Etude numérique statistique des champs locaux de contraintes en surface de polycristaux cubiques et hexagonaux en élasticité

par Van Truong Dang

Thèse de doctorat en Mécanique des solides, des matériaux, des structures et des surfaces

Sous la direction de Patrick Villechaise et de Loïc Signor.

Le jury était composé de Jean-Yves Buffière, François Curtit.

Les rapporteurs étaient Éric Charkaluk, Maxime Sauzay.


  • Résumé

    Les premiers stades d'endommagement par fatigue au sein des matériaux métalliques polycristallins sont pilotés par les champs mécaniques locaux se développant à l'échelle des grains en surface. La formation de bandes de glissement persistantes est souvent à l'origine des fissures de fatigue. Cette localisation de la plasticité cyclique apparaît au sein de grains d'un polycristal dans lequel les champs de contraintes élastiques peuvent être fortement hétérogènes en fonction de la microstructure granulaire et de l'anisotropie élastique cristalline. La majeure partie de ce travail est consacrée à évaluer puis à analyser statistiquement les champs de contraintes au sein des grains de surface de polycristaux. Ce travail s'est concentré sur la réponse élastique des matériaux considérés afin d'étudier l'activation du glissement plastique et sa variabilité, puis, de façon un peu moins directe, ses conséquences vis-à-vis de la formation des fissures de fatigue. La méthodologie retenue est basée sur la simulation numérique en champs complets par éléments-finis de la réponse élastique d'un ensemble d'agrégats polycristallins dont les orientations cristallographiques sont tirées aléatoirement.Deux matériaux très différents du point de vue de l'élasticité cristalline et des systèmes de glissement ont été choisis comme support de l'étude. Le premier est l'acier inoxydable austénitique 316L à structure cubique à faces centrées et le second l'alliage de titane TA6V à structure hexagonale compacte. Les distributions de la cission résolue au sein d'ensembles de grains de surface, par classe d'orientation, sont analysées en relation avec les configurations cristallographiques locales afin d'identifier celles qui favorisent - ou au contraire inhibent - l'activation du glissement plastique. Les résultats obtenus, dans le cas du TA6V, suggèrent notamment une activation plus précoce et importante du glissement basal devant le glissement prismatique. De plus, la stratégie de simulation a été adaptée pour rendre compte de la présence de zones texturées appelées « macrozones » dont l'influence sur l'activation de plasticité peut être qualitativement prédite. L'activation du glissement dans le TA6V est également étudiée expérimentalement par la réalisation d'un essai in situ sous MEB où la précocité du glissement basal est constatée.Cet essai a également permis de caractériser la cinétique d'activation des différents types de glissements. Ces données, couplées aux statistiques des cissions simulées, permettent une estimation de la cission résolue critique sur les 2 types de glissement.

  • Titre traduit

    Statistical and Numerical Study of Local Elastic Stress Field at Surface of Cubic and Hexagonal Polycrystals


  • Résumé

    The first stages of fatigue damage in metallic polycrystalline materials are governed by local mechanical field at the grain scale. Fatigue crack initiation is often related to the emergence of persistent slip band at surface.Localization of cyclic plasticity occurs within grains of polycristals in which elastic stress field can be highly heterogeneous due to the granular microstructure and crystalline anisotropic elasticity. The main goal of this study is to evaluate and analyse statistically the stress fields in surface grains of polycristals. In this work, the elasticregime only is considered in order to study the subsequent activation of plastic slip and its variability. The possibleconsequences regarding crack formation are also addressed but in a lesser extent. The methodology is based on fullfield finite element numerical simulation of the elastic response of a set of polycrystalline aggregates in which grains orientation is chosen randomly.The two materials chosen for this study exhibit different characteristics regarding crystal elasticity and slip systems.The first one is an austenitic stainless steels 316L (face centered cubic) and the second one a titanium alloy TA6V(hexagonal close packed). The distribution of resolved shear stress within several sets of surface grains, for different classes of crystal orientation, are analysed in relation to local crystallographic configurations in order to identify those which promote - or prevent from - plastic slip activation. For TA6V, the results suggest in particular that basal slip is activated earlier than prismatic slip. In addition, the simulation strategy has been modified tomodel the presence of some sharp band-like crystallographic textures named “macrozones” whose influence has been qualitatively predicted. Plastic slip activation in TA6V is also studied experimentally. In situ tensile test using SEM has shown the earlier activation of basal slip. Experimental data has been combined with simulated distribution of resolved shear stress in order to estimate the critical resolved shear stress of basal and prismatic slip systems.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Ecole nationale supérieure de mécanique et d'aérotechnique. Centre de ressources documentaires.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.