triangles. This was generalized by Theorem 3.3.6, which we now
restate:

Theorem 3.3.6. If G is a K4-free graph such that T (G) is subcubic, then τ ′∆(G) ≤ 3
2ν
′
∆(G).

Proof. By (3.4) and Theorem 3.2.1, we have τ ′∆(G) = θ(T (G)) ≤ 3
2α(T (G)) = 3

2ν
′
∆(G).

An edge-disjoint union of 5-wheels (plus possibly edges not in triangles) shows that the
constant 3/2 is optimal. Note that, as remarked in Section 3.2.1, we do not have a charac-
terization of the subcubic graphs G such that θ(G) = 3

2α(G) and we conjectured that every
component of such an extremal G is either C5 or G11 (see Figure 3.1). On the other hand,
it is easy to see that the graph G11 contains an induced copy of a twin-C5 and so, by Obser-
vation 2.3.9, it cannot appear as an induced subgraph of a triangle graph. Therefore, it is
natural to conjecture the following:
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Conjecture 3.3.15. If G is a K4-free graph such that T (G) is subcubic, then τ ′∆(G) = 3
2ν
′
∆(G)

if and only if G is the edge-disjoint union of 5-wheels plus possibly edges which are not in any
triangle.

What about if each edge belongs to at most three triangles? In this case, each triangle
shares its edges with at most six other triangles. If we allow each triangle to share its edges
only with at most four other triangles, we can state the following:

Theorem 3.3.16. If G is a K4-free graph such that each edge belongs to at most three triangles
and each triangle shares its edges with at most four other triangles (or, equivalently, T (G) is
K4-free and has maximum degree 4), then τ ′∆(G) ≤ 193

98 ν
′
∆(G).

Proof. The equivalence of the two classes in the statement is immediate. By (3.4) and Theo-
rem 3.2.8, we have τ ′∆(G) = θ(T (G)) ≤ 193

98 α(T (G)) = 193
98 ν

′
∆(G).

We believe the constant in Theorem 3.3.16 is far from optimal but it seems difficult even
to formulate a conjecture on the optimal value. In fact, we do not have any example for
which the ratio is greater than 3/2. In Section 3.2.1, we conjectured that if G is a graph with
maximum degree 4, then θ(G) ≤ 7

4α(G), with equality if and only if every component of G is
G13 (see Figure 3.1). On the other hand, since G13 contains an induced K1,4, it cannot be a
triangle graph.

Let us now consider graphs such that each triangle shares at most two of its edges with
other triangles. Clearly, any such graph G is K4-free and we have already seen that the
essentially tight bound τ ′∆(G) ≤ 2ν ′∆(G) holds. We now show that, if in addition each edge is
in at most four triangles, the constant 2 can be dropped to 3/2:

Theorem 3.3.7. If G is a (K4-free) graph such that each triangle shares at most two of its edges
with other triangles and each edge belongs to at most four triangles (or, equivalently, T (G) is
(K5, claw)-free), then τ ′∆(G) ≤ 3

2ν
′
∆(G). Equality holds if and only if each component of T (G)

is either C5 or L(G13).

Note that, by Observation 2.3.13, L(G13) is indeed a triangle graph of a K4-free graph:
for example, we have L(G13) = T (K1 ∨G13).

The crucial observation for the proof of Theorem 3.3.7 is that the triangle graph is in fact
a line graph. Indeed, by Observation 2.3.6, we know that the triangle graph of a K4-free
graph is diamond-free and the following lemma tells us that (K5, claw,diamond)-free graphs
are exactly line graphs of triangle-free graphs with maximum degree 4. The proof is similar
to that of Theorem 2.2.1:

Lemma 3.3.17. A graph G is the line graph of a triangle-free graph with maximum degree 4 if
and only if it is (K5, claw, diamond)-free.

Proof. If G is the line graph of a triangle-free graph with maximum degree 4, then it is clearly
(K5, claw,diamond)-free.

Suppose now G is (K5, claw,diamond)-free. By Theorem 2.1.1, we have that G = L(H),
for some graph H. Consider the graph H ′ obtained from H by replacing each component
isomorphic to K3 with a claw. Clearly, G = L(H) = L(H ′). Since G is K5-free, H ′ has
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maximum degree 4. Moreover, H ′ is triangle-free. Indeed, if H ′ contains a triangle T , then
there exists a vertex v /∈ V (T ) adjacent to a vertex of T and so there exists an induced
diamond in L(H ′), a contradiction.

By the discussions above, we know it would be enough to show that θ(G) ≤ 3
2α(G), for

any (K5, claw, diamond)-free graph G. But this is an easy corollary of the following result by
Joos [101], which is in some sense complementary to Theorem 3.2.5:

Theorem 3.3.18 (Joos [101]). If G is a triangle-free graph with ∆(G) ≤ 4, then α(G) +
3
2α
′(G) ≥ |V (G)|. Equality holds if and only if every component C of G is either in {K1, C5} or

has order 13, α(C) = 4 and α′(C) = 6.

Corollary 3.3.19. If G is a (K5, claw, diamond)-free graph, then θ(G) ≤ 3
2α(G). Equality

holds if and only if every component of G is either C5 or L(G13).

Proof. By Lemma 3.3.17, G is the line graph of a triangle-free graphH with maximum degree
at most 4. Clearly, α(G) = α′(H) and, by Fact 2.3.2, we have that θ(G) = β(H). Therefore,
by Theorem 3.3.18 and since the complement of a vertex cover is an independent set, we
have

θ(G) = β(H) = |V (H)| − α(H) ≤ 3

2
α′(H) =

3

2
α(G).

Let us now consider the cases of equality. As remarked in Section 3.2.1, the (3, 5)-Ramsey
graph G13 is the only graph on 13 vertices with parameters ω = 2 and α = 4. If equality holds
then, by Theorem 3.3.18, each component of H is in {K1, C5, G13}. This implies that each
component of G = L(H) is either C5 or L(G13). The converse clearly holds.

We can finally proceed to the proof of Theorem 3.3.7:

Proof of Theorem 3.3.7. The equivalence of the two classes in the statement is immediate.
Moreover, since T (G) is diamond-free then, by (3.4) and Corollary 3.3.19, we have τ ′∆(G) =
θ(T (G)) ≤ 3

2α(T (G)) = 3
2ν
′
∆(G). The characterization of equality follows again by Corol-

lary 3.3.19.

3.3.2 θ-Bounding functions for classes related to triangle graphs

In this section, we prove Theorems 3.3.12 and 3.3.14. As we are dealing with K4-free graphs,
we use our standard approach and proceed by showing θ-bounding functions for the classes
Free(co-banner, odd-antihole,K1,4) and Free(P5,diamond,K2,3) which are related to Theo-
rem 3.3.12 and Theorem 3.3.14, respectively. These results might be of independent interest.

Let us begin by restating Theorem 3.3.12:

Theorem 3.3.12. IfG is a (W3,W5)-free graph such that T (G) is co-banner-free, then τ ′∆(G) ≤
10
7 ν
′
∆(G).

We know that an induced C5 in T (G) corresponds to an induced W5 in G (Lemma 2.3.10).
Moreover, we have that T (G) is diamond-free. Therefore, T (G) is in fact odd-antihole-free.
For our purposes it will be convenient to work with the complement graph and our proof of
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Theorem 3.3.12 relies on a characterization of (banner, odd-hole)-free graphs given by Hoàng
[96]. Before stating his result, let us recall some definitions.

Let A and B be disjoint subsets of V (G) and let b ∈ V (G) \ A. The vertex b is complete
to A if b is adjacent to every vertex of A and b is anticomplete to A if b is non-adjacent to
every vertex of A. If every vertex of A is complete to B, then A is complete to B. Similarly,
if every vertex of A is anticomplete to B, then A is anticomplete to B. A module in G is a
subset M ⊆ V (G) such that every vertex in V (G) \M is either complete or anticomplete to
M . A homogeneous set in G is a module in G containing at least two vertices and different
from V (G).

Theorem 3.3.20 (Hoàng [96]). If G is a (banner, odd-hole)-free graph, then either G is per-
fect, or α(G) ≤ 2, or every odd-antihole of G belongs to a homogeneous set M in G such that
G[M ] is co-triangle-free.

Some remarks are in place. Recently, Scott and Seymour [171] solved a conjecture by
Gyárfás [81] on χ-bounded classes: they showed that the class of odd-hole-free graphs is
χ-bounded by the function f(x) = 22x+2

. It is likely that this exponential function can be
improved, although they provided a series of examples showing that a linear bounding func-
tion is not possible. Using Theorem 3.3.20, Hoàng [96] showed that (banner, odd-hole)-free
graphs are 2-divisible. Recall that a graph G is k-divisible if the vertex set of each induced
subgraph H of G with at least one edge can be partitioned into k sets none of which con-
tains a clique of size ω(H). An easy induction shows that χ(G) ≤ kω(G)−1, for any k-divisible
graph G. Therefore, the bound χ ≤ 22ω+2

can be improved to χ ≤ 2ω−1 for the subclass
Free(banner, odd-hole). We now show that by further forbidding K1,4, we can obtain a linear
χ-bounding function:

Lemma 3.3.21. If G is a (banner, odd-hole,K1,4)-free graph, then χ(G) ≤ 10
7 ω(G).

Proof. We proceed by induction on the number of vertices. If G is perfect, then χ(G) = ω(G).
If α(G) ≤ 2, then G is triangle-free and so, since it is K1,4-free as well, it must be subcubic.
Moreover, G is by assumption C5-free and so Theorem 3.2.12 implies that

χ(G) = θ(G) ≤ 10

7
α(G) =

10

7
ω(G).

Therefore, in view of Theorem 3.3.20, we may assume G contains an odd-antihole C2k+1,
with k ≥ 3, which belongs to a homogeneous set M . In particular, M contains a triangle.
Now let A∪B be a partition of V (G)\M such that A is complete to M and B is anticomplete
to M . If A = ∅, then G is the disjoint union of G[M ] and G[B], and we immediately conclude
by the induction hypothesis. Moreover, if B = ∅, then G is the join of G[A] and G[M ] and by
the induction hypothesis we have

χ(G) = χ(G[A]) + χ(G[M ]) ≤ 10

7
ω(G[A]) +

10

7
ω(G[M ]) =

10

7
ω(G).

Therefore, we may assume both A and B are non-empty. Since M contains a triangle and G
is K1,4-free, it is easy to see that A must be complete to B. But then G is the join of G[A] and
G[M ∪B] and we conclude as above.
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We do not have any example of a graph attaining equality in Lemma 3.3.21 and we suspect
that the optimal constant is 4/3, as given by the graph C7. As a side remark, note that
Chudnovsky et al. [40] showed that (odd-hole,K4)-free graphs are 4-colourable, with C7

being 4-chromatic.
The proof of Theorem 3.3.12 is now an immediate consequence of Lemma 3.3.21:

Proof of Theorem 3.3.12. Since G is K4-free, we have that τ ′∆(G) = χ(T (G)) and ν ′∆(G) =
ω(T (G)) (see (3.4)). By Lemma 2.3.10, T (G) is C5-free (the triangle graph of a K4-free graph
is C5-free if and only if the original graph is W5-free). Moreover, since T (G) is diamond-free
as well, we have that T (G) is odd-hole-free. Finally, since T (G) is K1,4-free, Lemma 3.3.21
implies that τ ′∆(G) ≤ 10

7 ν
′
∆(G).

Suppose now G is a K4-free graph such that T (G) is P5-free. Clearly, 5-wheels show that
the ratio τ ′∆/ν

′
∆ is at least 3/2 and Theorem 3.3.14 tells us that this is an extremal case:

Theorem 3.3.14. If G is a K4-free graph such that T (G) is P5-free, then τ ′∆(G) ≤ 3
2ν
′
∆(G).

In order to prove Theorem 3.3.14, we use a structural characterization of (P5,diamond)-
free graphs by Brandstädt [29]. Before stating his result, we need to introduce the following
classes of graphs which constitute the basic graphs in the characterization.

A graph is a:

• thin spider if it is partitionable into a clique C and an independent set I, with |C| = |I|
or |C| = |I|+ 1, such that the edges between C and I form a matching and at most one
vertex in C is not covered by the matching;

• matched co-bipartite graph if it is partitionable into two cliques C1 and C2, with |C1| =
|C2| or |C1| = |C2|+ 1, such that the edges between C1 and C2 form a matching and at
most one vertex in C1 and C2 is not covered by the matching;

• bipartite chain graph if it is bipartite, with bipartition X1 ∪ X2, and each Xi forms a
chain, i.e. for 1 ≤ i ≤ 2, we have that {N(xi) : xi ∈ Xi} is linearly ordered with respect
to set inclusion;

• co-bipartite chain graph if it is the complement of a bipartite chain graph;

• enhanced co-bipartite chain graph if it is partitionable into a co-bipartite chain graph
with cliques C1 and C2 and three additional vertices a, b and c (a and c optional) such
that N(a) = C1 ∪ C2, N(b) = C1 and N(c) = C2;

• enhanced bipartite chain graph if it is the complement of an enhanced co-bipartite chain
graph.

In the following, a graph G is co-connected if its complement G is connected.

Theorem 3.3.22 (Brandstädt [29]). If G is a connected and co-connected (P5, diamond)-free
graph, then either G contains a homogeneous set (inducing a P3-free subgraph) or one of the
following holds: G is a matched co-bipartite graph or a thin spider or an enhanced bipartite
chain graph or it has at most 9 vertices.
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The strategy is clear: we reduce the statement in Theorem 3.3.14 into an equivalent one
for the triangle graph and we use the fact that this graph is diamond-free and K2,3-free (see
Section 2.3).

Theorem 3.3.23. If G is a (P5, diamond,K2,3)-free graph, then θ(G) ≤ 3
2α(G).

Proof. We proceed by induction on the number of vertices. If G is not connected, then it is
the disjoint union of two non-empty graphs G1 and G2. By the induction hypothesis,

θ(G) = θ(G1) + θ(G2) ≤ 3

2
α(G1) +

3

2
α(G2) =

3

2
α(G).

Similarly, if G is not connected, then it is the disjoint union of two non-empty graphs G1 and
G2 and, by the induction hypothesis,

θ(G) = χ(G) = max{χ(G1), χ(G2)} ≤ 3

2
max{ω(G1), ω(G2)} =

3

2
ω(G) =

3

2
α(G).

Therefore, we may assume G to be connected and co-connected.
Suppose now G contains a homogeneous set M . By definition, |M | ≥ 2 and M 6= V (G).

Moreover, M induces a P3-free subgraph, i.e. it is a disjoint union of cliques. Let A ∪ B be a
partition of V (G) \M , where A is complete to M and B is anticomplete to M . Suppose first
|A| ≤ 1. This implies that M contains a simplicial vertex v, i.e. a vertex whose neighbourhood
is a clique. If N [v] = V (G), then θ(G) = α(G). Otherwise, by the induction hypothesis,

θ(G) ≤ θ(G−N [v]) + 1 ≤ 3

2
α(G−N [v]) + 1 ≤ 3

2
(α(G)− 1) + 1 <

3

2
α(G).

Therefore, we may assume |A| ≥ 2. Since G is diamond-free, we have that either A and M
are both independent sets or they are both cliques. But if the latter holds, then M contains
a simplicial vertex and we conclude as in the previous paragraph. Therefore, we may further
assume thatA andM are both independent sets and sinceG isK2,3-free, we have |A| = |M | =
2. This implies that θ(G) ≤ θ(G−A−M) + 2. On the other hand, α(G) ≥ α(G−A−M) + 2
and so, by the induction hypothesis, we have

θ(G) ≤ θ(G−A−M) + 2 ≤ 3

2
α(G−A−M) + 2 <

3

2
α(G).

Therefore, we may assume G does not contain a homogeneous set. By Theorem 3.3.22, G
is either a matched co-bipartite graph or a thin spider or an enhanced bipartite chain graph
or it has at most 9 vertices. It is easy to see that in all the first three cases θ(G) = α(G).
Moreover, if G has at most 9 vertices then, by Theorem 3.2.9, we have θ(G) − α(G) ≤ 1. If
α(G) ≤ 1, then G is complete and θ(G) = α(G). Otherwise, θ(G) ≤ α(G) + 1 ≤ 3

2α(G).

Proof of Theorem 3.3.14. We have seen that triangle graphs are K2,3-free (Corollary 2.3.8).
Moreover, since G is K4-free, T (G) is diamond-free. Therefore, Theorem 3.3.23 implies that
τ ′∆(G) = θ(T (G)) ≤ 3

2α(T (G)) = 3
2ν
′
∆(G).

3.4 On Jones’ Conjecture

Given a graph G, we have seen that the cycle hypergraph H(G) of G is the hypergraph whose
vertices are the vertices of G and whose edges are the vertex sets of cycles of G. Clearly,
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a transversal of H(G) is nothing but a feedback vertex set of G and so τ(H(G)) = τc(G).
Similarly, we denote the size of a maximum packing of H(G) (i.e. the maximum number of
vertex-disjoint cycles of G) by νc(G).

Erdős and Pósa [59] showed that τc(G) can in fact be upper bounded in terms of νc(G):
for any graph G, we have τc(G) = O(νc(G) log νc(G)), the bound being sharp. Kloks et al.
[107] conjectured that this can be considerably improved in the case of planar graphs:

Conjecture 3.4.1 (Jones’ Conjecture [107]). If G is a planar graph, then τc(G) ≤ 2νc(G).

If true, Conjecture 3.4.1 would be sharp, as can be seen by considering wheel graphs.
Kloks et al. [107] showed it holds for outerplanar graphs and, in general, they proved the
weaker τc(G) ≤ 5νc(G). The factor 5 was subsequently improved to 3 by a series of authors
[32, 36, 134]. Chappell et al. [32] actually showed a stronger statement: τc(G) ≤ 3νc(G), for
any graph G that embeds in a closed surface of non-negative Euler characteristic. The proofs
in [32, 36, 134] all essentially rely on a refinement of the idea adopted in [107]. Using the
discharging method, they showed that every 2-edge-connected triangle-free plane graph with
minimum degree at least 3 either has a 4-face containing at least one cubic vertex or a 5-face
containing at least four cubic vertices.

To the best of our knowledge, these are the only works related to Jones’ Conjecture,
which seems to be non-trivial even in the case of subcubic graphs. In this section, we prove
Conjecture 3.4.1 for claw-free graphs with maximum degree at most 4:

Theorem 3.4.2. IfG is a planar claw-free graph with maximum degree at most 4, then τc(G) ≤
2νc(G).

We remark that Ma et al. [134] showed that a minimum counterexample to Jones’ Con-
jecture is 3-connected and Plummer [158] showed that a planar 3-connected claw-free graph
has maximum degree at most 6.

In order to prove Theorem 3.4.2, we first show that the bound τc ≤ 2νc holds for line
graphs of subcubic triangle-free graphs, a class we have studied in Section 2.2 and which
contains non-planar graphs.

In Section 3.4.1, we finally consider the case of subcubic graphs and provide a list of
properties a minimum subcubic counterexample must have, if any.

Let us remark that in this section a triangle-transversal of G is intended to be a subset of
V (G) meeting all the triangles of G.

Theorem 3.4.3. If G is a (K4, claw, diamond)-free graph, then τc(G) ≤ 2νc(G).

Proof. We proceed by induction on the number of vertices of G. Without loss of generality,
we may assume G to be connected. Recall that, for v ∈ V (G), the possible subgraphs induced
by N [v] are those depicted in Figure 2.3.

Suppose first G is triangle-free. This implies that ∆(G) ≤ 2 and G is either a path or a
cycle, from which τc(G) = νc(G).

Therefore, we may assume G contains a triangle T . Suppose there exists v ∈ V (T ) such
that dG(v) ≤ 3. Since any cycle containing v passes through one vertex in V (T ) \ {v}, a
feedback vertex set of G can be obtained from a feedback vertex set of G − V (T ) by adding
the two vertices in V (T )\{v}. Moreover, by the induction hypothesis, we have τc(G−V (T )) ≤
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2νc(G− V (T )) and so

τc(G) ≤ τc(G− V (T )) + 2 ≤ 2νc(G− V (T )) + 2 ≤ 2νc(G).

Therefore, we may assume that every triangle of G contains only 4-vertices. Connectedness
then implies that G is 4-regular and so we have that G = L(H), for a cubic triangle-free graph
H.

Suppose now G is 3-connected. This implies that H is 3-edge-connected. Jackson and
Yoshimoto [100] showed that every 3-edge-connected graph with n vertices has a spanning
even subgraph in which each component has at least min{n, 5} vertices. Therefore, let F
be the 2-factor of H whose existence is guaranteed by the previous result. Then F has at
most |V (H)|

5 components. Moreover, the edges of H − E(F ) constitute a perfect matching
of H and the vertices of G corresponding to this matching form a triangle-transversal T of
G (see Lemma 2.2.10). Consider now the set obtained by taking exactly one edge for each
component of F and let T ′ be the corresponding set of vertices of G. It is easy to see that
T ∪T ′ is a feedback vertex set of G of size at most |V (H)|

2 + |V (H)|
5 . Now it remains to properly

lower bound νc(G). Denoting by ν∆(G) the maximum number of vertex-disjoint triangles of
G, we have νc(G) ≥ ν∆(G) = α(H). On the other hand, Staton [176] showed that α(H) ≥
5
14 |V (H)|, for every subcubic triangle-free graph H. Therefore, combining everything, we get

τc(G) ≤ |V (H)|
2

+
|V (H)|

5
< 2 · 5

14
|V (H)| ≤ 2νc(G).

By the paragraph above, we may assume G is not 3-connected. Suppose first G has a cut-
vertex v. Let G1 and G2 be two non-trivial induced subgraphs of G such that G = G1 ∪ G2

and V (G1) ∩ V (G2) = {v}. If νc(G) ≥ νc(G1) + νc(G2) then, by the induction hypothesis,

τc(G) ≤ τc(G1 −NG1 [v]) + τc(G2 −NG2 [v]) + 4

≤ 2νc(G1 −NG1 [v]) + 2νc(G2 −NG2 [v]) + 4

≤ 2(νc(G1)− 1) + 2(νc(G2)− 1) + 4

≤ 2νc(G1) + 2νc(G2)

≤ 2νc(G).

Finally, if νc(G) = νc(G1) + νc(G2) − 1 then, for each i ∈ {1, 2}, every maximum size cycle
packing of Gi contains a cycle through v. This means that, for each i ∈ {1, 2}, we have
νc(Gi − v) ≤ νc(Gi)− 1 and, by the induction hypothesis,

τc(G) ≤ τc(G1 − v) + τc(G2 − v) + 1

≤ 2νc(G1 − v) + 2νc(G2 − v) + 1

≤ 2(νc(G1)− 1) + 2(νc(G2)− 1) + 1

≤ 2νc(G1) + 2νc(G2)− 3

< 2νc(G).

Therefore, we may assume G is 2-connected but not 3-connected. In particular, G has a 2-cut
{u, v}. Let G1 and G2 be two non-trivial induced subgraphs of G such that G = G1 ∪G2 and
V (G1) ∩ V (G2) = {u, v}. If νc(G− {u, v}) ≤ νc(G)− 1 then, by the induction hypothesis,

τc(G) ≤ τc(G− {u, v}) + 2 ≤ 2νc(G− {u, v}) + 2 ≤ 2νc(G).
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Therefore, we may assume νc(G − {u, v}) = νc(G). But then νc(G) = νc(G − {u, v}) =
νc(G1−{u, v}) + νc(G2−{u, v}), from which νc(G) ≤ νc(G1−{u, v}) + νc(G2). On the other
hand, we have that νc(G) ≥ νc(G1−{u, v})+νc(G2) and so νc(G) = νc(G1−{u, v})+νc(G2).
Therefore, νc(G2 − {u, v}) = νc(G2) and, similarly, νc(G1 − {u, v}) = νc(G1). Combining
everything, we get νc(G) = νc(G1) + νc(G2). Since G is 2-connected, u has neighbours both
in G1 and G2 and so, again by the induction hypothesis, we have

τc(G) ≤ τc(G1 −NG1 [u]) + τc(G2 −NG2 [u]) + 4

≤ 2νc(G1 −NG1 [u]) + 2νc(G2 −NG2 [u]) + 4

≤ 2(νc(G1)− 1) + 2(νc(G2)− 1) + 4

≤ 2νc(G1) + 2νc(G2)

= 2νc(G).

Note that the factor 2 in Theorem 3.4.3 is best possible. This can be seen by considering
the line graph of the graph obtained from the 6-cycle by adding an edge between two vertices
at distance 3.

Using Theorem 3.4.3, we can finally show that Jones’ Conjecture holds for claw-free
graphs with maximum degree at most 4.

Proof of Theorem 3.4.2. We proceed by contradiction. Therefore, let G be a counterexam-
ple with the minimum number of vertices and consider a fixed planar embedding of G. In
the following, we show that G is (K4,diamond)-free, thus reaching a contradiction to Theo-
rem 3.4.3. Each claim is followed by a proof.

Claim 15. Let C be a triangle ofG. For each v ∈ V (C), there exists a cycle ofG passing through
v and avoiding V (C) \ {v}.

Indeed, suppose there exists v ∈ V (C) such that every cycle through v contains at least
one vertex in V (C) \ {v}. If T is a minimum feedback vertex set of G − V (C), we have
that T ∪ (V (C) \ {v}) is a feedback vertex set of G. Therefore, by minimality, 2νc(G) ≥
2νc(G− V (C)) + 2 ≥ τc(G− V (C)) + 2 ≥ τc(G), a contradiction. �

Claim 16. G is K4-free.

Indeed, suppose G contains a copy of K4 and let {v1, v2, v3, v4} be its vertex set. The
cycle C = v1v2v3 is a simple closed curve in the plane and, without loss of generality, v4

belongs to the interior of C. By Claim 15, for each v ∈ V (C), there exists a cycle in G passing
through v but avoiding V (C) \ {v}. In particular, each vertex of C has degree 4 in G. Let
v′1 ∈ N(v1) \ {v2, v3, v4}. Since ∆(G) ≤ 4, a cycle C ′ through v1 which avoids v2 and v3 must
contain the edges v1v4 and v1v

′
1. Moreover, C ′ contains a vertex v′4 ∈ N(v4) \ {v1, v2, v3}. By

the Jordan Curve Theorem (Theorem 1.0.5), v′1 and v′4 both belong to the interior of either
v1v2v4 or v1v3v4. Say, without loss of generality, {v′1, v′4} ⊆ int(v1v2v4). But then, again by the
Jordan Curve Theorem and the fact that ∆(G) ≤ 4, every cycle through v3 contains either v1

or v2, a contradiction. �

Claim 17. G is diamond-free.
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Indeed, suppose G contains an induced diamond with vertex set {v1, v2, v3, v4}, where v2

and v4 are the vertices of degree 3. By Claim 15, v2 has a neighbour v′2 ∈ V (G) \ {v1, v3, v4}
and v4 has a neighbour v′4 ∈ V (G) \ {v1, v2, v3}. Since G is claw-free, either v′2v1 ∈ E(G) or
v′2v3 ∈ E(G), say without loss of generality the former holds. Moreover, since G is K4-free,
we have v′2 6= v′4. But then either v′4v1 ∈ E(G) or v′4v3 ∈ E(G). Suppose first the latter holds.
Clearly, v1v2v

′
2 and v3v4v

′
4 are two vertex-disjoint triangles and T ∪{v1, v

′
2, v3, v

′
4} is a feedback

vertex set of G, for any feedback vertex set T of G − {v1, v2, v
′
2, v3, v4, v

′
4}. But then, by the

minimality of G, we have

2νc(G) ≥ 2νc(G− {v1, v2, v
′
2, v3, v4, v

′
4}) + 4 ≥ τc(G− {v1, v2, v

′
2, v3, v4, v

′
4}) + 4 ≥ τc(G),

a contradiction. Therefore, v′4v3 /∈ E(G) and v′4v1 ∈ E(G). By Claim 15, there exists a cycle
of G passing through v′4 and avoiding v1 and v4. In particular, v′4 is adjacent to a and b, where
{a, b}∩{v1, v2, v3, v4} = ∅. Moreover, since G is claw-free and ∆(G) ≤ 4, we have ab ∈ E(G).
But then v1v2v4 and v′4ab are two vertex-disjoint triangles and T ∪ {v2, v4, a, b} is a feedback
vertex set of G, for any feedback vertex set T of G − {v1, v2, v4, v

′
4, a, b}. Once again, by the

minimality of G, we have

2νc(G) ≥ 2νc(G− {v1, v2, v4, v
′
4, a, b}) + 4 ≥ τc(G− {v1, v2, v4, v

′
4, a, b}) + 4 ≥ τc(G),

a contradiction. �

By Claim 16 and Claim 17, we have that G is (K4, claw,diamond)-free. Theorem 3.4.3
then implies that τc(G) ≤ 2νc(G), a contradiction. This concludes the proof.

3.4.1 Subcubic graphs

In this section, we consider Jones’ Conjecture for subcubic graphs and we provide a list of
properties a minimum counterexample (if any) must have. In order to do so, we first present
some results related to feedback vertex sets of (sub)cubic graphs, a topic which has been
extensively studied (see, e.g., [77, 128, 174]). In particular, we will see that the minimum
size of a feedback vertex set of a cubic graph can be expressed in terms of two “topological”
parameters: the Betti number and the maximum genus.

Note that in this section we allow graphs to contain loops and multiple edges, unless
otherwise stated.

Let us begin by recalling some definitions. A nonseparating independent set of a graph
G is an independent set I ⊆ V (G) such that there is no X ⊆ I for which G − X has more
components than G. The maximum size of a nonseparating independent set of G is denoted
by z(G). The Betti number µ(G) ofG (also known as the cyclomatic number or the circuit rank)
is the minimum number of edges that must be deleted from G in order to make it acyclic. It
is easy to see that if G has c components, then µ(G) = |E(G)| − |V (G)|+ c.

Speckenmeyer [174] showed that τc(G) + z(G) = µ(G), for any connected cubic simple
graph G. Ueno et al. [180] showed that the previous relation actually holds for every cubic
graph (thus allowing loops and multiple edges):

Theorem 3.4.4 (Ueno et al. [180]). If G is a cubic graph, then τc(G) + z(G) = µ(G).

In the following, we present their proof. The idea is that τc and z can be interpreted as
the size of a minimum spanning set and the size of a maximum matching, respectively, of a
suitably defined 2-polymatroid. Let us recall the definitions:
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A 2-polymatroid is a pair P = (S, f), where S is a finite set and f is a function f : 2S → Z
satisfying the following properties:

(P1) f(∅) = 0;

(P2) f(X) ≤ f(Y ), for any X ⊆ Y ⊆ S;

(P3) f(X ∪ Y ) + f(X ∩ Y ) ≤ f(X) + f(Y ), for any X,Y ⊆ S;

(P4) f({x}) ≤ 2, for any x ∈ S.

A subsetX ⊆ S is a matching of P if f(X) = 2|X| and it is a spanning set of P if f(X) = f(S).
Given a graph G, we now define a function f : 2V (G) → Z by f(X) = µ(G)−µ(G−X). It

is easy to see that such an f satisfies (P1) to (P3) and that the following holds:

Observation 3.4.5. For any graphG and v ∈ V (G), we have that µ(G)−µ(G−v) ≤ dG(v)−1.
Moreover, the inequality is strict if and only if v is a cut-vertex or the endpoint of a loop.

Therefore, if G is a cubic graph, P (G) = (V (G), f) is indeed a 2-polymatroid and we can
show the following crucial result:

Theorem 3.4.6 (Ueno et al. [180]). Let G be a cubic graph. A subset T ⊆ V (G) is a feedback
vertex set of G if and only if it is a spanning set of the 2-polymatroid P (G). Moreover, I ⊆ V (G)
is a nonseparating independent set of G if and only if it is a matching of P (G).

Proof. The first assertion directly follows by the definitions. Therefore, let us consider the
second one and suppose I is a nonseparating independent set of G. We proceed by induction
on |I|. If |I| = 1, say I = {v}, then v is neither a cut-vertex nor the endpoint of a loop and so,
by Observation 3.4.5, we have f(I) = 2 = 2|I|. Consider now a nonseparating independent
set I with |I| > 1. For any v ∈ I, we have that I \ {v} is a nonseparating independent set
and so, by the induction hypothesis, f(I \ {v}) = 2|I \ {v}|. By definition, v is neither a
cut-vertex of G − (I \ {v}) nor the endpoint of a loop and dG−(I\{v})(v) = 3. Therefore, by
Observation 3.4.5, we have µ(G − (I \ {v})) − µ(G − I) = dG−(I\{v})(v) − 1 = 2 and so
f(I) = f(I \ {v}) + 2 = 2|I|.

Suppose now I is not a nonseparating independent set of G. We claim that f(I) < 2|I|.
By (P3), it is enough to consider such an I which is minimal, i.e. I \ {v} is a nonseparating
independent set for any v ∈ I. If I consists of one vertex v, then v is either a cut-vertex or
the endpoint of a loop and so, by Observation 3.4.5, we have f(I) < 2 = 2|I|. If |I| > 1, then
I \ {v} is a nonseparating independent set, for any v ∈ I. On the other hand, since I is not a
nonseparating independent set, either v is adjacent to some vertex in I \ {v} or there exists a
separating set S ⊆ I containing v. Therefore, either dG−(I\{v})(v) ≤ 2 or v is a cut-vertex of
G− (I \ {v}). But then, by Observation 3.4.5, we have µ(G− (I \ {v}))− µ(G− I) < 2 and
so f(I) < f(I \ {v}) + 2 ≤ 2|I|.

At this point, Theorem 3.4.4 is an immediate consequence of the “generalized Gallai’s
identity” stated in Theorem 1.0.9. The algorithmic implications of Theorem 3.4.6 will be
discussed in Chapter 5.

Let us now introduce the seemingly unrelated notion of maximum genus 4. The maximum
genus γM (G) of a connected graphG is the maximum integer k such that there exists a cellular
4 We refer the reader to [20, 140] for introductions to topological graph theory.
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embedding of G in the orientable surface Sk of genus k. Note that the notion of maximum
genus makes sense only for connected graphs and in the following we will implicitly assume
that.

Huang and Liu [97] showed a remarkable connection between nonseparating indepen-
dent sets and the topological notion of maximum genus:

Theorem 3.4.7 (Huang and Liu [97]). If G is a connected cubic graph, then z(G) = γM (G).

By Theorem 3.4.4, we can express the minimum size of a feedback vertex set in terms of
the Betti number and the maximum genus:

Corollary 3.4.8. If G is a connected cubic graph, then τc(G) = µ(G)− γM (G).

Euler’s polyhedron formula tells us that if a graph G has a cellular embedding with v
vertices, e edges and f faces in an orientable surface of genus g, then v − e + f = 2 − 2g.
Therefore, for a connected graph G, introducing the Betti number µ(G) = e−v+1, we obtain
2g = µ(G) + 1 − f . Since every embedding has at least one face, we have γM (G) ≤ bµ(G)

2 c
and a graph G is upper-embeddable if γM (G) = bµ(G)

2 c. In other words, a graph is upper-
embeddable if and only if it admits a cellular embedding in an orientable surface with at
most two faces. For example, trees and cycles are clearly upper-embeddable. Moreover, the
complete graph K4 can be embedded in the torus and the graph K3,3 can be embedded in the
double torus and so they are upper-embeddable as well.

The notion of maximum genus was introduced by Nordhaus et al. [148] and several com-
binatorial characterizations were subsequently found (see, e.g., [146, 147, 184]). Moreover,
the maximum genus can be computed in polynomial time: Furst et al. [70] reduced this
problem to a matroid matching problem and this should come as no surprise thanks to the
previous discussions.

In case G is upper-embeddable, Corollary 3.4.8 translates into the following:

Corollary 3.4.9. If G is a connected cubic upper-embeddable graph on n vertices, then τc(G) =
bn4 c+ 1.

Proof. Since τc(G) = µ(G) − γM (G) and γM (G) = bµ(G)
2 c, we have τc(G) = µ(G) − bµ(G)

2 c.
The conclusion immediately follows by substituting µ(G) = n

2 + 1.

Let us now come back to Jones’ Conjecture and recall that a counterexample with the
minimum number of vertices must be 3-connected [134]. In the case of subcubic graphs, it
has to further satisfy the following:

Theorem 3.4.10. If G is a (simple) subcubic graph which is a counterexample to Jones’ Con-
jecture and which has the minimum number of vertices, then G has girth 5, it is cubic and it
is not upper-embeddable. In particular, the last property implies that G is not cyclically 4-edge-
connected.

Proof. Suppose first G contains a triangle C with V (C) = {v1, v2, v3}. If T is a minimum
feedback vertex set of G−V (C), then T ∪{v1, v2} is a feedback vertex set of G. By minimality,
we have 2νc(G) ≥ 2νc(G− V (C)) + 2 ≥ τc(G− V (C)) + 2 ≥ τc(G), a contradiction. Suppose
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now G contains a cycle C of length 4 and let v1 and v2 be two vertices of C at distance 2. If T
is a minimum feedback vertex set of G−V (C), we have that T ∪{v1, v2} is a feedback vertex
set of G and we obtain a contradiction by minimality as above.

Suppose now G contains a vertex v with d(v) < 3. If d(v) = 1 then, by minimality,
2νc(G) = 2νc(G−v) ≥ τc(G−v) = τc(G). If v is a 2-vertex with neighbours u1 and u2, letG′ be
the graph obtained by deleting v and adding the edge u1u2. Clearly, G′ is subcubic and, by the
paragraph above, it is simple. Therefore, by minimality, 2νc(G) ≥ 2νc(G

′) ≥ τc(G
′) ≥ τc(G),

a contradiction.
An easy consequence of Euler’s formula is that a connected planar graph with n vertices

and girth g has at most g
g−2(n− 2) edges (see, e.g., [52]). Since G is cubic, this immediately

implies that G has girth 5.
Suppose now G is upper-embeddable and let n = |V (G)|. By Corollary 3.4.9, we have

τc(G) = bn4 c+ 1. Consider now the dual graph G∗ of G. Since G is cubic and 3-connected, an
independent set of G∗ corresponds to a set of vertex-disjoint cycles of G. By Euler’s formula,
we have that |V (G∗)| = n

2 + 2 and so the Four-Colour Theorem [164] implies that α(G∗) ≥
|V (G∗)|

4 = n+4
8 . Therefore, we have

2νc(G) ≥ 2α(G∗) ≥ n

4
+ 1 ≥

ú
n

4

ü
+ 1 = τc(G),

a contradiction.
As for the last assertion in the statement, recall that a graph G is cyclically 4-edge-

connected if the deletion of fewer than 4 edges from G does not create two components
both containing at least one cycle. Xuong [185] observed that cyclically 4-edge-connected
cubic graphs are upper-embeddable.

We now introduce a class of upper-embeddable graphs. A fullerene graph is a 3-connected
cubic planar graph with all faces of size 5 or 6 (see [10] for a survey on fullerene graphs).
Došlić [54] showed that fullerene graphs are cyclically 5-edge-connected and so, by [185],
upper-embeddable. Therefore, by the proof of Theorem 3.4.10, we have that τc(G) ≤ 2νc(G),
for any such graph G. The smallest fullerene graph is the dodecahedron graph, depicted in
Figure 3.4. This graph shows that the previous bound is tight even for the class of fullerene
graphs: indeed, we have τc = 6 (for example, by Corollary 3.4.9) and νc = 3. This gives
another “non-artificial” graph (other than wheels) for which Jones’ Conjecture would be tight.

Figure 3.4: The dodecahedron graph.

Note that, in relation to Theorem 3.4.10, there exist planar cubic 3-connected graphs with
girth 5 which are not upper-embeddable. The following example is due to Liu [127]. Consider
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a planar cubic 3-connected graph G on n vertices, with n ≥ 6, and let H be a graph obtained
from the dodecahedron by a 1-subdivision of three edges of a facial 5-cycle bounding the
outerface. Clearly, H has 23 vertices and τc(H) = 6. Let now G′ be a graph obtained by
replacing each vertex of G with a copy of H and by adding edges so that the contraction
of each copy of H to a single vertex results in G. It is easy to see that G′ is planar, cubic,
3-connected and of girth 5. Moreover, τc(G′) ≥ 6n > b23n

4 c+ 1 and so, by Corollary 3.4.9, G′

is not upper-embeddable.
We conclude the section with an observation. Corollary 3.4.8 implies that, for a cubic

connected graph G, Jones’ Conjecture is equivalent to the statement 2νc(G) ≥ µ(G)−γM (G).
An apparently similar statement was proved by Kotrbčík [113], who showed that νc(G) ≥
µ(G) − 2γM (G), for any connected graph G. We give the short proof to illustrate a combi-
natorial characterization of the maximum genus. Recall that, given a spanning tree T of a
connected graph G and an edge e of G such that e /∈ E(T ), the fundamental cycle of e with
respect to T is the unique cycle in T + e. We define a graph G]T having as vertices the edges
of G−E(T ), two vertices being adjacent if the fundamental cycles of the corresponding edges
are not vertex-disjoint. Nebeský [147] showed that, for every connected graph G, we have
γM (G) = minT α

′(G]T ), where the minimum is taken over all spanning trees of G. Therefore,
let T be a spanning tree of G attaining the minimum. The graph G]T has µ(G) vertices and
so µ(G) − 2γM (G) of them are not covered by a maximum matching. Clearly, these vertices
are pairwise non-adjacent and so the corresponding fundamental cycles are vertex-disjoint.
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In this chapter, we study the VC-dimension of certain set systems arising from
graphs. In particular, we consider the set system on the vertex set of some graph
which is induced by the family of its k-connected subgraphs. Kranakis et al. [115]
showed that, in the case k = 1, the VC-dimension of this set system differs by at
most 1 from the connected domination number of the underlying graph. We ex-
tend this result to each k ≥ 1, by providing tight upper and lower bounds for the
VC-dimension.
Moreover, we show that computing the VC-dimension of the set system above is NP-
complete and it remains NP-complete for split graphs, for any k ≥ 1, and for some
subclasses of planar bipartite graphs in the cases k = 1 and k = 2. On the positive
side, we observe it can be decided in linear time for graphs of bounded clique-width.
In the final part of the chapter, we completely determine the computational com-
plexity of this problem (in the case k = 1) when restricted to monogenic classes, i.e.
classes of graphs obtained by forbidding a single induced subgraph: for each such
class, the problem is either proved to be NP-hard or polynomial-time solvable. The
same dichotomy holds for CONNECTED DOMINATING SET.

4.1 Introduction

LetH be a set system onX. For a subset Y ⊆ X, the trace ofH on Y is the set {E ∩ Y : E ∈ H}
of all the possible intersections of Y with a set in H. A subset Y ⊆ X is shattered by H if
{E ∩ Y : E ∈ H} = 2Y and the VC-dimension of H is defined as the maximum size of a set
shattered by H, or as ∞ if arbitrarily large subsets can be shattered. The VC-dimension of
a set system was introduced by Vapnik and Chervonenkis [181]. The initial interest was in
the contexts of empirical process theory and learning theory, where it proved to be a fun-
damental concept. It represents a prominent measure of the “complexity” of a set system.
A result proved independently by Shelah [173], Sauer [166] and Vapnik and Chervonenkis
[181] (known in the literature as Sauer’s Lemma) asserts that a hypergraph on n vertices with
bounded VC-dimension has at most a polynomial (in n) number of edges. More precisely, if
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H has VC-dimension at most k, then |E(H)| ≤ ∑k
i=0

(n
i

)1. The class of hypergraphs with
VC-dimension less than k can be viewed as the class of hypergraphs with a certain forbidden
trace, namely the complete hypergraph on k vertices, and extremal problems on traces are a
popular topic in hypergraph theory (see [11, 69] for some surveys).

The notion of VC-dimension has a particular relevance for the NP-hard problem HITTING

SET 2: Brönnimann and Goodrich [30] provided an O(log opt)-approximation algorithm for
hypergraphs with bounded VC-dimension. In fact, the link between VC-dimension and HIT-
TING SET was first noticed in a seminal paper by Haussler and Welzl [87], who showed that
hypergraphs with small VC-dimension admit hitting sets of small size for the “heavy” hyper-
edges, i.e. the hyperedges whose size is at least an ε-fraction of the vertex set (such hitting
sets are called ε-nets).

It turns out that many hypergraphs of “geometric nature” have bounded VC-dimension
and in the following we give some examples to increase the familiarity with this notion. Our
examples are of the form (X,R), where X ⊆ Rd is a set of points in the Euclidean space and
R = {X ∩ r : r ∈ R′}, for some family R′ of geometric objects (see Chapter 1). Consider first
the hypergraph of points and axis-parallel boxes in Rd. We claim it has VC-dimension 2d.
Indeed, it is easy to see that the following set of 2d points in Rd can be shattered:

{(1, 0, . . . , 0), (−1, 0, . . . , 0), . . . , (0, 0, . . . , 1), (0, 0, . . . ,−1)} .
On the other hand, let X be an arbitrary subset in Rd of size 2d + 1 and construct a set S as
follows: for each 1 ≤ i ≤ d, choose a point in X with the smallest i-th coordinate and a point
with the largest i-th coordinate. Every axis-parallel box containing S contains X as well, and
so no set of 2d+ 1 points in Rd can be shattered. Consider now the hypergraph of points and
closed half-spaces in Rd. By Radon’s Theorem (Theorem 1.0.10) no set of d + 2 points can
be shattered. On the other hand, it is not difficult to see that any d + 1 affinely independent
points can be shattered and so the VC-dimension of this hypergraph is d+ 1.

In this chapter, we are interested in the VC-dimension of set systems arising from graphs.
We have already seen several examples of such set systems in Chapter 3 and a first example
in the context of VC-dimension was given by Haussler and Welzl [87], who considered the
set system induced by the closed neighbourhoods of the vertices of a graph. Since a graph
of order n has n closed neighbourhoods, its VC-dimension is at most blog2 nc. On the other
hand, if the graph is planar, it is not difficult to see that the VC-dimension is at most 4 (see
below for a proof).

More generally, we can consider set systems induced by a certain family of subgraphs. In
this way we obtain several different notions of VC-dimension, each one related to a special
family of subgraphs. Kranakis et al. [115] initiated a systematic study of these notions and
adapted the definition of VC-dimension to the graph theoretic setting as follows:

Definition 4.1.1. Let G = (V,E) be a graph and let P be a family of subgraphs of G. A
subset A ⊆ V is P-shattered if every subset of A can be obtained as the intersection of V (H)
with A, for H ∈ P. The VC-dimension of G with respect to P is the maximum size of a
P-shattered subset and it is denoted by VCP(G).

According to Definition 4.1.1, we denote by VCtree, VCcon, VCk-con, VCnbd, VCpath, VCcycle

1 A beautiful proof of Sauer’s Lemma using the so-called linear algebra method was given by Frankl and Pach
[65] (see also [16]). 2 The problem of deciding, given a hypergraph H and an integer k, whether τ(H) ≤ k
holds (see Chapter 1).
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and VCstar the VC-dimensions with respect to families of subgraphs which are trees, con-
nected, k-connected, induced by the closed neighbourhoods of the vertices, paths, cycles and
stars, respectively. Note that the VC-dimension with respect to some families of subgraphs
is equal to well-known parameters in graph theory: if P is the family of complete subgraphs
then VCP is the clique number, while if P is the family of subgraphs induced by independent
sets then VCP is the independence number.

We have already noticed that VCnbd(G) ≤ blog2 |V (G)|c and it is not difficult to see that
this bound is tight [12]. Indeed, consider the graph H built as follows. Take a set S of
blog2 nc independent vertices and, for each non-singleton subset R ⊆ S, add a vertex vR
adjacent to precisely the vertices of R. The resulting graph H has at most n vertices and
VCnbd(H) = blog2 nc.

Anthony et al. [12] showed that if G contains no subdivision of Kr+1, then VCnbd(G) ≤ r.
Let us briefly sketch the proof. Suppose, to the contrary, that there exists a shattered set S of
size r+ 1 and let x and y be two non-adjacent vertices in S. Since S is shattered, there exists
a vertex w such that {x, y} = N [w] ∩ S. Since x and y are non-adjacent, we have w 6= x and
w 6= y. Therefore, w is a vertex in V (G) \ S such that the only vertices in S adjacent to w
are x and y. But then the subgraph induced by S and by the vertices w as above contains a
subdivision of Kr+1, a contradiction.

Kranakis et al. [115] observed that if G is a graph with maximum degree ∆, then ∆ ≤
VCstar(G) ≤ ∆ + 1. Moreover, they showed that the VC-dimension with respect to trees is the
same as the VC-dimension with respect to connected subgraphs: this is an immediate conse-
quence of the fact that a connected graph contains a spanning tree. In addition, VCcon(G)
differs by at most 1 from the number of leaves `(G) in a maximum leaf spanning tree of G:

Theorem 4.1.2 (Kranakis et al. [115]). `(G) ≤ VCcon(G) ≤ `(G) + 1, for any connected
graph G.

Note that the VC-dimension of a graph with respect to connected subgraphs is the maxi-
mum of the VC-dimensions of its components.

In this chapter, we continue the systematic study of the VC-dimension of set systems
defined by graphs which was initiated in [115]. In particular, we focus on the VC-dimension
with respect to k-connected subgraphs. Given a graph G, this quantity can be thought as
the maximum size of a subset A ⊆ V (G) such that, no matter how many vertices of A are
deleted from G, there is a k-connected subgraph of G containing the remaining vertices of
A. In Section 4.2, we extend Theorem 4.1.2 by giving tight upper and lower bounds on the
VC-dimension with respect to k-connected subgraphs, for k ≥ 2. These are given, similarly
to Theorem 4.1.2, in terms of the number of leaves in a maximum leaf spanning tree. By
Definition 4.1.1, it follows that if P ⊆ P ′, then VCP(G) ≤ VCP ′(G). Therefore, for any
connected graph G and k ≥ 2, Theorem 4.1.2 implies that VCk-con(G) ≤ `(G) + 1 and we
show that this bound can be improved to the optimal VCk-con(G) ≤ `(G)− k + 1.

Papadimitriou and Yannakakis [155] considered the problem of deciding the VC-dimension:
Given a set system H on X (by its incidence matrix) and an integer s, does H have VC-
dimension at least s? Since the VC-dimension is at most log2 |H|, it can clearly be computed
by brute force in O(|X|log2 |H|) time and so the problem looks unlikely to be NP-complete. In
fact, they introduced the complexity class LOGNP and showed that the problem in question
is complete for it (see [155] for all the details). On the other hand, if the set system is rep-
resented by a circuit, Schaefer [168] showed that deciding the VC-dimension is complete for
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the third level of the polynomial hierarchy (see Chapter 1).
In this context, it is natural to investigate the computational complexity of computing

VCP(G), for a given graph G and a family of its subgraphs P. The decision problem is
formulated as follows:

GRAPH VCP DIMENSION

Instance: A graph G and a number s ≥ 1.
Question: Does VCP(G) ≥ s hold?

Kranakis et al. [115] showed that GRAPH VCcon DIMENSION is NP-complete. In Sec-
tion 4.3, we extend this result by showing that GRAPH VCk-con DIMENSION is NP-complete
even for split graphs, for any k ≥ 1. On the positive side, we show it can be decided in
linear time for graphs of bounded clique-width and in polynomial time for the subclass of
split graphs having Dilworth number at most 2. Finally, we prove that GRAPH VCcon DIMEN-
SION and GRAPH VC2-con DIMENSION remain NP-hard for some subclasses of planar bipartite
graphs with maximum degree at most 4. The following table summarizes the known results
on the computational complexity of GRAPH VCP DIMENSION:

Family P Graph G Comp. Compl. Reference

star P Kranakis et al. [115]
neighbourhood LOGNP-complete Kranakis et al. [115]
path Σp

3-complete Schaefer [169]
cycle Σp

3-complete Schaefer [169]
k-connected split NP-complete Theorem 4.3.1
k-connected bounded clique-width P Corollary 4.3.3
k-connected split, Dilworth number ≤ 2 P Theorem 4.3.4
connected planar, bipartite, ∆(G) = 3 NP-complete Theorem 4.3.5
2-connected planar, bipartite, ∆(G) = 4 NP-complete Theorem 4.3.6

It is interesting to notice how GRAPH VCP DIMENSION is a source of natural problems
with such diverse complexities. Note also that GRAPH VCpath DIMENSION and GRAPH VCcycle
DIMENSION are some of the very few known problems which are complete for the third level
of the polynomial hierarchy (see [170]).

A class of graphs is monogenic if it is defined by a single forbidden induced subgraph.
Moreover, we say that a (decision) graph problem admits a dichotomy in monogenic classes
if, for each monogenic class, the problem is either NP-complete or decidable in polynomial
time. In Section 4.4, we provide complexity dichotomies in monogenic classes for GRAPH

VCcon DIMENSION and CONNECTED DOMINATING SET. The first dichotomy in monogenic
classes was obtained by Korobitsin [108], who showed that DOMINATING SET is decidable
in polynomial time for Free(H) if H is an induced subgraph of P4 + tK1, for t ≥ 0, and
NP-complete otherwise. Besides this, only few other dichotomies in monogenic classes are
known, most notably for COLOURING [114] and `-LIST COLOURING [79]. Theorem 4.1.2 hints
at the fact that GRAPH VCcon DIMENSION and CONNECTED DOMINATING SET are two related
problems (recall that `(G) = |V (G)|−γc(G), where γc(G) is the minimum size of a connected
dominating set of G). In fact, we show that the complexities of GRAPH VCcon DIMENSION,
CONNECTED DOMINATING SET and DOMINATING SET all agree in monogenic classes.
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4.2 Bounds on the VC-dimension

The main result of this section is an extension of Theorem 4.1.2 by considering families of
k-connected subgraphs, for k ≥ 2:

Theorem 4.2.1. VCk-con(G) ≤ `(G)− k + 1, for any connected graph G and k ≥ 2.

The proof of Theorem 4.2.1 consists essentially of two parts. First, we show that VCk-con(G) ≤
`(G) − k + 2, for any connected graph G and k ≥ 1 (the case k = 1 thus gives a proof for
the upper bound in Theorem 4.1.2). The idea is to construct a spanning tree T with at least
VCk-con(G) + k − 2 leaves. We fix a shattered set A of maximum cardinality and choose an
appropriate vertex r ∈ A as the root. Then we consider some k neighbours of r, say u1, . . . , uk,
and we try to “attach” the remaining vertices ofA to the graph ({r, u1, . . . , uk} , {ru1, . . . , ruk})
via appropriate paths. A crucial step is the distinction between two types of vertices of A that
we are going to add as leaves of T : lower leaves and upper leaves (see below for definitions).
In the second part, we provide the actual proof of Theorem 4.2.1 by contradiction. In par-
ticular, we suppose that `(G) ≤ VCk-con(G) + k − 2 and we show how to modify the tree T
constructed in the first part in order to obtain a contradiction.

Proof of Theorem 4.2.1. We begin by showing that VCk-con(G) ≤ `(G) − k + 2, for any con-
nected graph G and k ≥ 1. Let A be a shattered set of maximum cardinality. Since our aim
is to construct a spanning tree with at least |A| + k − 2 leaves, note that it is enough to con-
struct a tree T ⊆ G with as many leaves. For w ∈ A, we denote by Gw a fixed k-connected
subgraph such that V (Gw) ∩A = {w}. Similarly, Gww′ denotes a fixed k-connected subgraph
such that V (Gww′) ∩A = {w,w′}. We choose a vertex r ∈ A having the minimum number of
neighbours in V (G) \ A as the root of T . Clearly, dGr(r) ≥ k and let U = {u1, . . . , uk} be a
set of k arbitrary vertices in NGr(r)3. We select the edges u1r, . . . , ukr. By Menger’s Theorem
(Theorem 1.0.3), there exist k independent w, r-paths in Gwr. We call w ∈ A \ {r} a lower
leaf for T if there exist k independent w, r-paths P1, . . . , Pk in G with no inner vertex in A
and such that each of them contains (exactly) one edge in {u1r, . . . , ukr} (in other words, w
is a lower leaf if there exists a w,U -fan in G − (A \ {w}) of size k). In particular, no path Pi
contains two vertices in U . Otherwise, we call w an upper leaf for T .

We set L = {u1, . . . , uk} and we view L as the set of potential leaves for T . For any
w ∈ A \ {r}, we do the following (see Figure 4.1):

• If w is an upper leaf, select a w, r-path P ⊆ Gwr such that V (P ) ∩ U = ∅. Such a path
exists: by Menger’s Theorem (Theorem 1.0.3), there exist k independent w, r-paths in
Gwr and, if each of them contained a (different) vertex in U , we would obtain a w,U -
fan in G − (A \ {w}) of size k. Finally, add w to L and remove cycles and appropriate
edges so that the selected subgraph is a tree.

• If w is a lower leaf, select a w, r-path P ⊆ G as in the definition of lower leaf and such
that E(P ) ∩ {u1r, . . . , ukr} = {u1r}, add w to L and remove u1 from L. Finally, delete
edges from the newly added paths so that the selected subgraph is a tree.

In this way, we get a tree T , rooted at r and in which the elements of L are leaves.
Moreover, |L| ≥ |A|+k−2. The construction works for any k, the case k = 1 giving the upper
bound in Theorem 4.1.2.
3 If k = 1, we simply let u1 be any vertex in V (G) \A.
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u1
u2 uk

r
. . .

Figure 4.1: The black squared vertices are the upper leaves, while the white squared vertices are the lower leaves.
The selected paths are dashed.

From now on, we assume k ≥ 2 and we prove Theorem 4.2.1 by contradiction. Therefore,
let G be a counterexample and let A be a shattered set of maximum cardinality. Using the
procedure described in the previous part, we can obtain a tree T ⊆ G, rooted at r and with at
least |A|+ k − 2 leaves. Recall that r is chosen as a vertex of A having the minimum number
of neighbours in V (G) \ A. In the following, we deduce some structural properties of G and
show how they lead to a contradiction. Each claim is followed by a short proof.

Claim 18. Each leaf of T is adjacent to at most one vertex not in T .

Indeed, if there exists a leaf of T adjacent to at least two vertices not in T , we immediately
get a tree with at least |A|+ k − 1 leaves. �

Claim 19. T contains at least one upper leaf.

Indeed, suppose T has no upper leaves. For any 2 ≤ i ≤ k, select a ui, u1-path in Gr with
no inner vertex in (U \ {u1, ui}) ∪ {r}. Clearly, such a path has no inner vertex in A ∪ U .
But then we can obtain a tree, rooted at u1, with at least |A| + k − 1 leaves (r becomes an
additional leaf). �

Claim 20. T contains an upper leaf w with dT (w, r) ≥ 2.

Indeed, suppose this is not the case. By Claim 19, the set W of upper leaves for T is
non-empty and each of them is adjacent to r. Suppose now every w ∈ W has one neighbour
(in G) which is contained in Tu1 − A, where Tu1 denotes the subtree induced by u1 and
its descendants. Then we select the edges joining each upper leaf to Tu1 − A and, for any
2 ≤ i ≤ k, we select a ui, u1-path in Gr with no inner vertex in A ∪ U . In this way, we obtain
a tree rooted at u1 and with at least |A|+k−1 leaves, a contradiction. Therefore, there exists
w ∈ W such that NG(w) ∩ (V (Tu1) \ A) = ∅. By Claim 18, w has at most one neighbour in
V (G)\V (T ) and soNGw(w) ⊆ NG(w)\A ⊆ {u2, . . . , uk}∪{x}, for some x ∈ V (G)\V (T ). But
since w has at least k neighbours in Gw, we have NGw(w) = NG(w) \A = {u2, . . . , uk} ∪ {x}.

Consider now w′ ∈ A such that ww′ /∈ E(G). There exists a w,w′-path P in Gww′ with
no inner vertex in U \ {u1}. Clearly, wx ∈ E(P ). Moreover, P does not contain any vertex in
Tu1 − A, or else x could become an additional leaf of T . By selecting these paths, together
with edges connecting vertices in A to w, it is easy to see we can get a new tree T ′ rooted
at w and with at least |A| + k − 2 leaves. Moreover, if an upper leaf for T has at least two
neighbours in the subtree Tu1 −A, then we can get an additional leaf for T ′. Therefore, each
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upper leaf for T has at most one neighbour in Tu1 −A.
Now let w′ 6= w be an upper leaf for T . We claim that w′ is adjacent to u2. Indeed,

suppose w′u2 /∈ E(G). By Claim 18, w′ has at most one neighbour in G − V (T ) and by the
paragraph above it has at most one neighbour in Tu1 − A. Since dGw′ (w

′) ≥ k, we have
that NGw′ (w

′) = (U \ {u1, u2}) ∪ {y, z}, for some y ∈ V (G) \ V (T ) and z ∈ V (Tu1) \ A.
Moreover, u2 /∈ V (Gw′). Otherwise, there exists a w′, u2-path P in Gw′ with no inner vertex
in (U \{u1, u2})∪{z}. Clearly, w′y ∈ E(P ) and P does not contain vertices in Tu1−A, or else
y would become an additional leaf of T . But then there exists a w′, U -fan in G − (A \ {w′})
of size k, contradicting the fact that w′ is an upper leaf. Therefore, u2 /∈ V (Gw′) and so there
exists a y, z-path in Gw′ with no inner vertex in A ∪ (U \ {u1}). Again, by adding this path
to the initial tree T , we get a new tree with at least |A| + k − 1 leaves, a contradiction. This
means that w′u2 ∈ E(G), for any upper leaf w′. On the other hand, for any lower leaf w′′,
there exists a w′′, u2-path with no inner vertex in A ∪ U . Finally, for any ui ∈ U \ {u2}, there
exists a ui, u2-path in Gr with no inner vertex in A∪U . But then it is easy to construct a new
tree rooted at u2 and with at least |A|+ k − 1 leaves. �

Claim 21. The vertex r has at most one neighbour in V (T ) \ (A ∪ U).

Indeed, suppose r has at least two neighbours in V (T ) \ (A ∪ U). The subtree T −
({u2, . . . , uk} ∪ (A \ {r})) contains a leaf q and let Q = NT (q) ∩ (A \ {r}). Moreover, let
w ∈ Q and consider Gw. Clearly, w has at least k − 1 ≥ 1 neighbours in V (G) \ (A ∪ {q}). If
for any w ∈ Q, one of these neighbours is contained in V (T ) \ ({u2, . . . , uk} ∪ {q}), then we
get a tree rooted at r and in which q is an additional leaf. Therefore, there exists w ∈ Q with
no neighbours in V (T ) \ ({u2, . . . , uk} ∪ {q} ∪A). By Claim 18, w has at most one neighbour
in V (G) \ V (T ). But then w has at most k + 1 neighbours in V (G) \ A, contradicting the
minimality of r. �

By Claim 21 and Claim 20, r has exactly k + 1 neighbours in V (T ) \ A. Therefore, let
NT (r) \ (A ∪ U) = {z} and let Tz be the subtree induced by z and its descendants.

Claim 22. V (Tu1) ∩ V (Tz) = ∅.

Indeed, suppose there exists x ∈ V (Tu1) ∩ V (Tz) and let P (x) be the unique x, r-path in
T . By definition, P (x) contains both z and u1 and so a cycle arises in T . �

Claim 23. No leaf of Tz is a lower leaf for T .

Indeed, suppose there exists a lower leaf w for T which is a leaf of Tz. This means that
the w, u1-subpath P in the definition of w intersects Tz. Then, select the u1, x-subpath of
P , where x is the first intersection of P with Tz when traversed from u1. Moreover, for any
ui ∈ U \ {u1}, select a ui, u1-path in Gr with no inner vertex in A∪U and delete the edge set
{u2r, . . . , ukr, rz}. After removing cycles and appropriate edges from the selected subgraph,
we get a tree T ′ rooted at u1 and with at least |A|+ k− 2 leaves. Finally, by Claim 18 and the
minimality of r, any upper leaf for T adjacent to r has a neighbour in V (T ′) \ (U \ {u1} ∪A)
and so r could become an additional leaf of T ′. �

Clearly, the tree Tz −A contains a leaf q and let Q = NT (q)∩A. By Claim 23, Q is a set of
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upper leaves. By an argument similar to the one in the proof of Claim 21, there exists w′ ∈ Q
such that NGw′ (w

′) ⊆ NG(w′) \A ⊆ (U \ {u1}) ∪ {q, x}, for some x ∈ V (G) \ V (T ), and w′ is
adjacent to at least k − 2 vertices in U \ {u1} (see Figure 4.2). Moreover, U \ {u1} ⊆ V (Gw′),
or else {q, x} ⊆ V (Gw′) and there would exist an x, q-path in Gw′ with no inner vertex in
A ∪ (U \ {u1}), thus turning x into an additional leaf of T .

u1
u2 uk

r
. . .

x
w′

z

q

Figure 4.2: Neighbourhood of w′.

Claim 24. There is no path P (in G) between w′ and v ∈ V (Tu1) \ A with no inner vertex in
A ∪ (U \ {u1}).

Suppose such a path P exists. Then w′x /∈ E(P ), or else x becomes an additional leaf.
Therefore, w′q ∈ E(P ). By the paragraph above, w′ is adjacent to at least k − 2 vertices
in U \ {u1}, say {w′u3, w

′u4, . . . , w
′uk} ⊆ E(G), and there exists a w′, u2-path P ′ ⊆ Gw′

with no inner vertex in (U \ {u1, u2}) ∪ {q}. If w′u2 ∈ E(G), then there exists a w′, U -fan in
G−(A\{w′}) of size k, contradicting the fact that w′ is an upper leaf. Therefore, w′u2 /∈ E(G)
and w′x ∈ E(P ′). But then P + P (v) (where P (v) is the unique v, u1-path in T ) and P ′ do
not intersect, or else x becomes an additional leaf and once again we obtain a w′, U -fan in
G− (A \ {w′}) of size k, a contradiction. �

Claim 25. Each w ∈ A has at most one neighbour in Tu1 −A.

Consider w ∈ A \ {w′} such that w′w /∈ E(G). There exists a w′, w-path P in Gw′w with
no inner vertex in A ∪ (U \ {u1}). Moreover, by Claim 24, P does not contain any vertex
of Tu1 − A. For any w ∈ A \ {w′} such that w′w /∈ E(G), we select these paths. For any
w ∈ A \ {w′} such that w′w ∈ E(G), we select the corresponding edges. Moreover, recall that
w′ is adjacent to at least k − 2 vertices in U \ {u1}, say {u3, . . . , uk}, and U \ {u1} ⊆ V (Gw′).
But then there exists a w′, u2-path in Gw′ with no inner vertex in A ∪ U and so, by Claim 24,
with no inner vertex in Tu1 − A as well. Therefore, we can obtain a new tree T ′ rooted at
w′ and with at least |A| + k − 2 leaves. But then each w ∈ A has at most one neighbour in
Tu1 −A, or else we could get an additional leaf of T ′. �

Claim 26. If w is an upper leaf, then ((U \ {u1}) ∪ {v}) * V (Gw), for any v ∈ V (Tu1).

Indeed, suppose this is not the case and let v ∈ V (Tu1) be a vertex with minimum dT (v, u1)
among those satisfying ((U \ {u1}) ∪ {v}) ⊆ V (Gw). Since the set U ′ = (U \ {u1}) ∪ {v} is
contained in V (Gw), there exists a w,U ′-fan in Gw of size k (Lemma 1.0.4). By minimality,
no path in the fan intersects the unique v, u1-path in T in a vertex different from v and so we
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can obtain a w,U -fan in G− (A \ {w}) of size k, contradicting the fact that w is an upper leaf.
�

Claim 27. V (Gw) ∩ V (Tu1) = ∅, for any w ∈ Q.

Indeed, suppose there exists w ∈ Q and a vertex s such that s ∈ V (Gw) ∩ V (Tu1). By
Claim 26, we have U \ {u1} * V (Gw). By Claim 25, w has at most one neighbour in
Tu1 − A and, by Claim 18, w has at most one neighbour in V (G) \ V (T ). But then there
exists v ∈ V (Gw) ∩ V (Tz) with v 6= w, or else NGw(w) = (U \ {u1, ui}) ∪ {x, y}, for some
x ∈ V (G) \ V (T ), y ∈ V (Tu1) \ A and 2 ≤ i ≤ k, and we could find an x, y-path in Gw with
no inner vertex in A ∪ (U \ {u1}). Therefore, there exists a v, s-path P ⊆ Gw with no inner
vertex in A ∪ (U \ {u1}), contradicting Claim 24. �

We now show how to build a tree rooted at u2 and with at least |A| + k − 1 leaves. This
will provide a contradiction, thus concluding the proof.

Consider w ∈ Q. By Claim 27 and Claim 18, if (V (Gw) \ {w}) ∩ (V (Tz) \ {q}) = ∅, then
NGw(w) ⊆ (U \ {u1}) ∪ {q, x}, for some x ∈ V (G) \ V (T ). Moreover, as we have seen before,
we have that U \ {u1} ⊆ V (Gw), or else x could become an additional leaf of T .
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Figure 4.3: The different constructions of a tree T with at least |A|+ k − 1 leaves.

We start by deleting V (Tu1) ∪ U from T . Suppose now that, for every lower leaf w′′, the
w′′, u2-subpath P in the definition of w′′ contains no vertices of Tz and, for every ui ∈ U \{u2},
each ui, u2-path P ′ inGr with no inner vertex in A∪U contains no vertices of Tz. In particular,
these paths do not contain q and we select them (see Figure 4.3(a)). Moreover, for any w ∈ Q,
we do the following. If there exists v ∈ (V (Gw)\{w})∩(V (Tz)\{q}), then we select aw, v-path
in Gw with no inner vertex in A∪(U \{u2})∪{q} (such a path exists by Claim 27). Otherwise,
by the paragraph above, we select a w, u2-path in Gw with no inner vertex in A ∪ U ∪ {q}
(again, the existence follows from Claim 27). After removing cycles and appropriate edges
we get a new tree T , rooted at u2 and with at least |A|+k−1 leaves (q becomes an additional
leaf), a contradiction.

Therefore, there exists either a lower leaf w such that the w, u2-subpath P in the definition
of w contains vertices of Tz, or a ui ∈ U \ {u2} such that a ui, u2-path P ′ in Gr with no inner
vertex in A ∪ U contains vertices of Tz. Then we select either the w, x-subpath and the y, u2-
subpath of P , where x and y are, respectively, the first and the last intersection of P with Tz
when traversed from w, or the ui, x′-subpath and the y′, u2-subpath of P ′, where x′ and y′

are, respectively, the first and the last intersection of P ′ with Tz when traversed from ui (see
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Figure 4.3(b)). In this way, we get a new tree T ′ and we grow it as follows. Let w′′ be a lower
leaf and Pw′′ the w′′, u2-subpath in the definition of w′′. For any lower leaf w′′, we select the
w′′, xw′′-subpath of Pw′′ , where xw′′ is the first intersection of Pw′′ with the tree constructed
so far and in which w′′ becomes a leaf. Similarly, we add the remaining vertices of U \ {u2}
as leaves. Finally, consider an upper leaf w′′ for the original T such that dT (w′′, r) = 1. By
the minimality of r and by an argument similar to Claim 18, w′′ is adjacent to a vertex in
V (T ′) \ (A ∪ U \ {u2}). But then we can add these edges to the tree T ′ rooted at u2 in
order to obtain a new tree with at least |A| + k − 1 leaves (r becomes an additional leaf), a
contradiction. This concludes the proof.

Our bound is tight in the sense of the following:

Proposition 4.2.2. For any k ≥ 2 and x ≥ 2k, there exists a graph G with `(G) = x and
VCk-con(G) = `(G)− k + 1.

For the proof we need to recall the Expansion Lemma (Lemma 1.0.2), which will be used
in the upcoming sections as well: If G is a k-connected graph and G′ is obtained from G by
adding a new vertex with at least k neighbours in G, then G′ is k-connected.

Proof of Proposition 4.2.2. For a fixed k ≥ 2 and x = 2k, consider the graph Gk constructed
as follows. Start with a clique Hk of size k+ 1. For each subset S ⊂ Hk of size k, add a vertex
adjacent to precisely the vertices of S, and let A be the set of the added vertices. Clearly,
|V (Gk)| = 2k + 2 and `(Gk) = 2k. Moreover, by the Expansion Lemma, A is shattered. For
x ≥ 2k, let G be the graph obtained from Gk by adding x − 2k vertices adjacent to exactly k
vertices of Hk. It is easy to see that `(G) = x and VCk-con(G) = `(G)− k + 1.

Let us now consider a lower bound for the VC-dimension. Theorem 4.1.2 asserts that
VCcon(G) ≥ `(G), for any connected graph G. Indeed, consider a spanning tree T of G and
its set of leaves L. For any subset A ⊆ L, there exists a subtree of T whose set of leaves is
A and so the set L can be shattered by connected subgraphs. Therefore, in the case k = 1,
we have that VCcon(G) is either `(G) or `(G) + 1, for any connected graph G. The situation
changes for k ≥ 2, as the difference `(G)− VCk-con can be arbitrarily large. A simple example
in the case k = 2 is given by the wheel Wn: we have that VC2-con(Wn) = 3 and `(Wn) = n.

Nevertheless, we can lower bound VCk-con(G) in terms of `(G), |V (G)| and |E(G)|. The
obvious idea is that having a sufficiently large complete subgraph guarantees shattering by
k-connected subgraphs.

Theorem 4.2.3. Let G be a connected graph of order n, size m, and maximum degree ∆. For
k ≥ 2,

VCk-con(G) ≥ `(G)− k + 1−
Ç
n+ 2−

°
n− 2

∆− 1

§
− n2

n2 − 2m

å
.

Proof. By Turán’s theorem (Theorem 1.0.1), if m >
Ä
1− 1

r

ä
n2

2 , then G contains Kr+1 as a
subgraph. Therefore, by the Expansion Lemma, a set of size r + 1− (k + 1) can be shattered
by k-connected subgraphs. The condition above is equivalent to r < n2

n2−2m
and so, taking
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r =
†

n2

n2−2m
− 1
£
, we get

VCk-con(G) ≥
¢

n2

n2 − 2m
− 1

•
+ 1− (k + 1).

Let now T be a spanning tree of G and di = |{v ∈ V (T ) : dT (v) = i}|. We want to find an
upper bound for `(G). We have

∆∑

i=1

di = n and 2(n− 1) =
∑

v∈V (T )

dT (v) =
∆∑

i=1

idi.

Using the two relations above, it is easy to see that

n− d1 =
∆∑

i=2

di ≥
∆∑

i=2

i− 1

∆− 1
di =

1

∆− 1

∆∑

i=2

(i− 1)di =
n− 2

∆− 1
.

Since `(G) is the maximum of d1 taken over all spanning trees of G, we have

`(G) ≤ n−
°
n− 2

∆− 1

§
.

Summarizing, we get

VCk-con(G) ≥
¢

n2

n2 − 2m
− 1

•
− k

≥ n2

n2 − 2m
− 1− k +

Å
`(G)− n+

°
n− 2

∆− 1

§ã
≥ `(G)− k + 1−

Ç
n+ 2−

°
n− 2

∆− 1

§
− n2

n2 − 2m

å
.

Complete graphs show that the bound in Theorem 4.2.3 is tight.

4.3 The decision problem

In this section we show that GRAPH VCk-con DIMENSION is NP-complete, for any k. The case
k = 1 was addressed by Kranakis et al. [115] and our proof is in fact inspired by theirs.

Consider the following decision problem, usually called SET MULTICOVER:

SET MULTICOVER

Instance: A set S = {a1, . . . , an}, a collection of subsets S1, . . . , Sm ⊆ S, and
integers k and t.

Question: Is there an index set I ⊆ {1, . . . ,m} such that
⋃
i∈I Si = S, each ai is

covered by at least k distinct subsets, and |I| ≤ t?

Being a generalization of the well-known SET COVER (also known as MINIMUM COVER

[75]), it is NP-complete and we use it for our reduction. Recall that a split graph is a graph
in which the vertex set can be partitioned into a clique and an independent set.
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Theorem 4.3.1. GRAPH VCk-con DIMENSION is NP-complete even for split graphs.

Proof. First, we show that the problem is in NP. Our proof is based on the following elemen-
tary result:

Claim 28. If G and G′ are two k-connected graphs such that |V (G) ∩ V (G′)| ≥ k, then G ∪G′
is k-connected as well.

Indeed, let S ⊂ V (G ∪ G′) be a subset such that |S| < k and let v and w be two dis-
tinct vertices in (G ∪ G′) − S. If both v and w are in G or in G′, then there is a v, w-
path in (G ∪ G′) − S by assumption. Otherwise, since |V (G) ∩ V (G′)| ≥ k, there exists
u ∈ V (G) ∩ V (G′) ∩ V ((G ∪ G′) − S). Moreover, since G − S and G′ − S are connected,
there exist a v, u-path in G− S and a u,w-path in G′ − S. But then there exists a v, w-path in
(G ∪G′)− S. �

Let G = (V,E) and s ≥ 1 be an instance of GRAPH VCk-con DIMENSION. We claim we can
check in polynomial time whether a subset V ′ ⊆ V with |V ′| ≥ s is shattered. By Claim 28,
it is enough to check all the O(|V |k+1) subsets of V ′ of size at most k + 1. Recall now that
finding a minimum separating set of a graph G is polynomial in the order of G. Moreover,
if S ⊆ V (G) is a minimum separating set and A ∪ B is a partition of V (G − S) into two
non-empty sets such that any path between a vertex in A and a vertex in B contains a vertex
in S then, for k > |S|, the vertices of every k-connected subgraph of G are entirely contained
in either A ∪ S or B ∪ S. These observations, as shown in [106, Theorem 1], allow to test
whether G has a k-connected subgraph in polynomial time. Therefore, for any B ⊆ V ′ of
size at most k + 1, we can check in polynomial time if there exists a k-connected subgraph
contained in G− (V ′ \B) and containing B.

Now we prove the NP-hardness by a reduction from SET MULTICOVER. Given an instance
of this problem, we construct a graph G = (V,E) as follows (see Figure 4.4). The set of
vertices V is formed by four pairwise disjoint sets A, B, C and D. A is an independent set of
n · (t+ k + 1) vertices arranged in n columns of t+ k + 1 vertices each (every element in the
j-th column corresponds to a copy of aj), B = {v1, . . . , vm} is a clique (vi corresponds to the
set Si), C is a clique of size k and D is an independent set of t+m+1 vertices. Each vertex in
C is connected to all vertices in B (therefore, B ∪C is a clique of size m+ k) and D. Finally,
vi ∈ B is connected to each copy of aj ∈ A if and only if aj ∈ Si.

Since B ∪C is a clique and A ∪D is an independent set, G is a split graph. We claim that
there is an index set I ⊆ {1, . . . ,m} such that

⋃
i∈I Si = S, each ai is covered by at least k

distinct subsets and |I| ≤ t if and only if VCk-con(G) ≥ |V | − (t+ k).
Suppose first such an index set I exists. We claim that the set

V ′ = A ∪D ∪ {vi ∈ B : i /∈ I}

is shattered. Indeed, the subgraph G′ = G[C ∪ {vi ∈ B : i ∈ I}] is a clique of size at least
k + 1 and each vertex in V ′ has at least k neighbours in G′. Therefore, V ′ is shattered by the
Expansion Lemma (Lemma 1.0.2). Finally, |I| ≤ t implies that |V ′| ≥ |V | − t− k.

Conversely, let V ′ be a shattered set of maximum cardinality. Then |V ′| ≥ |V | − (t + k).
Suppose there exists c ∈ V ′ ∩ C. This implies that no vertex in D belongs to V ′ and so
|V ′| ≤ |V | − (t + m + 1) < |V | − (t + k), a contradiction. Therefore, no vertex of C is in V ′

and D ⊆ V ′. Moreover, at least one vertex v ∈ A for each column is in V ′ and so v has at
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... ... ...

. . .

A

. . .

C

B

D

. . .

Figure 4.4: The graph G for the reduction. The grey ovals are cliques. A thick edge joining a vertex v ∈ D to C
means that v is adjacent to all the vertices of C. Similarly, the thick edge between the ovals means
that B ∪ C is a clique.

least k neighbours in the clique B \ V ′. By the Expansion Lemma (Lemma 1.0.2) and since
all the vertices in the column of v have identical neighbourhoods, each vertex in the column
of v belongs to V ′ and so A ⊆ V ′. Therefore, the number of vertices in B which are in V ′

is at least |V | − (t + k) − |A| − |D| = m − t. We claim that I = {i : vi ∈ B \ V ′} is a “yes”-
instance of SET MULTICOVER. Indeed, any vertex of A has at least k neighbours in B \ V ′. In
other words, each aj ∈ S is contained in at least k of the subsets Si with i ∈ I. Moreover,
|I| ≤ m− (m− t) = t.

4.3.1 Graphs of bounded clique-width

Graphs of bounded clique-width are particularly interesting from an algorithmic point of
view: many NP-complete problems can be solved in linear time for them. In fact, all graph
properties which are expressible in monadic second-order logic are decidable in linear time
on graphs of bounded clique-width (see Chapter 1). Let us recall that monadic second-order
logic is an extension of first-order logic by quantification over sets. The language of monadic
second-order logic of graphs (MSO1 in short) contains the expressions built from the following
elements:

• Variables x, y, . . . for vertices and X,Y, . . . for sets of vertices;

• Predicates x ∈ X and adj(x, y);

• Equality for variables, standard Boolean connectives and the quantifiers ∀ and ∃.

By considering edges and sets of edges as other sorts of variables and the incidence predicate
inc(v, e), we obtain monadic second-order logic of graphs with edge-set quantification (MSO2 in
short). If a graph property is expressible in the more restricted MSO1, then Courcelle et al.
[49] showed that it is decidable in linear time for graphs of bounded clique-width, assuming
a k-expression of the input graph is explicitly given.

We now show that, for any graph, being shattered by its k-connected subgraphs is a
property that can be expressed in monadic second-order logic of graphs:

Lemma 4.3.2. Being shattered by k-connected subgraphs is expressible in MSO1.
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Proof. Let G = (V,E) be a graph. The following MSO2 sentence says that the subgraph
induced by X ⊆ V is connected:

conn(X) = ∀Y⊆V [(∃u∈X u ∈ Y ∧∃v∈X v /∈ Y )→ (∃e∈E∃u∈X∃v∈X inc(u, e)∧inc(v, e)∧u ∈ Y ∧v /∈ Y )].

It is easy to see that the quantification over single edges can be expressed by a MSO1

sentence as follows:

∃a∈V ∃b∈V ∃u∈X∃v∈X adj(a, b) ∧ (u = a ∨ u = b) ∧ (v = a ∨ v = b) ∧ u ∈ Y ∧ v /∈ Y.

The following MSO1 sentence says that the subgraph induced by X ⊆ V is k-connected:

k-conn(X) = ∃v1∈X . . . ∃vk+1∈X(∀u1∈V . . . ∀uk−1∈V conn(X \ {u1, . . . , uk−1})).

Finally, the following MSO1 sentence says that the set A ⊆ V is shattered by k-connected
subgraphs:

shatt(A) = ∀B⊆A∃X⊆V k-conn(X) ∧X ∩A = B.

Therefore, as an immediate consequence of the meta-theorem stated above, we have the
following:

Corollary 4.3.3. GRAPH VCk-con DIMENSION is decidable in linear time for graphs of bounded
clique-width, assuming a k-expression of the input graph is explicitly given.

We have seen that GRAPH VCk-con DIMENSION is NP-hard even for split graphs. Are there
some (non-trivial) subclasses of split graphs for which the problem becomes easy? Recall that
the Dilworth number of a graph G is the size of a largest antichain (or, equivalently, the size of
a minimum chain partition) with respect to the quasi-order � defined on the vertices of G as
follows: x � y if and only if NG(x) ⊆ NG[y]. Graphs with Dilworth number 1 are precisely the
well-known threshold graphs, which are the P4-free split graphs [42]. Therefore, they have
clique-width at most 2 (see Chapter 1) and we have seen we can decide the VC-dimension
in linear time. On the other hand, already a small jump for the Dilworth number of a split
graph from 1 to 2 changes the clique-width from bounded to unbounded [111]. Nevertheless,
deciding the VC-dimension remains easy:

Theorem 4.3.4. GRAPH VCk-con DIMENSION is decidable in polynomial time for split graphs
with Dilworth number at most 2.

Proof. Let G = (V,E) be the input graph. We assume the unique partition of V into a clique
of size ω(G) and an independent set I of size α(G) is given. It is well-known that the problem
of finding a minimum chain partition of a poset can be translated into a maximum bipartite
matching problem (see, e.g., [132]) and the same holds for a quasi-order. Therefore, we
can find in polynomial time a chain partition I1 ∪ I2 of I. For j ∈ {1, 2}, let Ij,≥k = {u ∈
Ij : d(u) ≥ k} and Ij,�u = {v ∈ Ij : v � u}. Note that, if ω(G) ≤ k, then G contains
no k-connected subgraph. Therefore, we may assume ω(G) > k. But then a maximum-size
shattered set containing vertices from at most one of I1 and I2 has size

max{ω(G)− (k + 1) + |I1,≥k|, ω(G)− (k + 1) + |I2,≥k|}.
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On the other hand, it is not difficult to see that, for any pair x ∈ I1,≥k and y ∈ I2,≥k, a
maximum-size shattered set containing x as the minimal element from I1,≥k and y as the
minimal element from I2,≥k has size

ω(G)−max{k + 1, 2k − |N(x) ∩N(y)|}+ |I1,�x|+ |I2,�y|.

It is not difficult to see that outerplanar graphs have tree-width at most 2, and so bounded
clique-width as well. In the next section, we consider GRAPH VCk-con DIMENSION for planar
graphs.

4.3.2 Subclasses of planar graphs

Since a planar graph has a vertex of degree at most 5, its connectivity is at most 5. Therefore,
GRAPH VCk-con DIMENSION restricted to planar graphs is non-trivial for at most five values of
k and in this section we study its computational complexity in the cases k = 1 and k = 2.

Let us begin with k = 1. Note that planar graphs, in general, do not have bounded
clique-width: the class of planar bipartite (C4, . . . , C2`)-free graphs with maximum degree 3
has unbounded clique-width [133]. In fact, we show that GRAPH VCcon DIMENSION is NP-
complete for this class. Given the connection between VCcon and the connected domination
number (Theorem 4.1.2), it is no surprise we construct a reduction from CONNECTED DOMI-
NATING SET. Douglas [53] showed that, given a planar subcubic graph G, it is NP-complete
to decide whether γc(G) ≤ |V (G)|

2 − 1 holds. Note that, for a subcubic graph, the quantity
|V (G)|

2 − 1 is the minimum possible size of a connected dominating set4. In Section 5.4, we
strengthen Douglas’ result by showing that the following problem is NP-complete for any
` ≥ 2 (Corollary 5.4.2):

CONNECTED DOMINATING SET

Instance: A planar bipartite (C4, . . . , C2`)-free graphG = (V,E) with maximum
degree 3.

Question: Does there exist D ⊆ V such that G[D] is connected, every vertex in
V \D is adjacent to at least one vertex in D and |D| ≤ |V |2 − 1?

As mentioned, we postpone the proof of this result to Section 5.4. Instead, we immediately
use it to show the NP-hardness of GRAPH VCcon DIMENSION for the class of subcubic planar
bipartite graphs. The idea is as follows. It is easy to see that the complement of every
connected dominating set can be shattered by connected subgraphs. Moreover, if G is a
subcubic graph with sufficiently large order and VC-dimension, we show that the converse
holds as well: more precisely, γc(G) ≤ |V (G)|

2 − 1 if and only if VCcon(G) ≥ |V (G)|
2 + 1.

Theorem 4.3.5. For any ` ≥ 2, GRAPH VCcon DIMENSION is NP-complete even for planar
bipartite (C4, . . . , C2`)-free graphs with maximum degree 3.

Proof. We prove NP-hardness by a reduction from the variant of CONNECTED DOMINATING

SET introduced above. Let G = (V,E) be an instance of CONNECTED DOMINATING SET where
G is a planar bipartite (C4, . . . , C2`)-free graph, ∆(G) = 3 and |V | = n. Clearly, we may

4 This follows easily by recalling `(G) = |V (G)| − γc(G).
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assume n ≥ 46. We claim G has a connected dominating set D with |D| ≤ n
2 − 1 if and only

if VCcon(G) ≥ n
2 + 1.

Suppose first G has a connected dominating set D with |D| ≤ n
2 − 1. Then each vertex in

V \D can be joined to G[D] independently of one another, and so V \D can be shattered by
connected subgraphs. Therefore, VCcon(G) ≥ |V \D| ≥ n

2 + 1.
Conversely, suppose VCcon(G) ≥ n

2 + 1 and let A be a shattered set of maximum size.
Recall that, by assumption, we have |A| ≥ 24. The idea is to show there exists a component
C of G − A such that each vertex of A is joined to C. Claim 29 would then imply that
|C| ≥ |A| − 2 ≥ n

2 − 1 and so C would be a connected dominating set of size n
2 − 1. We now

elaborate on this idea in a series of claims, each followed by a short proof.

Claim 29. Each component C of G−A has at most |C|+ 2 neighbours in A.

Indeed, if C contains at most two 1-vertices, then the claim clearly holds. Therefore,
let {u1, . . . , uk}, with k ≥ 3, be the set of 1-vertices in C. Since C is connected, there
exists a u1, u2-path P in C. Moreover, any u3, u1-path intersects P in a 3-vertex. Apply-
ing this reasoning again to each ui with i ≥ 3, we have that d1(C) − 2 ≤ d3(C), where
di(C) = |{v ∈ C : dC(v) = i}|. But then the number of neighbours of C in A is at most
2d1(C) + d2(C) = |C|+ d1(C)− d3(C) ≤ |C|+ 2. �

Since ∆(G) = 3 and |A| ≥ 24, each vertex u ∈ A has at least one neighbour in G − A,
otherwise it would not be possible to shatter u and a vertex in A \N(u). Let now C1, . . . , Ck
be the components of G−A.

Claim 30. There exists a vertex in A joined to less than three components of G−A.

Indeed, suppose each vertex in A is joined to exactly three components. By Claim 29 and
double counting the size of the edge cut [A,A], we have 3|A| ≤∑(|Ci|+ 2). Therefore,

k ≥ 3|A| −∑ |Ci|
2

=
3|A| − (n− |A|)

2
≥ n

2
+ 2,

contradicting the fact that |V \A| ≤ n
2 − 1. �

Claim 31. No vertex in A is joined to exactly two components of G−A.

Suppose, to the contrary, there exists u ∈ A joined to exactly two components, say C1

and C2. Then, every vertex in A \ N(u) is joined to either C1 or C2. By Claim 29, we have
|C1|+ |C2|+ 3 ≥ |A| − 1, whence |C1|+ |C2| ≥ n

2 − 3 and so
∑k
i=3 |Ci| ≤ 2.

We now claim that the (at least |A| − 1) vertices in A \ N(u) are all joined to C1 or all
joined to C2. Suppose, to the contrary, there exist v and w in A \N [u] such that v is joined to
C1, w is joined to C2 but none of them is joined to both C1 and C2. Let B ⊆ A be the subset
of vertices which are joined to both C1 and C2. Since |C1| + 2 ≥ |B| and |C2| + 2 ≥ |B|, we
have |B| ≤ |C1|+|C2|

2 + 2 ≤ n+6
4 . Therefore, at least n

2 + 1 − n+6
4 = n−2

4 vertices of A are not
joined to both C1 and C2. But then the set B′ of vertices of A \ (N [v] ∪N [w]) which are not
joined to both C1 and C2 has size at least n−2

4 − 6 ≥ 5. Since {x, v} and {x,w} are shattered
for any x ∈ B′, each vertex in B′ is joined to some component different from C1 and C2,
contradicting the fact that the remaining components can be joined to at most four vertices
in A.
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Therefore, the (at least |A| − 1) vertices in A \ N(u) are all joined to the same compo-
nent, say C1. Suppose now there exists u′ ∈ N(u) not joined to C1. By Claim 29, we have
|C1| ≥ n

2 − 2. Moreover, the set {u′, w} is shattered, for any w ∈ A \ {u, u′}, contradicting the
fact that the remaining component has at most 3 neighbours in A. Therefore, each v ∈ A is
joined to C1. Since |C1| ≥ |A| − 2 ≥ n

2 − 1, it follows that C2 = ∅, a contradiction. �

By Claim 30 and Claim 31, there exists v ∈ A joined to exactly one component C of
G − A. Clearly, v has at most two neighbours in A. Moreover, each of the (at least |A| − 3)
non-neighbours of v in A is joined to C, otherwise it would not be possible to shatter the set
{v, w}, for some w ∈ A \ N [v]. Suppose now there exists v′ ∈ N(v) ∩ A not joined to C. By
Claim 29, we have |C| + 2 ≥ |A| − 2, hence |C| ≥ n

2 − 3 and so the remaining components
contain at most two vertices. Since the set {v′, w} is shattered, for any w ∈ A \ N [v′], and
since there are at least |A| − 3 ≥ 21 such non-neighbours, we get a contradiction to the fact
that a component in G − A − C can have at most four neighbours in A. Therefore, each
v ∈ A is joined to C and |C| ≥ |A| − 2 ≥ n

2 − 1. But then |C| = n
2 − 1 and C is a connected

dominating set for G.

Clearly, GRAPH VCcon DIMENSION becomes easy for graphs G with ∆(G) ≤ 2. Indeed,
VCcon(Pn) = 2, for n ≥ 3, and VCcon(C3) = 2 and VCcon(Cn) = 3, for n ≥ 4. Note that, if
∆(G) ≤ 2, then G has tree-width at most 2. Therefore, the conclusion follows from Corol-
lary 4.3.3 as well.

We now consider GRAPH VC2-con DIMENSION:

Theorem 4.3.6. GRAPH VC2-con DIMENSION is NP-complete even for planar bipartite graphs
with maximum degree 4.

Proof. Our reduction is from HAMILTONIAN CYCLE, which remains NP-complete even for pla-
nar cubic bipartite graphs [4]. Given an instance G = (V,E) of this problem, where G is a
planar cubic bipartite graph with |V | = n, we construct a graph G′ by replacing each vertex
u of G with the gadget depicted in Figure 4.5.

=⇒
1

0

2
u

u1

u0

u2

u′0

u′1

u′2

1

2

0

u′′2

u′′1

u′′0

Figure 4.5: Construction of the graph G′: The vertex u is replaced by a gadget containing 9 vertices.

For 0 ≤ i ≤ 2, the vertices ui are the gates and the vertices u′i are the connectors. Finally,
each pair u′iu

′
i+1 (indices modulo 3) of connectors in the gadget is connected by a path of

length 2 with inner vertex u′′i+2, called a crossing vertex. Clearly, the construction can be done
in polynomial time and the resulting graph G′ = (V ′, E′) is planar, bipartite and ∆(G′) = 4.
We claim that VC2-con(G′) ≥ |V ′| − 5n if and only if G contains a Hamiltonian cycle.

Suppose first G contains a Hamiltonian cycle C. Without loss of generality, u ∈ V is
incident to the edges 1 and 2 in C. Then we augment the subgraph induced by E(C) in G′
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with the path u1u
′
0u2. Repeating this procedure for every vertex of G, we get a cycle in G′

containing three vertices from every gadget. The vertices in {u0, u
′′
0, u
′′
1, u
′′
2} can be joined to

this cycle, independently of one another, via paths through the connectors u′0, u′1 and u′2. In
all the cases, the resulting subgraph is clearly 2-connected. Repeating this process for every
gadget, we have that a set of size |V ′| − 5n can be shattered.

Suppose now VC2-con(G′) ≥ |V ′|−5n and let A be a shattered set of maximum cardinality.

Claim 32. For any gadget H ⊆ G′, exactly one gate and the three crossing vertices are in A.

We show first that at most four vertices ofH are inA. Suppose, to the contrary, H contains
at least five vertices of A. Then at least one crossing vertex is in A, otherwise at least two
gates would be in A, contradicting the fact that the set consisting of a connector in H and a
vertex not in H is shattered. Therefore, at least one crossing vertex is in A, say without loss
of generality u′′1. This implies that the connectors u′0 and u′2 are not in A. If another crossing
vertex is in A, then u′1 /∈ A and at least two gates are in A, a contradiction. Therefore, u′′1 is
the only crossing vertex in A. But then all the gates are in A, a contradiction again.

Since VC2-con(G′) ≥ |V ′| − 5n, exactly four vertices per gadget are in A and we have seen
that at most one gate per gadget is in A. Moreover, exactly one gate per gadget belongs to A,
otherwise a crossing vertex and one of its neighbouring connectors would both be in A. Let
u0 be the gate of the gadget H belonging to A. If one of its neighbouring connectors is in A
(clearly, there exists at most one such connector), then a crossing vertex and at least one of
its neighbouring connectors are both in A, a contradiction. Therefore, both u′1 and u′2 are not
in A and it is easy to see that it must be A ∩ V (H) = {u0, u

′′
0, u
′′
1, u
′′
2}. �

By Claim 32, there exists a 2-connected subgraph of G′ containing crossing vertices in
every gadget and avoiding exactly one gate per gadget. Therefore, for any gadget, this sub-
graph contains exactly two of the edges incident to its gates and originally in G. This means
that, contracting each gadget to a single vertex, we obtain a 2-regular connected spanning
subgraph. Therefore, G contains a Hamiltonian cycle.

We conclude this section with some open problems. The first is to study the complexity
of GRAPH VC2-con DIMENSION for planar bipartite graphs with maximum degree 3. We be-
lieve this problem to be NP-hard. More generally, it would be interesting to determine the
complexity of GRAPH VCk-con DIMENSION for planar graphs in the remaining cases 3 ≤ k ≤ 5.

4.4 Complexity dichotomies in monogenic classes

A class of graphs G is monogenic if it is defined by a single forbidden induced subgraph, i.e.
G = Free(H), for some graph H. We say that a (decision) graph problem admits a dichotomy
in monogenic classes if, for each monogenic class, the problem is either NP-complete or
decidable in polynomial time. The first result in this direction was obtained by Korobitsin
[108], who showed that DOMINATING SET is decidable in polynomial time if H is an induced
subgraph of P4 + tK1, for t ≥ 0, and NP-complete otherwise. Král’ et al. [114] showed that
COLOURING is decidable in polynomial time if H is an induced subgraph of P4 or of P3 +
K1 and NP-complete otherwise. Kamiński [102] showed that SIMPLE MAX-CUT is decidable
in polynomial time if H is an induced subgraph of P4 and NP-complete otherwise. Other
dichotomies were obtained by Golovach et al. [79] for PRECOLOURING EXTENSION and `-LIST
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COLOURING and by AbouEisha et al. [1] for UPPER DOMINATING SET. Other problems, like
k-COLOURING and INDEPENDENT SET, appear more stubborn and no complete dichotomy is
available: we refer the reader to [78] for a survey on the status of k-COLOURING and we
just mention that a major question related to INDEPENDENT SET is whether it is decidable in
polynomial time for Pk-free graphs with k ≥ 6.

In the following, we enlarge the list above by providing dichotomies for the closely related
GRAPH VCcon DIMENSION and CONNECTED DOMINATING SET. Note that, in Chapter 5, the
latter problem will be further studied in the context of boundary classes.

Let us begin with GRAPH VCcon DIMENSION. Definition 4.1.1 has an analogue formulation
for edge sets:

Definition 4.4.1 (Kranakis et al. [115]). Let G = (V,E) be a graph and let P be a family of
sets of edges of G. A subset A ⊆ E is P-edge-shattered if every subset of A can be obtained as
the intersection of a C ∈ P with A. The edge VC-dimension of G with respect to P is defined
as the maximum size of a P-edge-shattered subset and it is denoted by EVCP(G).

We denote by EVCcon the edge VC-dimension with respect to the family of connected edge
sets. Since a graph G is connected if and only if L(G) is, it is easy to see that EVCcon(G) =
VCcon(L(G)) [115]. Moreover, given a graph G and a number s ≥ 1, it is NP-complete
to decide whether EVCcon(G) ≥ s holds [115]. It immediately follows that GRAPH VCcon
DIMENSION is NP-complete even for line graphs.

We now have all the machinery to prove our first dichotomy:

Theorem 4.4.2. GRAPH VCcon DIMENSION restricted to H-free graphs is decidable in polyno-
mial time if H is an induced subgraph of P4 + tK1 and NP-complete otherwise.

Proof. Suppose first H contains an induced cycle Ck. If k is odd, then the problem is NP-
complete since it is NP-complete when restricted to bipartite graphs (Theorem 4.3.5). If k is
even, then the problem is again NP-complete since it is NP-complete when restricted to split
graphs (Theorem 4.3.1).

Suppose now H is a forest with a vertex of degree at least 3. Then H contains an induced
claw and the problem is NP-complete since it is NP-complete when restricted to line graphs.

Finally, suppose H is the disjoint union of paths. If H contains at least two paths on at
least 2 vertices, then H contains 2K2 and the problem is NP-complete since it is NP-complete
when restricted to split graphs. The same conclusion holds if H contains a path on at least
5 vertices. It remains to consider the case of H being of the form Pk + tK1, for some k ≤ 4
and t ≥ 0. Therefore, let G be such a Pk + tK1-free graph. If G is in addition Pk-free,
then it has bounded clique-width (see Chapter 1) and the problem is decidable in linear time
(Corollary 4.3.3). On the other hand, if G contains an induced copy G′ of Pk, then there are
at most t − 1 pairwise non-adjacent vertices of G none of which is adjacent to a vertex of
G′. Denoting this set by S, we have that V (G′) ∪ S is a dominating set of size at most t + 3.
Moreover, denoting by γ(G) the domination number of G, Duchet and Meyniel [56] showed
that γc(G) ≤ 3γ(G) − 2 and so we have γc(G) ≤ 3t + 7. If G has n vertices, Theorem 4.1.2
implies that n− γc(G) ≤ VCcon(G) ≤ n− γc(G) + 1. But then we simply check all the subsets
of V (G) of size n − γc(G) and n − γc(G) + 1: their number is

( n
γc(G)

)
+
( n
γc(G)−1

)
= O(n3t+7)

and so, by the proof of Theorem 4.3.1, we can compute VCcon(G) in polynomial time.
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Let us now consider CONNECTED DOMINATING SET. In order to show that this problem is
NP-hard even for line graphs, it is useful to introduce the following notion. A connected edge
dominating set of a graph G = (V,E) is a subset D ⊆ E such that G[D] is connected and
every edge in E \D is incident to at least one edge in D. We denote by γ′c(G) the minimum
size of a connected edge dominating set of G and consider the following natural problem:

CONNECTED EDGE DOMINATING SET

Instance: A graph G and a positive integer s.
Question: Does γ′c(G) ≤ s hold?

Lemma 4.4.3 (Folklore). CONNECTED EDGE DOMINATING SET is NP-complete.

Proof. Recall that a connected vertex cover of a graph G is a vertex cover S such that G[S] is
connected and we denote by βc(G) the minimum size of a connected vertex cover of G. We
first claim that γ′c(G) = βc(G) − 1, for any graph G. Indeed, consider a minimum connected
edge dominating set D of G. It is easy to see that G[D] is a tree. But then the vertex set of
G[D] is a connected vertex cover of G of size γ′c(G) + 1.

Conversely, let D be a minimum connected vertex cover of G and let T be a spanning tree
of G[D]. We have that E(T ) is a connected edge dominating set of G of size βc(G)− 1.

This observation implies that CONNECTED EDGE DOMINATING SET and CONNECTED VER-
TEX COVER are polynomially equivalent and since the latter is NP-complete [76] (see also
Section 5.5), the conclusion follows.

Since there is an obvious bijection between the connected edge dominating sets of a graph
G and the connected dominating sets of L(G), we have that CONNECTED EDGE DOMINAT-
ING SET polynomially reduces to CONNECTED DOMINATING SET for line graphs. Therefore,
Lemma 4.4.3 implies the following:

Lemma 4.4.4. CONNECTED DOMINATING SET is NP-complete even for line graphs.

We have seen in Chapter 1 that if a graph property is expressible in MSO1, then it is
decidable in linear time for graphs of bounded clique-width. We now show that being a
connected dominating set is an example of such a property:

Lemma 4.4.5. Being a connected dominating set is expressible in MSO1.

Proof. Let G = (V,E) be a graph. As we have seen in Lemma 4.3.2, the following MSO2

sentence says that the subgraph induced by X ⊆ V is connected:

conn(X) = ∀Y⊆V [(∃u∈X u ∈ Y ∧∃v∈X v /∈ Y )→ (∃e∈E∃u∈X∃v∈X inc(u, e)∧inc(v, e)∧u ∈ Y ∧v /∈ Y )].

Moreover, the quantification over single edges can be expressed by a MSO1 sentence as
follows:

∃a∈V ∃b∈V ∃u∈X∃v∈X adj(a, b) ∧ (u = a ∨ u = b) ∧ (v = a ∨ v = b) ∧ u ∈ Y ∧ v /∈ Y.

Finally, the following MSO1 sentence says that D ⊆ V is a connected dominating set:

cds(D) = conn(D) ∧ ∀v∈V \D∃u∈D adj(u, v).



4.4. Complexity dichotomies in monogenic classes 103

Corollary 4.4.6. CONNECTED DOMINATING SET is decidable in linear time for graphs of bound-
ed clique-width, assuming a k-expression of the input graph is explicitly given. In particular, it is
decidable in linear time for P4-free graphs.

We can finally prove our second dichotomy. The proof is similar to that of Theorem 4.4.2.

Theorem 4.4.7. CONNECTED DOMINATING SET restricted toH-free graphs is decidable in poly-
nomial time if H is an induced subgraph of P4 + tK1 and NP-complete otherwise.

Proof. Suppose first H contains an induced cycle Ck. If k is odd, then the problem is NP-
complete since it is NP-complete when restricted to bipartite graphs [157]. If k is even, then
the problem is again NP-complete since it is NP-complete when restricted to split graphs
[123].

Suppose now H is a forest with a vertex of degree at least 3. Then H contains an in-
duced claw and the problem is NP-complete since, by Lemma 4.4.4, it is NP-complete when
restricted to line graphs.

Finally, suppose H is the disjoint union of paths. If H contains at least two paths on at
least 2 vertices, then H contains 2K2 and the problem is NP-complete since it is NP-complete
when restricted to split graphs. The same conclusion holds if H contains a path on at least
5 vertices. Therefore, it remains to consider the case of H being of the form Pk + tK1, for
some k ≤ 4 and t ≥ 0. Let G be such a Pk + tK1-free graph. If G is in addition Pk-free, then
the problem is decidable in linear time by Corollary 4.4.6. On the other hand, if G contains
an induced copy of Pk, we have seen in the proof of Theorem 4.4.2 that γc(G) ≤ 3t + 7.
Therefore, it suffices to check all the subsets of V (G) of size at most 3t + 7, and this can be
clearly done in polynomial time.
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In this chapter, we consider the following meta-questions: when does a certain
“hard” graph problem become “easy”?; Is there any “boundary” separating “easy”
and “hard” instances? In order to answer these questions in the case of hereditary
classes, Alekseev [5] introduced the notion of a boundary class for an NP-hard prob-
lem. The fundamental feature of this notion is that a problem Π is NP-hard for a
finitely defined hereditary class X if and only if X contains a boundary class for Π
[5, 8].
In the context of determining the boundary classes of an NP-hard problem, Alekseev
[5] studied VERTEX COVER, Alekseev et al. [7] and Malyshev [135] DOMINATING

SET and Korpelainen et al. [110] HAMILTONIAN CYCLE. In this chapter, we con-
tinue the search of boundary classes for several other problems involving non-local
properties. In Section 5.2, we provide the first boundary class for the closely re-
lated HAMILTONIAN CYCLE THROUGH SPECIFIED EDGE and HAMILTONIAN PATH. In
Section 5.3, we reveal the first boundary class for FEEDBACK VERTEX SET. Finally,
in Sections 5.4 and 5.5 we make some progress towards the determination of some
boundary classes for CONNECTED DOMINATING SET and CONNECTED VERTEX COVER.

5.1 Introduction

In the previous chapters we have encountered several graph problems: most of them are
“hard” even for restricted classes of graphs, while they become “easy” for some subclasses.
For example, Theorem 4.4.7 tells us that CONNECTED DOMINATING SET is NP-complete for
P5-free graphs, while it is decidable in polynomial time for the subclass of P4-free graphs. It
is therefore natural to ask when a certain “hard” graph problem becomes “easy”: Is there any
“boundary” separating “easy” and “hard” instances? In this chapter, we consider hereditary
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graph classes1 and, in order to make the previous concepts more precise, we introduce the
following vocabulary. Given a graph problem Π, we say that a hereditary class of graphs X
is Π-hard if Π is NP-hard for X, and Π-easy if Π is solvable in polynomial time for graphs in
X. Note that throughout this chapter we assume P 6= NP, or else the notion of “boundary”
becomes vacuous.

In a first attempt to answer the meta-question posed above, one might be tempted to
consider maximal Π-easy classes and minimal Π-hard classes. In fact, the first approach
immediately turns out to be meaningless: there are no maximal Π-easy classes. Indeed, every
Π-easy class X can be extended to another Π-easy class simply by adding to X a graph G /∈ X
together with all its induced subgraphs. Even the approach through minimal Π-hard classes
is not completely satisfactory: it works well for minor-closed graph classes but it generally
fails for hereditary graph classes. Recall that a class of graphs is minor-closed if it is closed
under vertex deletion, edge deletion and edge contraction (in particular, a minor-closed graph
class is hereditary). Robertson and Seymour [163] showed that the tree-width of graphs in
a minor-closed class X is bounded if and only if X excludes at least one planar graph. In
other words, in the family of minor-closed graph classes there is a unique minimal class of
unbounded tree-width. As we have seen in Chapter 1, many graph problems are solvable in
polynomial time for graphs of bounded tree-width and so the class of planar graphs can be
effectively considered as a boundary in the family of minor-closed graph classes.

On the other hand, for general hereditary classes, minimal Π-hard classes might not exist
at all. We have seen a first example of this behaviour in Chapter 4, where we showed that,
for any ` ≥ 2, GRAPH VCcon DIMENSION is NP-hard for planar bipartite (C4, . . . , C2`)-free
graphs with maximum degree 3. This clearly gives an infinite descending chain of Π-hard
classes. Many other examples of this kind are known for other problems like INDEPENDENT

SET, DOMINATING SET, HAMILTONIAN CYCLE [5, 7, 110]. In other situations, minimal Π-hard
classes indeed exist, as the following example due to Malyshev and Pardalos [138] shows.
Consider the TRAVELING SALESMAN PROBLEM: given a graphG, a weight function w : E(G)→
R and a number s, does there exist a Hamiltonian cycle C of G such that

∑
e∈E(C)w(e) ≤ s?

A simple reduction from HAMILTONIAN CYCLE shows that the problem is NP-hard for the
class of complete graphs. On the other hand, every proper hereditary subclass of the class
of complete graphs is finite and so the problem can be clearly solved in polynomial time for
such a subclass. This means that the class of complete graphs is a minimal hard class for the
TRAVELING SALESMAN PROBLEM.

The previous discussion suggests that the “limit” of an infinite “decreasing” sequence of
Π-hard classes should play a role in the search of a “boundary” between easy and hard classes.
Alekseev [5] formalized this intuition by introducing the notions of limit class and boundary
class for INDEPENDENT SET. In fact, these concepts are completely general and the following
definition is due to Alekseev et al. [8] (we remark that all the graph classes considered in this
chapter are hereditary):

Definition 5.1.1 (Alekseev et al. [8]). Let Π be an NP-hard graph problem and X a Π-hard
class of graphs. A class of graphs Y is a limit class for Π with respect to X ((Π, X)-limit,
in short) if there exists a sequence Y1 ⊇ Y2 ⊇ . . . of Π-hard subclasses of X such that⋂
n≥1 Yn = Y . The class Y is a limit class for Π (Π-limit) if there exists a Π-hard class X such

1 Recall that a class of graphs X is hereditary if it is closed under deletions of vertices. This is equivalent to the
fact that X can be defined by a set of forbidden induced subgraphs, i.e. X = Free(Z) for some set of graphs Z.
The minimal set Z with this property is unique and it is denoted by Forb(X).
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that Y is (Π, X)-limit.
An inclusion-wise minimal (Π, X)-limit class is a boundary class for Π with respect to X

((Π, X)-boundary, in short). The class Y is a boundary class for Π (Π-boundary) if there exists
a Π-hard class X such that Y is (Π, X)-boundary.

Note that in the definition of a limit class for Π with respect to X, the Π-hard subclasses of
X in a sequence Y1 ⊇ Y2 ⊇ . . . need not be distinct. In particular, every Π-hard subclass of X
is (Π, X)-limit. On the other hand, a Π-limit class need not be Π-hard. Indeed, consider again
GRAPH VCcon DIMENSION. Denoting by Y` the class of bipartite (C4, . . . , C2`)-free graphs,
we have that GRAPH VCcon DIMENSION is NP-hard for Y`, for any ` ≥ 2 (Theorem 4.3.5).
Moreover, Y` ⊇ Y`+1 and

⋂
n≥1 Yn is clearly the class of forests, for which the problem is

known to be solvable in linear time (Corollary 4.3.3).
Another important remark is the following:

Remark 5.1.2. A Π-limit subclass of a Π-hard class X is not necessarily (Π, X)-limit. Indeed,
let Π be HAMILTONIAN CYCLE. This problem is NP-hard for graphs with arbitrarily large girth
[13, 110] and so the class of forests is a limit class for Π. Moreover, Müller [141] showed
that the class X = Free(C3, C5, C6, . . . )

2 is Π-hard. The class of forests is clearly contained
in X but it is easy to see that it is not (Π, X)-limit. Indeed, suppose there exists a sequence
Y1 ⊇ Y2 ⊇ . . . of Π-hard subclasses of X such that

⋂
n≥1 Yn coincides with the class of forests.

Clearly, there exists a class Yi not containing C4. But then Yi is the class of forests, which is
Π-easy, a contradiction.

The existence of a boundary class with respect to every Π-hard class is guaranteed by the
following theorem:

Theorem 5.1.3 (Alekseev et al. [8]). A class X is Π-hard if and only if it contains a (Π, X)-
boundary class.

Note that the “if” direction in Theorem 5.1.3 is trivial: if Y ⊆ X is a (Π, X)-boundary
class, there exists a sequence Y1 ⊇ Y2 ⊇ . . . of Π-hard subclasses of X and so Π is NP-hard
for X as well.

Theorem 5.1.3 shows that a boundary class with respect to a Π-hard class represents
indeed a meaningful notion of “boundary” between Π-hard and Π-easy subclasses. Moreover,
Π-boundary classes can be used to characterize the finitely defined graph classes3 which are
Π-hard:

Theorem 5.1.4 (Alekseev et al. [8]). A finitely defined class is Π-hard if and only if it con-
tains a Π-boundary class.

Alekseev [5] studied INDEPENDENT SET and revealed the first boundary class for this prob-
lem: the class T of forests whose components have at most three leaves. This shows that
Theorem 5.1.4 is not true in general: the class of forests contains T but it is easy for the
problem (see Chapter 1). So far, this is the only known boundary class for INDEPENDENT SET

and in fact he conjectured no other boundary class exists. It is easy to see that this conjecture
is equivalent to the following statement: for each G ∈ T , INDEPENDENT SET is not NP-hard
2 This is the class of chordal bipartite graphs. 3 Recall that a hereditary class is finitely defined if the set of its
minimal forbidden induced subgraphs is finite.
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for Free(G). The conjecture seems to be very challenging since it is already a major open
problem to determine whether INDEPENDENT SET is NP-hard for Pk-free graphs with k > 6
(see [130]).

Other problems have been studied in the context of boundary classes. For example, Alek-
seev et al. [7] revealed three boundary classes for DOMINATING SET, one of them being T ,
and Malyshev [135] found a fourth boundary class. Alekseev et al. [8] further emphasized
the speacial role played by T and showed that, among others, it is boundary for INDEPENDENT

DOMINATING SET, INDUCED MATCHING and EDGE DOMINATING SET (see [8] for definitions).
On the other hand, T is not boundary for HAMILTONIAN CYCLE and Korpelainen et al. [110]
revealed two boundary classes for this problem. So far, the complete description of bound-
ary classes has been obtained only for a single problem, the so-called LIST EDGE-RANKING:
Malyshev [136] showed it admits exactly ten boundary classes. Note that some problems
may admit infinitely many boundary classes and it is known that there is a continuum set of
boundary classes for VERTEX k-COLOURING [110, 137].

In this chapter, we continue the study of boundary classes for NP-hard problems. In
Section 5.2, we provide the first boundary class for the closely related HAMILTONIAN CY-
CLE THROUGH SPECIFIED EDGE and HAMILTONIAN PATH. This class was in fact shown to be
boundary for HAMILTONIAN CYCLE [110]. In Section 5.3, we reveal the first boundary class
for FEEDBACK VERTEX SET: the class of forests whose components have at most four leaves
and no two vertices of degree three. Finally, in Sections 5.4 and 5.5 we make some progress
towards the determination of some boundary classes for two other problems involving non-
local properties: CONNECTED DOMINATING SET and CONNECTED VERTEX COVER.

We conclude this section with the proofs of Theorems 5.1.3 and 5.1.4 and some additional
observations. We also invite the reader to notice that the notions of limit class and boundary
class make sense for every partially ordered set (see [109]).

Lemma 5.1.5 (Alekseev et al. [8]). If Y is a (Π, X)-limit class and Y ⊆ Z ⊆ X, then Z is a
(Π, X)-limit class as well.

Proof. Let Y1 ⊇ Y2 ⊇ . . . be a sequence of Π-hard subclasses of X such that
⋂
n≥1 Yn = Y .

Clearly, the class Zn = Yn ∪ Z is Π-hard for every n. Moreover, we have X ⊇ Z1 ⊇ Z2 ⊇ . . .
and

⋂
n≥1 Zn = Z.

We have seen that, in general, a (Π, X)-limit class is not Π-hard. On the other hand, we
now show that this is the case if the limit class is defined by finitely many forbidden induced
subgraphs with respect to X4:

Lemma 5.1.6 (Alekseev et al. [8]). If Y is a (Π, X)-limit class which is defined by finitely
many forbidden induced subgraphs with respect to X, then it is Π-hard.

Proof. Suppose that Forb(Y ) \ Forb(X) = {G1, . . . , Gk}. Since Y is (Π, X)-limit, there exists
a sequence Y1 ⊇ Y2 ⊇ . . . of Π-hard subclasses of X such that

⋂
n≥1 Yn = Y . Moreover, there

exists an index n such that Yn is (G1, . . . , Gk)-free. But then Yi = Y , for each i ≥ n, and so Y
is Π-hard.

4 Recall that a subclass Y ⊆ X is defined by finitely many forbidden induced subgraphs with respect to X if
Forb(Y ) \ Forb(X) is a finite set.
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Lemma 5.1.7 (Alekseev et al. [8]). If Y1 ⊇ Y2 ⊇ . . . is a sequence of (Π, X)-limit classes,
then Y =

⋂
n≥1 Yn is a (Π, X)-limit class.

Proof. Let Forb(Y ) = {G1, G2, . . .} and, for each k, let Y (k) be the class Free(G1, . . . , Gk).
Clearly, for each k, there exists an index n such that Yn is (G1, . . . , Gk)-free and so Yn ⊆ Y (k).
By Lemma 5.1.5, we have that Y (k) is a (Π, X)-limit class and so, by Lemma 5.1.6, it is Π-
hard. On the other hand, Y (k) ⊆ Y (k+1) and

⋂
k Y

(k) = Y . Therefore, Y is a (Π, X)-limit
class.

We can finally conclude the proof Theorem 5.1.3. It remains to show that if Π is NP-hard
for the class X, then X contains a (Π, X)-boundary class.

Proof of Theorem 5.1.3. We may assume the graphs in X are indexed as X = {G1, G2, . . .}
and we recursively define a sequence Y1 ⊇ Y2 ⊇ . . . of subclasses of X as follows. We set first
Y1 = X. Then, if there exists an index j such that Gj ∈ Yn and Yn ∩ Free(Gj) is a (Π, X)-
limit class, we take a minimum such j and define Yn+1 = Yn ∩ Free(Gj). Otherwise, we set
Yn+1 = Yn.

We claim that the class Y =
⋂
n≥1 Yn is a (Π, X)-boundary class. By Lemma 5.1.7, we have

that Y is (Π, X)-limit. Suppose now, to the contrary, that there exists a (Π, X)-limit class Z
which is properly contained in Y . This means there exists a graph Gi ∈ X which belongs to Y
but not to Z and so Z ⊆ Y ∩Free(Gi) ⊆ Yn∩Free(Gi), for each n. Therefore, by Lemma 5.1.5,
we have that Yn ∩ Free(Gi) is a (Π, X)-limit class, for each n. Moreover, there exists an n
such that the index i is the minimum with the property that Yn ∩ Free(Gi) is a (Π, X)-limit
class. Therefore, Yn+1 = Yn ∩ Free(Gi) and Gi does not belong to any class Yk with k > n,
contradicting the fact that Gi ∈ Y .

We can actually prove the following stronger version of Theorem 5.1.3 which clearly im-
plies Theorem 5.1.4:

Theorem 5.1.8 (Alekseev et al. [8]). A subclass Y ⊆ X defined by finitely many forbidden
induced subgraphs with respect to X is Π-hard if and only if Y contains a (Π, X)-boundary class.

Proof. If Y contains a (Π, X)-boundary class, then Y is (Π, X)-limit (Lemma 5.1.5) and so it
is Π-hard (Lemma 5.1.6). Conversely, if Y is Π-hard, then it contains a (Π, Y )-boundary class
Z (Theorem 5.1.3), which is (Π, X)-limit. But then Z contains a (Π, X)-boundary class.

Proving the minimality of a certain limit class is in general not an easy task and cur-
rently there is no unified framework to address such a problem. Nevertheless, the following
sufficient condition turns out to be useful and it will be employed in all our proofs:

Lemma 5.1.9 (Alekseev and Malyshev [6]). A (Π, X)-limit class Y = Free(M) is (Π, X)-
boundary if for every G ∈ Y there exists a finite set of graphs A ⊆ M such that Free(A ∪ {G})
is a Π-easy class.

Proof. Suppose Y is not (Π, X)-boundary. This means there exists a (Π, X)-limit class Z ( Y
and let G be a graph in Y \ Z. By assumption, there exists a finite set A ⊆ M such that
Z ′ = Free(A ∪ {G}) is Π-easy. Moreover, since Z is (Π, X)-limit, there exists a sequence
Z1 ⊇ Z2 ⊇ . . . of Π-hard subclasses of X such that

⋂
n≥1 Zn = Z. But then, for each n,
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we have that Z ′n = Zn ∪ Z ′ is Π-hard. Moreover, for each k, we have that Z ′k ⊇ Z ′k+1 and⋂
n≥1 Z

′
n = Z ′. In other words, Z ′ is a Π-limit class as well. Since the set of forbidden induced

subgraphs for Z ′ = Free(A ∪ {G}) is finite, there exists a class Z ′n which is (A ∪ {G})-free.
Therefore, Z ′n is Π-easy, a contradiction.

5.2 Hamiltonian Cycle Through Specified Edge and Hamiltonian
Path

In this section, we provide the first boundary class for HAMILTONIAN CYCLE THROUGH SPEC-
IFIED EDGE and HAMILTONIAN PATH. We have seen that these problems are NP-hard for
subcubic graphs (Theorems 2.2.14 and 2.2.15) and in fact we determine a boundary class
with respect to the class of subcubic graphs. To this end, we have to introduce some notation.
For positive integers i, j and k, let Yi,j,k be the graph depicted in Figure 5.1, called a tribranch.
Moreover, let Yp = {Yi,j,k : i, j, k ≤ p} and Cp = {Ck : k ≤ p}. Finally, denote by Qp the class
of subcubic Yp ∪ Cp-free graphs such that each cubic vertex has a non-cubic neighbour.

1

2

i− 1

i

1

2

k − 1

k

1

2

j − 1
j

Figure 5.1: A tribranch Yi,j,k.

Korpelainen et al. [110] showed that the class Q =
⋂
p≥1Qp is a boundary class for

HAMILTONIAN CYCLE:

Theorem 5.2.1 (Korpelainen et al. [110]). For any p ≥ 1, HAMILTONIAN CYCLE is NP-
complete for graphs in Qp. Moreover, Q is a boundary class for HAMILTONIAN CYCLE.

Figure 5.2: A caterpillar with hairs of arbitrary length.

The classQ is clearly contained in the class of forests and in fact it coincides with the class
of graphs whose components are caterpillars with hairs of arbitrary length, where a caterpillar
with hairs of arbitrary length is a subcubic tree in which all cubic vertices belong to a single
path (see Figure 5.2):
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Lemma 5.2.2 (Korpelainen et al. [110]). A graph G belongs to Q if and only if each compo-
nent of G is a caterpillar with hairs of arbitrary length.

In the following, we adapt the reasoning of Korpelainen et al. [110] in order to show that
Q is a boundary class also for HAMILTONIAN CYCLE THROUGH SPECIFIED EDGE and HAMILTO-
NIAN PATH. Let us begin with the former:

HAMILTONIAN CYCLE THROUGH SPECIFIED EDGE

Instance: A graph G = (V,E) and e ∈ E.
Question: Does G contain a Hamiltonian cycle through e?

We first show that Q is a limit class:

Lemma 5.2.3. For any p ≥ 1, HAMILTONIAN CYCLE THROUGH SPECIFIED EDGE is NP-complete
for graphs in Qp.

Proof. We reduce from HAMILTONIAN CYCLE for graphs in Q2p+3, which is NP-complete by
Theorem 5.2.1. Given a graph G = (V,E) in Q2p+3, we construct a graph G′ as follows.
Clearly, we may assume G contains a cubic vertex v. But then v has a non-cubic neighbour v′

and we subdivide vv′ with a new vertex u. Finally, we set e = uv.
We claim that the resulting graph G′ belongs to Qp. The only not completely trivial

verification to make is that G′ is Yp-free. Note that G does not contain a tribranch in Yp, even
as a subgraph. Suppose now G′ contains an induced Yi,j,k with i, j, k ≤ p. By the previous
remark, u belongs to Yi,j,k. But then, by contracting an edge of Yi,j,k incident to u, we obtain
a tribranch in G which belongs to Yp, a contradiction.

Finally, G has a Hamiltonian cycle if and only if G′ has a Hamiltonian cycle through e.

Remark 5.2.4. The proof of Lemma 5.2.3 shows that HAMILTONIAN CYCLE THROUGH SPEC-
IFIED EDGE remains NP-hard for graphs in Qp even when e = uv is such that d(u) = 3 and
d(v) = 2. This fact will be used in the proof that HAMILTONIAN PATH is NP-hard for graphs in
Qp (Lemma 5.2.6).

We now show that Q is a minimal limit class. The idea is to use Lemma 5.1.9. More
precisely, we show that for every G ∈ Q there exists a constant p such that Free(M ∪ {G})
is an easy class for HAMILTONIAN CYCLE THROUGH SPECIFIED EDGE, where M is the set with
Qp = Forb(M). The applicability of Lemma 5.1.9 follows from the fact that Qp is finitely
defined. Indeed, the set of forbidden induced subgraphs for Qp contains finitely many cycles
and tribranches. Similarly, the conditions that every graph in Qp is subcubic and that every
cubic vertex has a non-cubic neighbour can be expressed by finitely many forbidden induced
subgraphs.

Theorem 5.2.5. Q is a boundary class for HAMILTONIAN CYCLE THROUGH SPECIFIED EDGE.

Proof. As remarked above, it is enough to show that for every G ∈ Q there exists a constant
p such that HAMILTONIAN CYCLE THROUGH SPECIFIED EDGE is solvable in polynomial time for
G-free graphs in Qp.

We say that an edge of a graph G is good if it belongs to all Hamiltonian cycles of G (if
any), whereas it is bad if it does not belong to any Hamiltonian cycle of G. Korpelainen et al.
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[110] showed that, for each G ∈ Q, there exists a constant p′ such that the following holds:
given a G-free graph G′ ∈ Qp′ , for any cubic vertex v ∈ V (G′), there is a polynomial-time
algorithm that labels at least two edges incident to v as good, or it returns as output that the
graph has no Hamiltonian cycle.

We claim it is enough to take the constant p′. In other words, we show that for every
G ∈ Q, HAMILTONIAN CYCLE THROUGH SPECIFIED EDGE is solvable in polynomial time for
G-free graphs in Qp′ . Therefore, consider an input of this problem consisting of a G-free
graph G′ in Qp′ and an edge e ∈ E(G′). Clearly, we may assume G′ has no vertices of degree
1, or else G′ has no Hamiltonian cycle. But then every vertex of G′ has degree 2 or 3 and we
can clearly label all the edges incident to vertices of degree 2 as good. Now, for each cubic
vertex, we simply run the algorithm mentioned above, thus obtaining a labelling of the edges
of G′. If e is labelled bad, then G′ has no Hamiltonian cycle through e. Therefore, suppose
e is labelled good. If there exists v ∈ V (G′) incident to three good edges, then G′ has no
Hamiltonian cycle. Otherwise, each vertex of G′ is incident to exactly two good edges and
these edges induce a collection of disjoint cycles. If the collection contains exactly one cycle,
then there exists a Hamiltonian cycle in G′ through e. On the other hand, if the collection
contains more than one cycle, then G′ contains no Hamiltonian cycle at all.

We now consider HAMILTONIAN PATH and show thatQ is a boundary class for this problem
as well. Denote by Rp the subclass of Qp consisting of the graphs G with δ(G) ≥ 2. The
following lemma implies that Q is a limit class for HAMILTONIAN PATH:

Lemma 5.2.6. For any p ≥ 1, HAMILTONIAN PATH is NP-complete for graphs in Rp.

Note that the reason for the apparently useless restriction toRp will appear in Lemma 5.3.6.

Proof. We reduce from HAMILTONIAN CYCLE THROUGH SPECIFIED EDGE for graphs in Q2p+3,
which is NP-complete by Lemma 5.2.3. Let G = (V,E) and uv ∈ E be an instance of this
problem, where G ∈ Q2p+3. Clearly, we may assume δ(G) ≥ 2 and, by Remark 5.2.4, we may
further assume that d(u) = 3 and d(v) = 2. We construct a graph G′ = (V ′, E′) as follows
(see Figure 5.3). Set first V ′ = V ∪ {a1, a2, a3, a4, b1, b2, b3, b4}, where each ai and bi is a new
vertex, and E′ = (E \ {uv})∪ {a1u, b1v, a1a2, a1a4, a2a3, a2a4, a3a4, b1b2, b1b4, b2b3, b2b4, b3b4}.
Finally, subdivide each edge in {a1u, b1v, a1a4, a2a3, a3a4, b1b4, b2b3, b3b4} with p new vertices
(thus belonging to V ′). Note that the cubic vertices in V ′ \ V are exactly the vertices in
{a1, a2, a4, b1, b2, b4}.

u v

u v

a1

a2 a4

a3

b1

b2 b4

b3

=⇒

Figure 5.3: Construction of the graph G′.
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Clearly, G′ is a subcubic Cp-free graph with δ(G′) ≥ 2. Moreover, it is easy to see that each
cubic vertex of G′ has a non-cubic neighbour.

Suppose now G′ contains an induced tribranch Yi,j,k with i, j, k ≤ p. Since G does not
contain a tribranch in Yp (even as a subgraph), we have that Yi,j,k is not contained in G− uv
and so it must contain at least one vertex in V ′ \ V . On the other hand, it is easy to see that
no vertex in V ′ \V can be a cubic vertex of Yi,j,k and so it must be that the unique vertex x in
NG′(u) \V is a 1-vertex of Yi,j,k and V (Yi,j,k)∩ (V ′ \V ) = {x}. Moreover, if v does not belong
to Yi,j,k, then G contains a subgraph in Yp (just substitute x by v), a contradiction. Therefore,
v belongs to Yi,j,k. But then the distance between u and v in G′ is at most 2p+ 1 and so, since
uv ∈ E, we have that G contains a cycle of length at most 2p+2, a contradiction. This implies
that G′ ∈ Rp.

Finally, we claim that G has a Hamiltonian cycle through uv if and only if G′ has a Hamil-
tonian path. Suppose first G′ has a Hamiltonian path P . It is easy to see that a1 is a 2-vertex
of P and so a vertex in the gadget attached to u is a 1-vertex of P . Similarly, a vertex in
the gadget attached to v is a 1-vertex of P . Therefore, there exists a Hamiltonian path in G
between u and v and so a Hamiltonian cycle through uv. Conversely, it is easy to see that if
G has a Hamiltonian cycle through uv, then G′ has a Hamiltonian path between a2 and b2.

We now show the minimality of Q. Our proof is based again on Lemma 5.1.9 and it is
inspired by the proof in [110] that Q is boundary for HAMILTONIAN CYCLE.

It is useful to consider the following special graphs in Q: for d ≥ 2, the graph Td is the
caterpillar consisting of a path of length 2d and 2d−1 consecutive hairs of lengths 1, 2, . . . , d−
1, d, d − 1, . . . , 2, 1 (the caterpillar in Figure 5.2 is in fact T3). Obviously, every graph in Q is
an induced subgraph of some Td:

Observation 5.2.7 (Korpelainen et al. [110]). Every graph in Q is an induced subgraph of
Td, for some d ≥ 2.

The idea is that for every G ∈ Q, we can carefully choose a constant p such that a G-free
graph in Qp is “locally” a graph in Q. This allows to implement a labelling procedure as in
the proof of Theorem 5.2.5. To determine the local structure, we make use of the following
elementary result whose proof can be found in [52]:

Lemma 5.2.8. If G is a graph of radius at most r and maximum degree at most k ≥ 3, then
|V (G)| < k

k−2(k − 1)r.

Theorem 5.2.9. Q is a boundary class for HAMILTONIAN PATH.

Proof. As remarked above, we show that for every G ∈ Q there exists a constant p such that
HAMILTONIAN PATH is solvable in polynomial time for G-free graphs in Qp. By Lemma 5.1.9,
this would conclude the proof.

Consider a graph G ∈ Q. By Observation 5.2.7, we have that G is an induced subgraph
of Td, for some d ≥ 2, and we define p = 3 · 2d. We claim we can decide in polynomial time
whether a Td-free graph in Qp contains a Hamiltonian Path. This would clearly imply the
assertion in the paragraph above, thus concluding the proof. Therefore, let G′ be a Td-free
graph in Qp. For each pair of vertices u and v of G′ and edges uu′ and vv′, we show that it is
possible to check in polynomial time whether there exists a Hamiltonian u, v-path containing
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uu′ and vv′. The conclusion would then follow by repeating this procedure O(|V (G′)|2) times.
Clearly, we may assume G′ contains a cubic vertex, or else the problem is trivial. More-

over, it is enough to prove our claim for graphs with no 1-vertex. Indeed, suppose G′ contains
a 1-vertex w and let P be a shortest path linking w to a cubic vertex w′. Clearly, any Hamil-
tonian path of G′ contains P as a subpath. Therefore, it is enough to check whether there
exists a Hamiltonian path in G′ − (V (P ) \ {w′}) having w′ as one end. By the proof of Theo-
rem 5.2.5, we may also assume that u and v are non-adjacent, or else a Hamiltonian u, v-path
is equivalent to a Hamiltonian cycle through uv and the constant p we take is the same as
the one in [110] and in Theorem 5.2.5 (note that we make this assumption just in order to
shorten the proof).

We say that an edge ofG′ is good if it belongs to all Hamiltonian u, v-paths ofG′ containing
uu′ and vv′ (if any), whereas it is bad if it does not belong to any Hamiltonian u, v-path
of G′ through uu′ and vv′ (clearly, uu′ and vv′ are good). We provide a polynomial-time
algorithm that either labels at least two edges incident to w as good, for each vertex w ∈
V (G′) \ {u, v}, or returns as output that the graph has no Hamiltonian u, v-path through
uu′ and vv′. More precisely, we address the vertices sequentially and, if during the labelling
process some edges are relabelled (i.e. a good edge becomes bad or vice versa), we have that
G′ does not contain any Hamiltonian u, v-path through uu′ and vv′. Suppose now we have
obtained such a labelling. If there exists w ∈ V (G′)\{u, v} incident to three good edges, then
G′ has no Hamiltonian u, v-path through uu′ and vv′. Otherwise, each vertex in V (G′)\{u, v}
is incident to exactly two good edges and these edges induce a path and possibly some cycles.
If there are no cycles, we have found a desired Hamiltonian path. Otherwise, no such path
exists.

Let us finally proceed with the description of the labelling algorithm. Clearly, uu′ and
vv′ are good and the same holds for the edges incident to a 2-vertex w ∈ V (G′) \ {u, v}.
Moreover, the other edges incident to u and v are bad. Therefore, it remains to consider the
cubic vertices in V (G′) \ {u, v}. Let w be such a vertex and let Hw be the subgraph of G′

induced by the set of vertices at distance at most d from w. Since Hw belongs to Qp, it is a
subcubic Yp ∪ Cp-free graph such that each cubic vertex has a non-cubic neighbour. On the
other hand, since Hw is subcubic, we have that |V (Hw)| < 3 · 2d = p (Lemma 5.2.8) and so
Hw is Yp ∪ Cp-free for any k > p. Therefore, Hw belongs to Q and, being connected, it must
be a caterpillar with hairs of arbitrary length. Moreover, each leaf of Hw is at distance exactly
d from w, or else it would be a 1-vertex of G′. Consider now a path P of Hw connecting
two leaves and containing all cubic vertices of Hw. Since G′ is Td-free, we have that P
contains 2-vertices, and let wi be a 2-vertex of P having shortest distance from w. Moreover,
let w0w1 · · ·wi be the subpath between wi and w0 = w. Each vertex wj with j 6= i has a
neighbour w′j not on the path and which is a 2-vertex different from wi. We denote by W the
set {w0, . . . , wi−1, wi, w

′
0, . . . , w

′
i−1} and we distinguish several cases according to the size of

the intersection W ∩ {u, v}. In each case, we are going to argue that there exists a subpath
w0w1 · · ·wj whose edges are labelled alternately good and bad. This suffices to label two
edges incident to w = w0 as good. Indeed, if w0w1 is bad, the other two edges incident to w0

are good. On the other hand, suppose w0w1 is good and let w′′0 ∈ N(w0) \ {w1, w
′
0}. If w′0 is

either u or v (say without loss of generality w′0 = u) and u′ 6= w0, we have that w0w
′′
0 is good.

Otherwise, the remaining good edge must be w0w
′
0.

Suppose first W ∩ {u, v} = ∅. This means that the edges incident to a 2-vertex in W
are both labelled good. Since wiwi−1 and wi−1w

′
i−1 are both good, wi−1wi−2 is bad. More-

over, since each cubic vertex in W has at least two good incident edges, wi−2wi−3 is good.
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Therefore, the edges on the subpath w0w1 · · ·wi are labelled alternately good and bad (while
traversing the path from wi to w0).

Suppose now W contains exactly one vertex from {u, v}, say without loss of generality
u ∈ W . If u is a cubic vertex then, by assumption, we have that u = wj with j > 0 and
u′ = w′j (otherwise v = w′j). Moreover, for each 2-vertex in W , its incident edges are labelled
good. But then wjwj−1 is bad and, similarly to the paragraph above, the edges on the subpath
w0w1 · · ·wj are labelled alternately bad and good. Suppose now u is a 2-vertex in W . If
u = wi and u′ is the neighbour of u different from wi−1, the edges on the subpath w0w1 · · ·wi
are labelled alternately bad and good. If u = wi and u′ = wi−1, the edges on the subpath
w0w1 · · ·wi are labelled alternately good and bad. If u = w′j and u′ = wj , for some 0 ≤
j ≤ i − 1, we have again that the edges on the subpath w0w1 · · ·wi are labelled alternately
good and bad. Finally, if u = w′j and u′ is the neighbour of u different from wj , for some
0 ≤ j ≤ i− 1, the edges on the subpath w0w1 · · ·wj are labelled alternately good and bad.

Finally, suppose that {u, v} ⊆ W . Consider the smallest index j < i such that either wj
or w′j is a vertex in {u, v}. Note that, since uv /∈ E(G′), it cannot be that {u, v} ⊆ {wj , w′j}
and we assume, without loss of generality, that u ∈ {wj , w′j}. If u = wj , then u′ = w′j and,
by minimality, each 2-vertex w′k with k < j is incident to two good edges. Therefore, wjwj−1

is bad and the edges on the subpath w0w1 · · ·wj are labelled alternately bad and good. If
u = w′j and u′ is the neighbour of w′j different from wj , then wj 6= v and the edges wjwj−1

and wjwj+1 are both good. Moreover, by minimality, each 2-vertex w′k with k < j is incident
to two good edges and so the edges on the subpath w0w1 · · ·wj are labelled alternately good
and bad. It remains to consider the case u = w′j and u′ = wj . If v = wk and v′ = w′k,
for some j < k < i, it is easy to see that the edges on the subpath w0w1 · · ·wk are labelled
alternately bad and good. If v = w′k and v′ = wk, for some j < k < i, the edges on the
subpath w0w1 · · ·wi are labelled alternately good and bad. If v = w′k and v′ is the neighbour
of w′k different from wk, for j < k < i, the edges on the subpath w0w1 · · ·wk are labelled
alternately good and bad. Finally, in the case v = wi, the edges on the subpath w0w1 · · ·wi
are labelled alternately good and bad, if v′ = wi−1, or bad and good otherwise.

This concludes the proof.

We conclude this section with some observations on Hamiltonian cycles and paths in pla-
nar bipartite graphs. It is well-known that HAMILTONIAN CYCLE and HAMILTONIAN PATH are
NP-hard even when restricted to planar graphs [75] and so they admit a boundary class with
respect to planar graphs. In fact, Arkin et al. [13] showed that HAMILTONIAN CYCLE remains
NP-hard even for subcubic planar graphs with arbitrarily large girth. We now strengthen this
result by adding a bipartiteness constraint:

Theorem 5.2.10. For any ` ≥ 2, HAMILTONIAN CYCLE is NP-complete even for planar bipartite
(C4, . . . , C2`)-free graphs with maximum degree 3.

It should be noticed that in the reduction used by Korpelainen et al. [110] to prove The-
orem 5.2.1, planarity is in general not preserved. For the proof of Theorem 5.2.10, we need
to introduce a useful operation defined on graphs containing cubic vertices. For an integer
k ≥ 0, the operation T k is defined as follows: the graph T k(G) is obtained by replacing an
arbitrary cubic vertex u of G with the gadget depicted in Figure 5.4. Note that, for 0 ≤ i ≤ 2,
there are k unmarked 2-vertices between ui and u′i+1 (indices modulo 3).



116 Chapter 5. Boundary Classes For NP-Hard Graph Problems
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Figure 5.4: Application of T k for k = 3: the 3-vertex u is replaced by a gadget containing 3k + 7 vertices.

Lemma 5.2.11. If G is a graph containing a 3-vertex, then G is Hamiltonian if and only if
T k(G) is. Moreover, if G is subcubic, planar and bipartite then, for k even, T k(G) is subcubic,
planar and bipartite as well.

Proof. Any Hamiltonian cycle of G can be clearly extended to a Hamiltonian cycle of T k(G).
Conversely, suppose T k(G) contains a Hamiltonian cycle C. It is easy to see that if C contains
the edges u′0z and u′1z, then it contains the edges 1 and 2 but not the edge 0. The other
cases are symmetric. Therefore, by contracting the gadget to a single vertex, we obtain a
Hamiltonian cycle of G.

The second statement is immediate.

Proof of Theorem 5.2.10. We reduce from HAMILTONIAN CYCLE, known to be NP-complete
even for planar cubic bipartite graphs [4]. Given a planar cubic bipartite graph G = (V,E),
we construct a graph G′ as follows. We first apply T 2` to each v ∈ V . Note that, for k ≤ 2`, no
Ck is created inside any gadget and the length of a cycle passing through v ∈ V increases by
at least 4. Therefore, applying T 2` sufficiently many times, we get rid of the induced cycles Ci
with i ≤ 2` and so, by Lemma 5.2.11, the resulting G′ is a planar bipartite (C4, . . . , C2`)-free
graph with maximum degree 3. Finally, again by Lemma 5.2.11, G contains a Hamiltonian
cycle if and only if G′ does.

Theorem 5.2.10 shows that the class of subcubic forests is limit for HAMILTONIAN CYCLE

with respect to planar bipartite graphs. On the other hand, we suspect this class is not minimal
and a natural candidate for minimality would be the class Q5. We leave as an open problem
to determine if this is the case.

In the following, we show that a result similar to Theorem 5.2.10 holds for HAMILTONIAN

CYCLE THROUGH SPECIFIED EDGE and HAMILTONIAN PATH.

Theorem 5.2.12. For any ` ≥ 2, HAMILTONIAN CYCLE THROUGH SPECIFIED EDGE is NP-
complete even for planar bipartite (C4, . . . , C2`)-free graphs with maximum degree 3.

Proof. We reduce from HAMILTONIAN CYCLE for planar bipartite (C4, . . . , C2`)-free graphs
with maximum degree 3, which is NP-complete by Theorem 5.2.10. Let G be an instance of
this problem. Clearly, we may assume G has a vertex u of degree 3. By applying T 2` to u, we
obtain a planar bipartite (C4, . . . , C2`)-free graph G′ with maximum degree 3. Let v be the
neighbour of u1 in the gadget introduced by T 2` and such that d(v) = 2. We set e = u1v.

5 Note that Q is not a priori a limit class with respect to planar bipartite graphs (cfr. Remark 5.1.2).
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It is easy to see that G′ contains a Hamiltonian cycle through e if and only if G contains a
Hamiltonian cycle.

Theorem 5.2.13. For any ` ≥ 2, HAMILTONIAN PATH is NP-complete even for planar bipartite
(C4, . . . , C2`)-free graphs with maximum degree 3 and exactly two vertices of degree 1.

Proof. LetG = (V,E) and uv ∈ E be an instance of HAMILTONIAN CYCLE THROUGH SPECIFIED

EDGE, where G is a planar bipartite (C4, . . . , C2`)-free graph with maximum degree 3. Clearly,
we may assume G has no vertices of degree 1. Our reduction constructs a graph G′ = (V ′, E′)
as follows. Let V ′ = V ∪ {a, b}, where a, b are new vertices, and E′ = (E \ {uv}) ∪ {au, bv}.
Clearly, G′ is a planar bipartite (C4, . . . , C2`)-free graph with maximum degree 3 and where a
and b are the only vertices of degree 1.

It is easy to see that G has a Hamiltonian cycle through uv if and only if G′ has a Hamil-
tonian path (between a and b).

Theorem 5.2.13 will be used in Section 5.4 in the search of a boundary class for CON-
NECTED DOMINATING SET.

5.3 Feedback Vertex Set

In this section, we provide the first boundary class for FEEDBACK VERTEX SET. Ueno et al.
[180] showed that FEEDBACK VERTEX SET and the related CONNECTED VERTEX COVER can be
solved in polynomial time for subcubic graphs by a reduction to a matroid matching problem.
On the other hand, FEEDBACK VERTEX SET is NP-hard for planar graphs with maximum degree
at most 4, as first shown by Speckenmeyer [175] (see Theorem 2.2.16 for a strengthening),
and so it admits a boundary class with respect to the class of planar graphs with maximum
degree at most 4. We begin by showing that the class of forests whose components have at
most four leaves and no two vertices of degree three is in fact a limit class.

For k ≥ 1, we denote by Sk the class of planar bipartite (C4, . . . , C2k, H1, . . . ,Hk)-free
graphs with maximum degree at most 4 (see Figure 5.5).

. . .
1 i

Hi

Figure 5.5: The graph Hi.

Theorem 5.3.1. For any k ≥ 1, FEEDBACK VERTEX SET is NP-complete for graphs in Sk.

Proof. We reduce from FEEDBACK VERTEX SET for planar graphs with maximum degree at
most 4, which is NP-complete by Theorem 2.2.16. Given a planar graph G with maximum
degree at most 4, we construct a graph G′ by subdividing each edge of G with 2k + 1 new
vertices. It is easy to see that G′ ∈ Sk and τc(G) = τc(G

′).

We denote by S the class of forests whose components have at most four leaves and no
two vertices of degree three. Each graph in S has components of the form Si,j,k,`, for some
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non-negative integers i, j, k, ` (see Figure 5.6). It is not difficult to see that
⋂
k≥1 Sk = S and

so S is a limit class for FEEDBACK VERTEX SET with respect to the class of planar bipartite
graphs with maximum degree at most 4.

1
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k
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`

Figure 5.6: The graph Si,j,k,`.

In order to show the minimality of S, we first prove that FEEDBACK VERTEX SET can be
solved in polynomial time for graphs with maximum degree at most 4 and bounded number
of 4-vertices. This result follows from the fact that even the weighted version of FEEDBACK

VERTEX SET can be solved in polynomial time for cubic graphs which, in turn, is an easy corol-
lary of a deep result on the weighted matroid matching problem recently obtained by Iwata
[99] and Pap [154]. Therefore, let us begin by recalling the matroid machinery introduced
in Section 3.4.1. Note that in the following we allow graphs to contain loops and multiple
edges, unless otherwise stated.

A 2-polymatroid is a pair P = (S, f), where S is a finite set and f is a function f : 2S → Z
satisfying the following properties:

(P1) f(∅) = 0;

(P2) f(X) ≤ f(Y ), for any X ⊆ Y ⊆ S;

(P3) f(X ∪ Y ) + f(X ∩ Y ) ≤ f(X) + f(Y ), for any X,Y ⊆ S;

(P4) f({x}) ≤ 2, for any x ∈ S.

In Section 3.4.1, we showed that if G is a cubic graph, the function f : 2V (G) → Z defined by
f(X) = µ(G)− µ(G−X) gives a 2-polymatroid P (G) = (V (G), f). The connection between
polymatroids and feedback vertex sets was then revealed in the following:

Theorem 3.4.6 (Ueno et al. [180]). Let G be a cubic graph. A subset T ⊆ V (G) is a feedback
vertex set of G if and only if it is a spanning set of the 2-polymatroid P (G). Moreover, I ⊆ V (G)
is a nonseparating independent set of G if and only if it is a matching of P (G).

Recall that a subset X ⊆ S is a matching of P = (S, f) if f(X) = 2|X| and it is a span-
ning set if f(X) = f(S). Lovász [131] provided a polynomial-time algorithm that finds a
maximum matching of a special class of 2-polymatroids, the so-called linearly represented
2-polymatroids (see also [71, 132, 151]). A 2-polymatroid (S, f) is linearly representable
(over a field F) if there exists a matrix A = (Ae)e∈S ∈ Fd×2S obtained by concatenating
|S| matrices Ae ∈ Fd×2 and such that f(X) = rank A(X), for any X ⊆ S, where d is a
positive integer and A(X) = (Ae)e∈X denotes the submatrix of A obtained by selecting the
corresponding columns. In view of Theorem 1.0.9, Lovász’s result implies we can find in
polynomial time a minimum spanning set of a linearly represented 2-polymatroid. Moreover,
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Ueno et al. [180] showed that the 2-polymatroid P (G) is linearly representable and that a lin-
ear representation can be obtained in polynomial time. Therefore, the mentioned results and
Theorem 3.4.6 imply we can find in polynomial time a maximum nonseparating independent
set and a minimum feedback vertex set of any cubic graph. Note that the same conclusion
holds for a minimum connected vertex cover, since the complement of a nonseparating inde-
pendent set of a connected graph is a connected vertex cover. Moreover, applying standard
cleaning procedures (see Theorem 5.3.4 for an example), it is easy to see that these results
hold for subcubic graphs.

In a recent breakthrough, Iwata [98, 99] and Pap [154] showed, independently, that even
the following weighted version of the matroid matching problem can be solved in polynomial
time:

WEIGHTED MATROID MATCHING

Instance: A linearly represented 2-polymatroid on S and a function w : S → R.
Task: Find a matching X ⊆ S with maximum w(X) =

∑
x∈X w(x).

We now highlight the interesting consequences that this result has for the weighted ver-
sions of FEEDBACK VERTEX SET and CONNECTED VERTEX COVER. Indeed, consider a 2-
polymatroid (S, f) and its 2-dual (S, f∗), where f∗ : 2S → Z is defined by f∗(X) = 2|X| +
f(S \ X) − f(S) (see, e.g., [153]). Clearly, X is a matching of (S, f∗) if and only if S \ X
is a spanning set of (S, f) and so the problem of finding a minimum weight spanning set for
(S, f) is equivalent to WEIGHTED MATROID MATCHING for the 2-dual (S, f∗). Moreover, given
a linear representation of (S, f), it is not difficult to find a linear representation of (S, f∗) in
polynomial time. Therefore, by Theorem 3.4.6, the following holds:

Theorem 5.3.2. The problems of finding a minimum-weight feedback vertex and a minimum-
weight connected vertex cover of a cubic graph can be solved in polynomial time.

Using Theorem 5.3.2, we can show that FEEDBACK VERTEX SET is solvable in polynomial
time for graphs with maximum degree at most 4 and bounded number of 4-vertices. Since
we want to reduce this problem to the cubic case, we first introduce the following operation.

Let x ∈ V (G) be a 4-vertex of a graph G (as already remarked, G may contain loops
and multiple edges). A vertex stretching with respect to x is the operation replacing x with
two new vertices x1 and x2 as depicted in Figure 5.7. Note that there is some freedom
in determining the neighbours of x1 and x2. A vertex stretching with respect to x has the
following fundamental properties:

• It does not alter the cycles of G, except possibly increasing the length of a cycle through
x by 1;

• It does not modify the degrees of the vertices adjacent to x and it gives d(x1) = d(x2) =
3.

The following is an immediate but useful observation:

Lemma 5.3.3. Let x ∈ V (G) be a 4-vertex of G and let G′ be the graph obtained from G by a
vertex stretching with respect to x. We have that τc(G − x) = τc(G

′ − {x1, x2}). Moreover, G
has a feedback vertex set avoiding x if and only if G′ has a feedback vertex set avoiding {x1, x2}
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and the size of a minimum feedback vertex set of G avoiding x is the same as that of a minimum
feedback vertex set of G′ avoiding {x1, x2}.

=⇒ =⇒

=⇒ =⇒

=⇒ =⇒ =⇒x
x1 x2

x
x1

x
x1

x1x1

x1 x1
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x2

x2
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x x

x x x x1 x2
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x2

Figure 5.7: Vertex stretching.

We can finally prove the following:

Theorem 5.3.4. FEEDBACK VERTEX SET can be solved in polynomial time for graphs with max-
imum degree at most 4 and bounded number of 4-vertices.

Proof. Let G be a graph with ∆(G) ≤ 4 and |d4(G)| ≤ c, for some constant c. The following
observations are immediate: if v is a 1-vertex of G, then τc(G) = τc(G−v); if v is a 2-vertex of
G which is the endpoint of a loop, then τc(G) = τc(G− v) + 1; if v is a 2-vertex of G adjacent
to u and u′ (note that we might have u = u′) then, denoting by H the graph obtained from
G by deleting v and adding the edge uu′, we have τc(G) = τc(H). Therefore, we can reduce
FEEDBACK VERTEX SET for G to the same problem for the graph G′ obtained by the following
cleaning procedure: if v is a 1-vertex or a 2-vertex which is the endpoint of a loop, we delete
v; if v is a 2-vertex adjacent to u and u′ (possibly u = u′), we delete v from G and add the
edge uu′. It is easy to see that the graph G′ obtained by applying these operations as long as
possible either contains only vertices of degree 3 or 4, or it is empty.

We now proceed by a brute force argument: for each subset S ⊆ d4(G′), we find a mini-
mum feedback vertex set T of G′ subject to T ∩ d4(G′) = S (if any). This is done as follows.
We fix S ⊆ d4(G′) and we apply a vertex stretching to each 4-vertex of G′ in order to obtain
a cubic graph G′′. Then we define a weight function w : V (G′′) → R as follows: w(x) = 0, if
x is the result of a vertex stretching with respect to a vertex in S; w(x) = |V (G′′)|+ 1, if x is
the result of a vertex stretching with respect to a vertex in d4(G′) \ S; w(x) = 1 otherwise.

By Theorem 5.3.2, we can find in polynomial time a minimum-weight feedback vertex set
TS of (G′′, w). Note that, without loss of generality, we may assume that every zero-weight
vertex belongs to TS . If w(TS) > |V (G′′)| then, by Lemma 5.3.3, there exists no feedback
vertex set T of G′ such that T ∩ d4(G′) ⊆ S. Otherwise, we remove from TS the vertices
which are the result of a vertex stretching with respect to a 4-vertex v (which must belong
to S) and we add v to TS , in order to obtain a set T ′S . Clearly, T ′S is a minimum feedback
vertex set of G′ subject to T ′S ∩ d4(G′) = S. We thus build a vector indexed by the at most 2c

subsets S of d4(G′) and we return the minimum value of |T ′S |. Correctness and polynomiality
are evident.
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We now have all the machinery to show that S is a boundary class for FEEDBACK VERTEX

SET. Our proof relies once again on Lemma 5.1.9. Note that, in the following, all considered
graphs are simple, i.e. loops and multiple edges are not allowed anymore.

Theorem 5.3.5. S is a boundary class for FEEDBACK VERTEX SET.

Proof. Let S ′p denote the class of (C3, . . . , Cp, H1, . . . ,Hp)-free graphs with maximum degree
4. In view of Lemma 5.1.9, it is enough to show that, for each H ∈ S, there exists a constant
p such that FEEDBACK VERTEX SET is solvable in polynomial time for H-free graphs in S ′p.
Therefore, consider H ∈ S and let c be the number of its components. Since each component
of H is of the form Si,j,k,`, for some non-negative integers i, j, k and `, there exists a non-
negative integer d such that H is an induced subgraph of cSd,d,d,d. We define p = 2 ·3d and we
claim that FEEDBACK VERTEX SET can be solved in polynomial time for cSd,d,d,d-free graphs in
S ′p. Lemma 5.1.9 would then imply that S is a boundary class.

Let G be a cSd,d,d,d-free graph in S ′p and consider a 4-vertex v ∈ V (G) (if G is subcu-
bic, we know the problem is solvable in polynomial time). Let Gv be the subgraph of G
induced by the set of vertices at distance at most d from v. Since Gv belongs to S ′p, it is a
(C3, . . . , Cp, H1, . . . ,Hp)-free graph with maximum degree 4. Moreover, since each vertex of
Gv has degree at most 4, we have that |V (Gv)| < 2 · 3d = p (Lemma 5.2.8) and so Gv is
(Ck, Hk)-free for any k > p. Therefore, Gv belongs to S and, being connected, it must be of
the form Si1,i2,i3,i4 , for some non-negative integers i1, i2, i3, i4 ≤ d. Suppose now some ij is
strictly less than d and let vij be the leaf of Si1,i2,i3,i4 at distance ij from v. Clearly, no cycle
of G contains a vertex belonging to the unique v, vij -path P in Si1,i2,i3,i4 and different from
v. Therefore, we may delete V (P ) \ {v} from G. Repeating this operation for each 4-vertex
v ∈ V (G), we obtain a graph G′ with maximum degree at most 4. This graph is such that
τc(G) = τc(G

′) and, for each 4-vertex v ∈ V (G′), the induced subgraph Gv is isomorphic to
Sd,d,d,d.

We now claim that G′ has a bounded number of 4-vertices. In view of Theorem 5.3.4,
this would conclude the proof. Let F ⊆ d4(G′) be a subset of maximum size such that
the corresponding induced copies of Sd,d,d,d (for each v ∈ F , the induced subgraph Gv is
isomorphic to Sd,d,d,d) are pairwise vertex-disjoint and denote by F ′ this corresponding set.
Note that no two subgraphs in F ′ are connected by an edge, or else a copy of H2d+1 would
arise in G′ ∈ S ′

2·3d . Therefore, since G′ is cSd,d,d,d-free, we have |F | < c. Moreover, we claim
that |d4(G′)| ≤ 17|F |. By definition, for each v ∈ d4(G′) \ F , we have that Gv intersects
a graph in F ′. It is therefore enough to show that each branch of Sd,d,d,d can intersect at
most four other copies of Sd,d,d,d, where a branch is the unique path between a leaf and the
4-vertex. To this end, let S be a copy of Sd,d,d,d with 4-vertex v and let P be a v, vi-branch. The
following are easy observations. If v belongs to another copy S′ of Sd,d,d,d, then V (P ) ⊆ V (S′)
and vi is the 4-vertex of S′, and so P intersects at most four other copies of Sd,d,d,d. If v does
not belong to another copy of Sd,d,d,d but an inner vertex of P does, then P intersects at most
one other copy of Sd,d,d,d. Finally, if vi is the only vertex of P which belongs to another copy
of Sd,d,d,d, then P intersects at most three other copies of Sd,d,d,d.

We have seen in Theorem 2.2.16 that FEEDBACK VERTEX SET is NP-hard for line graphs of
subcubic triangle-free graphs and so it admits a boundary class with respect to this subclass
of line graphs. In the rest of this section, we make some progress towards the determination
of such a boundary class.



122 Chapter 5. Boundary Classes For NP-Hard Graph Problems

Recall that Qp is the class of subcubic Yp ∪ Cp-free graphs such that each cubic vertex has
a non-cubic neighbour and Rp is the subclass of Qp consisting of the graphs G with δ(G) ≥ 2
(see Section 5.2). By Lemma 5.2.6, HAMILTONIAN PATH is NP-complete for graphs in Rp, for
any p ≥ 1, and so it is clearly NP-complete for triangle-free graphs in Rp.

Lemma 5.3.6. For any p ≥ 1, FEEDBACK VERTEX SET is NP-complete for line graphs of
triangle-free graphs in Rp.

Proof. We reduce from HAMILTONIAN PATH for triangle-free graphs in Rp. Let G = (V,E) be
an instance of this problem. In particular, G is a subcubic triangle-free graph with δ(G) ≥ 2.
Consider now its line graph G′ = L(G). By Lemma 2.2.13, we have that τc(G′) ≤ |d3(G)|

2 + 1
if and only if G contains a Hamiltonian path. The conclusion immediately follows.

Denoting by L(Q) the class {L(G) : G ∈ Q}, Lemma 5.3.6 implies the following:

Corollary 5.3.7. L(Q) is a limit class for FEEDBACK VERTEX SET.

We suspect that L(Q) is indeed a minimal limit class and we leave this verification as an
open problem.

5.4 Connected Dominating Set

In this section, we consider CONNECTED DOMINATING SET and we show that the class of
subcubic forests is a limit class for this problem. Alekseev et al. [7] showed that the class T of
forests whose components have at most three leaves is boundary for the related DOMINATING

SET. Clearly, T is contained in the class of subcubic forests but we provide some evidence for
the fact that it may not be boundary for CONNECTED DOMINATING SET.

Douglas [53] showed that the following variant of CONNECTED DOMINATING SET is NP-
hard even for subcubic planar graphs:

( |V |2 − 1)-CONNECTED DOMINATING SET

Instance: A graph G = (V,E).
Question: Does γc(G) ≤ |V |2 − 1 hold?

In particular, CONNECTED DOMINATING SET is NP-hard for subcubic planar graphs and in
the following we show that the same holds for the class of subcubic planar bipartite graphs
with arbitrarily large girth. This would clearly imply that the class of subcubic forests is a
limit class for CONNECTED DOMINATING SET.

Recall that, for any graph G, we have γc(G) = |V (G)| − `(G)6. Moreover, it is easy to
see that for any subcubic graph G, we have `(G) ≤ |V (G)|

2 + 1, with equality if and only if
G contains a {1, 3}-spanning tree, i.e. a spanning tree with no vertices of degree 2. There-
fore, ( |V |2 − 1)-CONNECTED DOMINATING SET restricted to subcubic graphs is polynomially
equivalent to the following problem:

6 `(G) denotes the maximum number of leaves in a spanning tree of G.
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{1, 3}-SPANNING TREE

Instance: A graph G = (V,E).
Question: Does there exist a spanning tree T of G such that dT (v) is either 1 or

3, for any v ∈ V ?

In fact, Douglas [53] first showed that {1, 3}-SPANNING TREE is NP-hard for subcubic
planar graphs and then used the equivalence above to deduce that the same holds for ( |V |2 −
1)-CONNECTED DOMINATING SET. In the following, we take the same path and show that
{1, 3}-SPANNING TREE is NP-hard even for the class of subcubic planar bipartite graphs with
arbitrarily large girth:

Theorem 5.4.1. For any ` ≥ 2, {1, 3}-SPANNING TREE is NP-complete even for planar bipartite
(C4, . . . , C2`)-free graphs with maximum degree 3.

Proof. We reduce from HAMILTONIAN PATH for planar bipartite (C4, . . . , C2`)-free graphs with
maximum degree 3 and exactly two vertices of degree 1, which is NP-complete by Theo-
rem 5.2.13. Given such a graph G = (V,E), our reduction constructs a graph G′ = (V ′, E′) as
follows. We replace each 3-vertex u of G by the gadget depicted in Figure 5.8 with k = 2`+1.
We proceed similarly for any 2-vertex u of G (in this case, u3 will be a 2-vertex in G′). Note
that there is some freedom on the way the edges incident to u are attached to the gadget. It
is easy to see that G′ is a planar bipartite (C4, . . . , C2`)-free graph with maximum degree 3.

1
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x
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x2 b1
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Figure 5.8: Construction of the graph G′: The vertex u is replaced by a gadget containing 2(2` + 1) + 2 · 2` + 6
vertices.

Let v1 and v2 be the vertices of degree 1 in G (and so in G′). We claim that G has a
Hamiltonian path (between v1 and v2) if and only if there exists a spanning tree T of G′ such
that dT (v) is either 1 or 3, for any v ∈ V ′.

Suppose first G contains a Hamiltonian path P between v1 and v2. Each u ∈ V \ {v1, v2}
is incident to exactly two edges in E(P ). We select the corresponding edges in G′ and, for
each gadget, we select the bold edges as described in Figure 5.9 (if the gadget substitutes a
2-vertex of G, the construction is similar). In this way, we obtain a spanning tree T of G′ such
that dT (v) is either 1 or 3, for any v ∈ V ′.

Conversely, suppose there exists a spanning tree T of G′ such that dT (v) is either 1 or 3,
for any v ∈ V ′, and consider the gadget replacing a 3-vertex u ∈ V (see Figure 5.8). Clearly,
the edges incident to the 1-vertices ai’s and bi’s are all in E(T ). Moreover, by the degree
constraint and the connectedness of T , all the edges incident to the 3-neighbours of the ai’s
and bi’s are in E(T ). We now claim that |E(T ) ∩ {1, 2, 3}| = 2. Since T is a spanning tree,
|E(T ) ∩ {1, 2, 3}| ≥ 1. Suppose first {1, 2, 3} ⊆ E(T ). By the degree constraint, we have
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Figure 5.9: Construction of the spanning tree T . If P passes through the edges 1 and 2, we select the bold edges
in (a). Similarly for the other two cases illustrated in (b) and (c).

that {u1x1, u2x2, u3x1} ⊆ E(T ) and so T contains a cycle, a contradiction. Suppose now
|E(T ) ∩ {1, 2, 3}| = 1 and, without loss of generality, E(T ) ∩ {1, 2, 3} = {1} (the other two
cases are treated similarly). By the degree constraint, we have u1x1 ∈ E(T ), u2x2 /∈ E(T ) and
u3x1 /∈ E(T ), a contradiction to the fact that at least one of xx1 and xx2 is in E(T ). Therefore,
we have |E(T ) ∩ {1, 2, 3}| = 2. If xx1 ∈ E(T ), then it must be E(T ) ∩ {1, 2, 3} = {1, 3} (see
Figure 5.9(b)). Otherwise, i.e. if xx2 ∈ E(T ), we either have E(T ) ∩ {1, 2, 3} = {1, 2} or
E(T ) ∩ {1, 2, 3} = {2, 3} (see Figures 5.9(a) and 5.9(c)). A similar reasoning applies to the
gadget replacing a 2-vertex. But then, by contracting each gadget in G′ to a single vertex, we
obtain a connected spanning subgraph P of G such that, for each vertex of degree at least 2,
exactly two of its incident edges are in E(P ). This implies that P is a Hamiltonian v1, v2-path
in G.

We have seen that a subcubic graph G contains a {1, 3}-spanning tree if and only if
γc(G) ≤ |V (G)|

2 −1. Therefore, Theorem 5.4.1 has the following two immediate consequences:

Corollary 5.4.2. For any ` ≥ 2, ( |V |2 − 1)-CONNECTED DOMINATING SET is NP-complete even
for planar bipartite (C4, . . . , C2`)-free graphs with maximum degree 3.

Corollary 5.4.3. The class of subcubic forests is a limit class for ( |V |2 − 1)-CONNECTED DOMI-
NATING SET and CONNECTED DOMINATING SET.

We now show that the class T of forests whose components have at most three leaves
(which is boundary for DOMINATING SET) is not boundary for ( |V |2 − 1)-CONNECTED DOMI-
NATING SET. Clearly, T does not contain the graph H1 depicted in Figure 5.5.

Lemma 5.4.4. If X is a class of subcubic forests which is boundary for ( |V |2 − 1)-CONNECTED

DOMINATING SET, then H1 ∈ X.

Proof. Since ( |V |2 − 1)-CONNECTED DOMINATING SET is polynomially equivalent to {1, 3}-
SPANNING TREE when restricted to subcubic graphs, we have that X is a boundary class for
{1, 3}-SPANNING TREE with respect to the class Y of subcubic (C3, C4)-free graphs.

Suppose now H1 /∈ X. Then the class Y ∩Free(H1) contains X and it is defined by finitely
many forbidden induced subgraphs with respect to Y . Moreover, by the previous paragraph
and Theorem 5.1.8, we have that {1, 3}-SPANNING TREE is NP-hard for Y ∩ Free(H1). On the
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other hand, consider a graph G ∈ Y ∩ Free(H1). If G has maximum degree 2, then {1, 3}-
SPANNING TREE is trivial for G. Moreover, if G contains a cubic vertex v, then each neighbour
of v has degree at most 2. This implies that v has degree 3 in a {1, 3}-spanning tree of G and
so such a tree exists if and only if G = K1,3. Therefore, {1, 3}-SPANNING TREE is trivial for
the class Y ∩ Free(H1), a contradiction.

Remark 5.4.5. Similarly to Lemma 5.4.4, it is not difficult to show that if X is a class of sub-
cubic forests which is boundary for ( |V |2 − 1)-CONNECTED DOMINATING SET, then X contains
a tribranch. Therefore, the class Q is not boundary for this problem either.

Unfortunately, we do not know whether Lemma 5.4.4 holds for CONNECTED DOMINATING

SET and the major open problem is to find a boundary class with respect to subcubic pla-
nar bipartite graphs. Another interesting problem (related to Lemma 5.4.4) is to determine
the computational complexity of CONNECTED DOMINATING SET for (C3, C4, H1)-free subcubic
graphs. We have seen that ( |V |2 − 1)-CONNECTED DOMINATING SET is trivial for this class and
we know that DOMINATING SET is NP-hard for it [7]. Moreover, in Section 4.4 we showed
that DOMINATING SET and CONNECTED DOMINATING SET belong to the same complexity class
when restricted to Free(H), for any graph H. If CONNECTED DOMINATING SET is polynomial
for (C3, C4, H1)-free subcubic graphs, we would obtain a first example7 of a non-trivial hered-
itary class for which DOMINATING SET and CONNECTED DOMINATING SET belong to different
complexity classes.

5.5 Connected Vertex Cover

In this short section, we consider the connected variant of the vertex cover problem which
asks for a minimum-size vertex cover inducing a connected graph:

CONNECTED VERTEX COVER

Instance: A graph G = (V,E) and a positive integer k.
Question: Does βc(G) ≤ k hold?

CONNECTED VERTEX COVER was introduced by Garey and Johnson [76], who showed
it is NP-complete for planar graphs with maximum degree 4. Fernau and Manlove [63]
strengthened this result by showing that it remains NP-hard even for planar bipartite graphs
with maximum degree 4 (see also [60]). On the other hand, we have seen in Section 5.3
that it is solvable in polynomial time for subcubic graphs. In the following, we make some
observations towards determining the first boundary classes for this problem.

Alekseev [5] showed that the class of forests whose components have at most three leaves
is boundary for VERTEX COVER8 and conjectured no other boundary class exists. For CON-
NECTED VERTEX COVER, we show there are at least two boundary classes. One of them is a
subclass of line graphs of bipartite graphs:

Lemma 5.5.1. CONNECTED VERTEX COVER is NP-complete even for line graphs of planar cubic
bipartite graphs.
7 To the best of our knowledge. 8 He actually stated this result for INDEPENDENT SET but the two problems are
polynomially equivalent.
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Note that, on the contrary, VERTEX COVER restricted to line graphs can be solved in poly-
nomial time by a reduction to a matching problem [139, 167].

Our proof of Lemma 5.5.1 is based on the following lemma:

Lemma 5.5.2. If G is the line graph of a cubic triangle-free graph H, then βc(G) ≥ 2
3 |V (G)|.

Equality holds if and only if H contains a Hamiltonian cycle.

Proof. Clearly, there is a bijection between the vertices of H and the triangles of G. More-
over, any vertex cover of G contains at least two vertices for every triangle. Since there are
|V (H)| = 2

3 |V (G)| triangles in G and any two of them share at most one vertex, we have that
βc(G) ≥ β(G) ≥ 2

3 |V (G)|.
Suppose now that βc(G) = 2

3 |V (G)|. This means there exists a connected vertex cover S
of G containing exactly two vertices for each triangle of G. Consider now the set of edges
S′ ⊆ E(H) corresponding to S. Since G[S] is connected, we have that H[S′] is connected as
well. Therefore, S′ ⊆ E(H) is a set of edges such that each vertex of H is incident to exactly
two of them and H[S′] is connected and so S′ induces a Hamiltonian cycle in H.

Conversely, suppose H contains a Hamiltonian cycle C and let S be the set of vertices of
G corresponding to E(C). Since every edge of H is incident to an edge in E(C), we have that
S is a vertex cover of G. Moreover, G[S] is connected and so βc(G) ≤ |V (H)| = 2

3 |V (G)|.

Proof of Lemma 5.5.1. We reduce from HAMILTONIAN CYCLE for planar cubic bipartite graphs,
which is known to be NP-complete [4]. Let G be an instance of this problem and consider
its line graph G′ = L(G). By Lemma 5.5.2, we have that βc(G′) ≤ 2

3 |V (G′)| if and only if G
contains a Hamiltonian cycle.

The results in [60, 63] mentioned above show that the class of planar bipartite graphs
with maximum degree 4 is limit. On the other hand, we now show it is not minimal. The
following operation proves to be helpful: Given a graph G = (V,E), an edge uv ∈ E and an
integer p ≥ 1, the graph Ap(G) is obtained from G by replacing uv with the gadget depicted
in Figure 5.10.

· · ·=⇒
u v u va1 a2 ap−1 ap

Figure 5.10: The operation Ap.

The fundamental property of Ap, which is left as an easy exercise, is that βc(Ap(G)) =
βc(G) + p. We can now provide the other limit class (see Figure 5.11):

Lemma 5.5.3. For any k ≥ 1, CONNECTED VERTEX COVER is NP-complete for planar bipartite
(C4, . . . , C2k, H

′
1, . . . ,H

′
k)-free graphs with maximum degree at most 4.

Proof. We reduce from CONNECTED VERTEX COVER for planar graphs with maximum degree
4, which is NP-complete by Lemma 5.5.1. Given an instance G of this problem we construct
a graph G′ by applying the operation Ap, with p = 2k + 1, to each edge of G. The statement
follows from the fact that βc(Ap(G)) = βc(G) + p.
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i

Figure 5.11: The graph H ′i.

Note that the two boundary classes whose existence is guaranteed by Lemmas 5.5.1
and 5.5.3 are distinct. Indeed, by Lemma 5.5.1, there exists a boundary class C1 which is
a subclass of line graphs and, by Lemma 5.5.3, there exists a boundary class C2 which is a
subclass of forests. On the other hand, C1 must contain K3 or else, by Theorem 5.1.8, CON-
NECTED VERTEX COVER would be NP-hard for triangle-free line graphs and so for graphs with
maximum degree 2.

We finally conclude this section with the following problem:

Problem 5.5.4. Find boundary classes for CONNECTED VERTEX COVER with respect to the
classes described in Lemmas 5.5.1 and 5.5.3.

The classes L(Q) and S would be two natural candidates, respectively.
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Résumé — Dans cette thèse, nous considérons plusieurs paramètres des hypergraphes et
nous étudions si les restrictions aux sous-classes des hypergraphes permettent d’obtenir des
propriétés combinatoires et algorithmiques souhaitables. La plupart des paramètres que nous
prenons en compte sont des instances spéciales des packings et transversals des hypergraphes.

Dans la première partie, nous allons nous concentrer sur les line graphs des graphes sub-
cubiques sans triangle et nous allons démontrer que pour tous ces graphes il y a un indepen-
dent set de taille au moins 3

10 |V (G)| et cette borne est optimale. Conséquence immédiate:
nous obtenons une borne inférieure optimale pour la taille d’un couplage maximum dans les
graphes subcubiques sans triangle. De plus, nous montrons plusieurs résultats algorithmiques
liés au FEEDBACK VERTEX SET, HAMILTONIAN CYCLE et HAMILTONIAN PATH quand restreints
aux line graphs des graphes subcubiques sans triangle.

Puis nous examinons trois hypergraphes ayant la propriété d’Erdős-Pósa et nous cher-
chons à déterminer les fonctions limites optimales. Tout d’abord, nous apportons une fonc-
tion θ-bounding pour la classe des graphes subcubiques et nous étudions CLIQUE COVER: en
répondant à une question de Cerioli et al. [31], nous montrons qu’il admet un PTAS pour
les graphes planaires. Par la suite, nous nous intéressons à la Conjecture de Tuza et nous
montrons que la constante 2 peut être améliorée pour certains graphes sans K4 et avec arêtes
contenues dans au maximum quatre triangles et pour les graphes sans certains odd-wheels.
Enfin, nous nous concentrons sur la Conjecture de Jones: nous la démontrons dans le cas des
graphes sans griffes avec degré maximal 4 et nous faisons quelques observations dans le cas
des graphes subcubiques.

Nous étudions ensuite la VC-dimension de certains hypergraphes résultants des graphes.
En particulier, nous considérons l’hypergraphe sur l’ensemble des sommets d’un certain graphe
qui est induit par la famille de ses sous-graphes k-connexes. En généralisant les résultats de
Kranakis et al. [115], nous fournissons des bornes supérieures et inférieures optimales pour
la VC-dimension et nous montrons que son calcul est NP-complet, pour chacun k ≥ 1. En-
fin, nous démontrons que ce problème (dans le cas k = 1) et le problème étroitement lié
CONNECTED DOMINATING SET sont soit solvables en temps polynomial ou NP-complet, quand
restreints aux classes de graphes obtenues en interdisant un seul sous-graphe induit.

Dans la partie finale de cette thèse, nous nous attaquons aux meta-questions suivantes:
Quand est-ce qu’un certain problème “difficile” de graphe devient “facile”?; Existe-t-il des
frontières séparant des instances “faciles” et “difficiles”? Afin de répondre à ces questions,
dans le cas des classes héréditaires, Alekseev [5] a introduit la notion de boundary class
pour un problème NP-difficile et a montré qu’un problème Π est NP-difficile pour une classe
héréditaire X finiment défini si et seulement si X contient un boundary class pour Π. Nous
continuons la recherche des boundary classes pour les problèmes suivants: HAMILTONIAN

CYCLE THROUGH SPECIFIED EDGE, HAMILTONIAN PATH, FEEDBACK VERTEX SET, CONNECTED

DOMINATING SET and CONNECTED VERTEX COVER.

Mots clés : Line graphs, paramètres des hypergraphes, θ-bounding functions, VC-dimension,
NP-complétude, boundary classes



Abstract — In this thesis, we consider several hypergraph parameters and study whether
restrictions to subclasses of hypergraphs allow to obtain desirable combinatorial or algorith-
mic properties. Most of the parameters we consider are special instances of packings and
transversals of hypergraphs.

In the first part, we focus on line graphs of subcubic triangle-free graphs and show that any
such graph G has an independent set of size at least 3

10 |V (G)|, the bound being sharp. As an
immediate consequence, we obtain a tight lower bound for the matching number of subcubic
triangle-free graphs. Moreover, we prove several algorithmic results related to FEEDBACK

VERTEX SET, HAMILTONIAN CYCLE and HAMILTONIAN PATH when restricted to line graphs of
subcubic triangle-free graphs.

Then we consider three hypergraphs having the Erdős-Pósa Property and we seek to de-
termine the optimal bounding functions. First, we provide an optimal θ-bounding function
for the class of subcubic graphs and we study CLIQUE COVER: answering a question by Cerioli
et al. [31], we show it admits a PTAS for planar graphs. Then we focus on Tuza’s Conjec-
ture and show that the constant 2 in the statement can be improved for some K4-free graphs
whose edges are contained in at most four triangles and graphs obtained by forbidding cer-
tain odd-wheels. Finally, we concentrate on Jones’ Conjecture: we prove it in the case of
claw-free graphs with maximum degree at most 4 and we make some observations in the
case of subcubic graphs.

Then we study the VC-dimension of certain set systems arising from graphs. In particular,
we consider the set system on the vertex set of some graph which is induced by the family of its
k-connected subgraphs. Generalizing results by Kranakis et al. [115], we provide tight upper
and lower bounds for the VC-dimension and we show that its computation is NP-complete,
for each k ≥ 1. Finally, we show that this problem (in the case k = 1) and the closely
related CONNECTED DOMINATING SET are either NP-complete or polynomial-time solvable
when restricted to classes of graphs obtained by forbidding a single induced subgraph.

In the final part of the thesis, we consider the following meta-questions: when does a
certain “hard” graph problem become “easy”?; Is there any “boundary” separating “easy” and
“hard” instances? In order to answer these questions in the case of hereditary classes, Alek-
seev [5] introduced the notion of a boundary class for an NP-hard problem and showed that
a problem Π is NP-hard for a finitely defined (hereditary) class X if and only if X contains a
boundary class for Π. We continue the search of boundary classes for the following problems:
HAMILTONIAN CYCLE THROUGH SPECIFIED EDGE, HAMILTONIAN PATH, FEEDBACK VERTEX SET,
CONNECTED DOMINATING SET and CONNECTED VERTEX COVER.

Keywords: Line graphs, hypergraph parameters, θ-bounding functions, VC-dimension, NP-
completeness, boundary classes
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