Thèse soutenue

Étude du comportement mécanique de sphères creuses composites sous sollicitations dynamiques.Application à un bouclier de choc à l’oiseau
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Arthur Core
Direction : Philippe ViotJean-Benoit KoppFrédéric Dau
Type : Thèse de doctorat
Discipline(s) : Mécanique-matériaux
Date : Soutenance le 07/11/2016
Etablissement(s) : Paris, ENSAM
Ecole(s) doctorale(s) : École doctorale Sciences des métiers de l'ingénieur (Paris)
Partenaire(s) de recherche : Laboratoire : Institut de mécanique et d'ingénierie de Bordeaux - Institut de mécanique et d'ingénierie de Bordeaux
Jury : Président / Présidente : François Hild
Examinateurs / Examinatrices : Philippe Viot, Jean-Benoit Kopp, Frédéric Dau, Christophe Bouvet, Jean-Luc Charles
Rapporteurs / Rapporteuses : Christophe Fond, Mohamed Guessasma

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Les structures de sphères creuses appartiennent à la famille des matériaux cellulaires qui ont récemment été étudiés pour leurs multiples propriétés. Dans le cas de cette thèse, le but des sphères creuses est de dissiper l’énergie d’impact d’un oiseau sur un cockpit d’avion. Elles sont développées dans le cadre du projet SAMBA (Shock Absorber Material for Birdshield Application) afin d’optimiser leur énergie spécifique absorbée (J/kg).Dans un premier temps, des essais quasi-statiques (v = 5 mm/min) et dynamiques (v = 2 m/s) de compression uni-axiale sont conduits à température ambiante sur une seule sphère creuse de diamètre 30 mm. Une propagation rapide de fissures macroscopiques est observée. Le formalisme de la Mécanique Élastique Linéaire de la Rupture (MELR) est utilisé pour estimer le taux de restitution d’énergie critique dynamique GIdc du matériau constitutif. La position du sommet de fissure est mesurée pendant la propagation de fissure à l’aide d’une caméra rapide. La Méthode des Éléments Discrets (DEM) permet de simuler la rupture dynamique en implémentant une technique de relâchement des nœuds. Le taux de restitution d’énergie GIdc peut être estimé à partir de l’histoire (position et temps) du sommet de fissure. Le modèle numérique montre que les structures sphériques dissipent une proportion importante de l’énergie par des effets dynamiques. A une même vitesse de propagation, plus l’épaisseur de coque est fine, plus les effets inertiels générés par la rupture sont importants et ce pour une même vitesse de propagation.Le modèle numérique DEM est ensuite employé pour reproduire la rupture dynamique sur une sphère creuse à l’aide d’un critère en contrainte seule ou un critère mixte en contrainte – énergie. Les bons résultats obtenus démontrent la capacité de la DEM à représenter la propagation de fissures en régime dynamique.Finalement, des essais numériques et expérimentaux multi-sphères sont réalisés afin évaluer le comportement des sphères creuses au sein d’un assemblage.