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General Introduction

Scope of the thesis

This thesis is dedicated to research the application of intelligent control theory in

the future road transportation systems. With the development of industrialized

nations, the demand for transportation is much greater than any other period in

history. More comfortable and more flexible, private vehicles are selected by many

families. Besides, the development of automobile industry reduces the cost to own

a car, thus vehicle ownership has been growing rapidly all over the world, espe-

cially in big cities. However, the increasing number of vehicles makes our society

to suffer from traffic congestion, exhaust pollution and accidents. These negative

effects force people to find ways out. In this context, the concept of "Intelligent

Transportation Systems" (ITS) is proposed. Researches and engineers have been

working for decades to apply multidisciplinary technologies to transportation, in

order to make it closer to our vision, such as safer, more efficient, more effort sav-

ing, and environmentally friendly.

One solution is (semi-)autonomous systems. The main idea is to use au-

tonomous applications to assist/replace human operation and decision. Advanced

Driver Assistance Systems (ADAS) are developed to assist drivers by alerting them

when danger (e.g. lane keeping, forward collision warning), acquiring more infor-

mation for decision-making (e.g. route plan, congestion avoidance) and liberating

them from repetitive and trick maneuvers (e.g. adaptive cruise control, automatic

parking). In semi-automatic systems, driving process still needs the involvement

of human driver: the driver should pre-define some parameters in the system, and

then he/she can decide to follow the advisory assistance or not. Recently, with

1



2 GENERAL INTRODUCTION

the improvement of artificial intelligence and sensing technology, companies and

institutes have been committed to the research and development of autonomous

driving. In some scenarios (e.g. highways and main roads), with the help of ac-

curate sensors and highly precise map, hands-off and feet-off driving experience

would be achieved. Elimination of human error will make the road transportation

much safer, and better inter-vehicle space will improve the usage of road capac-

ity. However, autonomous cars still need driver’s anticipation in these scenarios

with complicated traffic situation or limited information. The inner layout of au-

tonomous vehicles would not be much different from current ones, because steering

wheel and pedals are still indispensable. The next step of autonomous driving is

driver-less driving, in which the car is totally driven by itself. The seat dedicated

for driver would disappear and people on board would focus on their own staff.

The car-sharing economy behind driver-less cars would be enormous: in the future,

people would prefer calling for a driver-less car when needed to owning a private

car. Thus congestion and pollution problem will be relieved.

Another solution is cooperative systems. Obviously, the current road trans-

portation notifications are designed for human drivers, such as traffic lights, turn-

ing lights and road side signs. The current intelligent vehicles are equipped with

cameras dedicated to detect these signs. However, notifications designed for hu-

mans is not efficient enough for autonomous vehicles, because the usage of camera

is limited by range and visibility, and algorithms should be implemented to rec-

ognize these signs. Therefore, if the interaction between vehicles and environment

is available, the notifications can be transferred via Vehicle-to-X (V2X) communica-

tions, thus vehicles can be recognized in larger distance even beyond the sight, and

the original information is more accurate than the information detected by sensors.

When the penetration rate of driver-less cars is high enough, it would not be nec-

essary to have physical traffic lights and signs. The virtual personal traffic sign can

be communicated to individual vehicles by the traffic manager. In cooperative sys-

tems, an individual does not have to acquire the information all by its own sensors,

but with the help of other individuals via communication. Therefore, individual

intelligence can be extended into cooperative intelligence.
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The research presented in this thesis focuses on the development of applications

to improve the safety and efficiency for intelligent transportation systems in context

of autonomous vehicles and V2X communications. Thus, this research is in the

scope of cooperative systems. Control strategy are designed to define the way in

which the vehicles interact with each other.

Main contributions

The main contributions of the thesis are summarized as follows:

• A novel decentralized Two-Vehicle-Ahead Cooperative Adaptive Cruise Con-

trol (TVACACC) longitudinal tracking control framework is proposed in this

thesis. It is shown that the feed forward controller enables small inter-vehicle

distances, using a velocity-dependent spacing policy. Moreover, a frequency-

domain approach of string stability is theoretically analyzed. By using the

TVA-wireless communication among the vehicles, a better string stability is

proved compared to the conventional system, resulting in lower disturbance.

Vehicle platoon in Stop-and-Go scenario is simulated with both normal and

degraded V2V communication. It is shown that the proposed system yields a

string-stable behavior, in accordance with the theoretical analysis, which also

indicates a larger traffic flux and a better comfort.

• A graceful degradation technique for Cooperative Adaptive Cruise Control

(CACC) is presented, serving as an alternative fallback scenario to Adaptive

Cruise Control (ACC). The concept of the proposed approach is to obtain the

minimum loss of functionality of CACC when the wireless link fails or when

the preceding vehicle is not equipped with wireless communication units.

The proposed strategy, which is referred to as Degraded TVACACC (DT-

VACACC), uses the technique of estimation of the preceding vehicle’s cur-

rent acceleration to replace the desired acceleration, which would normally

be communicated over a wireless V2V communication for the conventional

CACC system.

• A novel approach to obtain an autonomous longitudinal vehicle controller
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is proposed. To achieve this objective, a vehicle architecture with its CACC

subsystem has been presented. With this architecture, we have also described

the specific requirements for an efficient autonomous vehicle control policy

through Reinforcement Learning (RL) and the simulator in which the learn-

ing engine is embedded. A policy-gradient algorithm estimation has been

introduced and has used a back propagation neural network for achieving

the longitudinal control.

Outline of the thesis

This thesis is divided into 5 chapters:

In Chapter 1, the concept of intelligent road transportation systems is intro-

duced in detail. As a promising solution to reduce the accidents caused by human

errors, autonomous vehicles are being developed by research organizations and

companies all over the world. The state-of-art in autonomous vehicle development

will be introduced in this chapter as well. CACC system, which is an extension

of ACC systems by enabling the communication among the vehicles in a platoon

is presented. CACC can not only relief the driver from repetitive jobs like adjust-

ing speed and distance to the preceding vehicle like ACC, but also has safer and

smoother response than ACC systems. Then Dedicated Short-Range Communica-

tions (DSRC) is introduced. Specific to road transportation systems, it is V2X com-

munications, including V2V communication and V2I communication. By enabling

communications among these agents, the vehicular ad hoc networks (VANETs) are

formed. Different kinds of applications using VANET are developed in order to

make the road transportation safer, more efficient and user friendly. Finally, the

technology of machine learning will be introduced, which can be applied on intel-

ligent vehicles.

In Chapter 2, instead of the individual stability of each vehicle, another stability

criterion known as the string stability is also described. For a cascaded system, e.g.

a platoon of automated vehicles, stability of each component system itself is not suf-

ficient to guarantee a good performance of all systems, such as the non-convergence

of spacing error for two consecutive vehicles. Therefore, the string stability is con-
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sidered as the most important criterion to evaluate the performance of intelligent

vehicle platoon. In the second part, the Markov decision processes, which are the

underlying structure of reinforcement learning, are described. Several classical al-

gorithms for solving Markov decision process (MDP) are also briefly introduced.

The fundamental concepts of the reinforcement learning is then brought.

In Chapter 3, we concentrate on the vehicle longitudinal control system design.

The spacing policy and its associated control law are designed with the constrains

of string stability. The CTH spacing policy is adopted to determine the desired

spacing from the preceding vehicle. It will be shown that the proposed TVACACC

system could ensure both the string stability. In addition, through the comparisons

between the TVACACC and the conventional CACC and ACC systems, we could

find the obvious advantages of the proposed system in improving traffic capacity

especially in the high-density traffic conditions. The above proposed longitudinal

control system will be validated to be effective through a series of simulations with

normal and degraded V2V communication.

In Chapter 4, wireless communication faults must be taken into account to

accelerate practical implementation of CACC in everyday traffic. To this end, a

degradation technique for CACC is presented, used as an alternative fallback strat-

egy to ACC. The concept of the proposed approach is to remain the minimum loss

of functionality of CACC when the wireless link fails or when the preceding ve-

hicle is not equipped with wireless communication units. The proposed strategy,

which is referred to as DTVACACC, uses Filter Kalman to estimate the preceding

vehicle’s current acceleration to replace to the desired acceleration. In addition, a

switch criterion from TVACACC to DTVACACC is presented. Both theoretical as

well as experimental results of the DTVACACC system will be shown with respect

to string stability characteristics by reducing the minimum string-stable headway

time.

In Chapter 5, a novel approach to obtain an autonomous longitudinal vehicle

CACC controller is proposed. To achieve this objective, a vehicle architecture with

its CACC subsystem is presented. Using this architecture, specific requirements for

an efficient autonomous vehicle control policy through RL and the simulator are de-



6 GENERAL INTRODUCTION

scribed, in which the learning engine is embedded. The policy-gradient algorithm

estimation will be introduced and has used a back propagation neural network for

achieving the longitudinal control. Then, experimental results, through simulation,

show that this design approach can result in efficient behavior for CACC.
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1.1. General traffic situation

The global vehicle production rises significantly thanks to the development of au-

tomobile industry during past years. [44] reported that there were 41 million cars

being produced around the world only in the year 2000. Then, in 2005, 47 million

cars were produced worldwide. Specially in 2015, almost 70 million passenger cars

were produced, as seen in Fig. 1.1. Except in 2008 and 2009, car sales dried up

on account of the economic crisis. Due to the increased demand, the volume of

automobiles sold is back to pre-crisis levels today, especially from Asian markets.

The passenger car sales are expected to continuous increase to about 100 million

units in 2017 worldwide. China is ranked as the largest passenger car manufacturer

in the world, having produced more than 18 million cars in 2013, and making up

for more than 22 percent of the world’s passenger vehicle production. Transport

infrastructure investment is projected to grow at an average annual rate of about

5% worldwide over the period of 2014 to 2025. Roads will likely remain the biggest

area of investment, especially for growth markets. This is partly due to the rise in

prosperity and, hence, car ownership in developing countries 1.2.

Figure 1.1 – Worldwide automobile production from 2000 to 2015 (in million vehicles)

Along within this augmentation, on one hand, we benefit the vehicles in differ-

ent aspects. Like Europe, road transport is the largest share of intra-EU transport.

The share of EU-28
1 inland freight that was transported by road (74.9%) was more

1EU-28: The European Union (EU) was established on 1 November 1993 with 12 Member States.
Their number has grown to the present 28 on 1 July 2013, through a series of enlargements.
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Figure 1.2 – Cumulative transport infrastructure investment (in trillion dollars)

than four times as high as the share transported by rail (18.2%), while the remain-

der (6.9%) of the freight transported in the EU-28 in 2013 was carried along inland

waterways. The total inland freight transport in the EU-28 was over 2,200 billion

tonne-kilometers in 2013[35]. Passenger cars accounted for 83.2% of inland passen-

ger transport in the EU-28 in 2013, with motor coaches, buses and trolley buses

(9.2%) and trains (7.6%) both accounting for less than a tenth of all traffic [36].

On the other hand, we have to face the spreading traffic problems:

• Accidents and safety. Ascending traffic have produced growing number of

accidents and fatalities. Nearly 1.3 million people die in road crashes each

year, on average 3,287 deaths a day, and 20-50 million are injured or disabled.

A large proportion of accidents are caused by incorrect driving behaviors,

such as violate regulations, speeding, fatigue driving and drunken driving.

• Congestion. Traffic jam is a very common transport problem in urban agglom-

erations. It is usually due to the lag between infrastructure construction and

the increasing vehicle ownership. There are another reasons can be referred to

improper traffic light signal, inappropriate road construction and accidents.

• Environment impacts. Noise pollution and air pollution are the by-products
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of road transportation systems, especially in metropolis where vehicles are

considerably gathered. Smog brought by vehicles, industries and heating

facilities is hurting people’s health. The exhaust from incomplete combustion

when the vehicle is in congestion is even more pollutant.

• Loss of public space. In order to deal with congestion and parking difficulties

due to the increasing amount of vehicles, streets are widen and parking areas

are built, which seizes the space for public activities like markets, parades

and community interactions.

We can see from the White paper of 2004, the European Commission has set

the ambitious aim of decreasing the number of road traffic fatalities by 2014. Much

progress has been achieved. The total number of fatalities in road traffic accidents

decreased by 45% between 2004 and 2014 (Figure 1.3) at the level of the EU-28.

Road mobility comes at a high price in terms of lives lost: in 2014, slightly over

25 thousand persons lost their lives in road accidents within the EU-28. A general

trend towards fewer road traffic fatalities has long been observed in all countries

in Europe. However, at the level of the EU, this downward trend has come to a

standstill as the total number of fatalities registered in 2014 remained at the same

level as in 2013 [37].

Figure 1.3 – Total number of fatalities in road traffic accidents, EU-28

A solution to the traffic problems is to build adequate highways and streets.
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However, the fact that it is becoming increasingly difficult to build additional high-

way, for both financial and environmental reasons. Data shows that the traffic vol-

ume capacity added every year by construction lags the annual increase in traffic

volume demanded, thus making traffic congestion increasingly worse. Therefore,

the solution to the problem must lie in other approaches, one of which is to opti-

mize the use of highway and fuel resources, provide safe and comfortable trans-

portation, while have minimal impact on the environment. It is a great challenge to

develop vehicles that can satisfy these diverse and often conflicting requirements.

To meet this challenge, the new approach of “Intelligent Transportation System”

(ITS) has shown its potential of increasing the safety, reducing the congestion, and

improving the driving conditions. Early studies show that it is possible to cut acci-

dents by 18%, gas emissions by 15%, and fuel consumption by 12% by employing

ITS approach [161].

1.2. Intelligent Transportation Systems

1.2.1. Definition of ITS

A concept transportation system named "Futurama" was exhibited at the World’s

Fair 1940 in New York. At the same time, the origin of Intelligent Transportation

System (ITS) appeared. After a long story via many researches and projects be-

tween 1980 to 1990 in Europe, North America and Japan, today’s mainstream of

ITS was formed. ITS is a transport system which is comprised of an advanced

information and telecommunications network for users, roads and vehicles. By

sharing vital information, ITS allows people to get more from transport networks,

in greater safety, efficiency, and with less impact to the environment. The Concep-

tual principle of ITS is illustrated in Figure. 1.4.

For example, [64] designed an architecture of road ITS for commercial vehicles.

This system is used to reduce fuel consumption through fuel-saving advice, main-

tain driver and vehicle safety with remote vehicle diagnostics and enable drivers to

access information more conveniently. Generally speaking, there are three layers in

ITS system, see Figure. 1.5:
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Figure 1.4 – Conceptual principal of ITS

• Information collection: This layer employs a vehicle terminal which is equipped

with roadside surveillance including vehicle sensors, CCTV and camera, in-

telligent vehicle identification, etc. Meanwhile, it enables the information

exchange with other units and infrastructures, such as parking information

system, dynamic bus information center, police radio station traffic division

dispatch center and center of freeway bureau.

• Communication: This layer ensures real-time, secure and reliable transmission

between each layer via different networks, such as 3G/4G, Wi-Fi, Bluetooth,

wired networks and optical fiber.

• Information processing: In this layer, diverse applications using various tech-

nologies are implemented, such as cloud computing, data analytics, informa-

tion processing and artificial intelligence. Vehicle services are supported by

a cloud-based, back-end platform that has a network connection to vehicles

and runs advanced data analytic applications. Different categories of services

can be supplied, including collision notification, roadside rescue, remote di-

agnostic, positioning monitoring.

• Information publishing and strategy execution: In this layer, each individual ve-
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hicle transfers information of their state and control strategy to the different

centers. Therefore, these centers are able to publish traffic condition, manage

all connected vehicles and execute complete strategy based on collected infor-

mation in different situations, e.g. lane change, traffic light and intersection,

freeway, etc.

Figure 1.5 – Instance for road ITS system layout

1.2.2. ITS applications

Although ITS may refer to all types of transport, EU Directive 2010/40/EU (7 July

2010) defines ITS as systems in which information and communication technolo-

gies are applied in the field of road transport, including infrastructure, vehicles

and users, and in traffic management and mobility management, as well as for

interfaces with other modes of transport, see Figure. 1.6.

ITS is actually a big system which concerns a broad range of technologies and

diverse activities.
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Figure 1.6 – ITS applications

• Adaptive Cruise Control (ACC): ACC systems perform longitudinal control by

controlling the throttle and brakes so as to maintain a desired spacing from

the preceding vehicle. A significant benefit of using ACC is to avoid rear-end

collisions. The SeiSS study reported that it could save up to 4 000 accidents

in Europe in 2010 if only 3% of the vehicles were equipped [3].

• Lane Change Assistant (LCA) system. The LCA will check for obstacles in a

vehicle’s course when the driver intends to change lanes. The same study

estimated that 1 500 accidents could be avoided in 2010 given a penetration

rate of only 0.6%, while a penetration rate of 7% in 2020 would lead to 14 000

fewer accidents.

• Collision Avoidance (CA): CA system operates like a cruise control system to

maintain a constant desired speed in the absence of preceding vehicles. If a

preceding vehicle appears, the CA system will judge the operation speed is
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safe of not, if not, the CA will reduce the throttle and/or apply brake so as to

slow the vehicle down, at the same time a warning is provided to the driver.

• Drive-by-wire: This technology replaces the traditional mechanical and hy-

draulic control systems with electronic control systems using electromechan-

ical actuators and human-machine interfaces such as pedal and steering feel

emulators. The benefits of applying electronic technology are improved per-

formance, safety and reliability with reduced manufacturing and operating

costs. Some sub-systems using "by-wire" technology have already appeared

in the new car models.

• Vehicle navigation system: It typically uses a GPS navigation device to acquire

position data to acquire position data to locate the user on a road in the unit’s

map database. Using the road database, the unit can give directions to other

locations along roads also in its database.

• Emergency vehicle notification systems: The in-vehicle eCall is generated ei-

ther manually by the vehicle occupants or automatically via activation of

in-vehicle sensors after an accident. When activated, the in-vehicle eCall de-

vice will establish an emergency call carrying both voice and data directly to

the nearest emergency point. The voice call enables the vehicle occupant to

communicate with the trained eCall operator. At the same time, data about

the incident will be sent to the eCall operator receiving the voice call, includ-

ing time, precise location, the direction the vehicle was traveling, and vehicle

identification.

• Automatic road enforcement: A traffic enforcement camera system, consisting

of a camera and a vehicle-monitoring device, is used to detect and identify

vehicles disobeying a speed limit or some other road legal requirement and

automatically ticket offenders based on the license plate number. Traffic tick-

ets are sent by mail.

• Variable speed limits: Recently some jurisdictions have begun experimenting

with variable speed limits that change with road congestion and other factors.
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Typically such speed limits only change to decline during poor conditions,

rather than being improved in good ones. Initial results indicated savings in

journey times, smoother-flowing traffic, and a fall in the number of accidents,

so the implementation was made permanent in 1997.

• Dynamic traffic light sequence: Dynamic traffic light circumvents or avoids

problems that usually arise with systems that use image processing and beam

interruption techniques. With appropriate algorithm and database, a dynamic

time schedule was worked out for the passage of each column. The simula-

tion showed the dynamic sequence algorithm could adjust itself even with

the presence of some extreme cases.

1.2.3. ITS benefits

For automated driving, the development of products and systems is one of the

central issues of the long-term technology strategy that aims, stage by stage, to

introduce fully automated driving by 2025. With this kind of system on board,

drivers will in future be able to decide whether they want to drive themselves or

let themselves be driven by automated means. By pre-defining a time-effective,

low-consumption or schedule-oriented drive strategy, drivers can choose between

traveling according to their own, customized schedule or according to inclination

(e.g. fuel-saving), on the basis of comprehensive "real-time floating car data". While

awaiting the launch of highly automated vehicles in around 2020, drivers can for the

time being devote themselves to other activities than driving for selected driving

tasks or sections of journeys (e.g. stop-and-go driving). For example, they can

surf the Internet or visual media, or use the infotainment system. This opens up

a whole new scope to drivers, transforming driving times from "wasted time" to

useful time. At the same time, the automated car, and consequently traffic as a

whole, will be substantially safer, as responsibility for driving the vehicle, which

currently accounts for the majority of accidents (more than 90%), will be taken out

of the driver’s hands.

The potential benefits that might acquire from the implementation of ITS could
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be summarized as follows. Note that some of the benefits are fairly speculative, the

system they would depend upon are not yet in practical application.

• Road capacity: Vehicles travel in closely packed platoons can provide a high-

way capacity that is three times the capacity of a typical highway [168].

• Safety: Human error is involved in almost 93% of accidents, and in almost

three-quarters of the cases, the human mistake is solely to blame [25]. Only

a very small percentage of accidents are caused by vehicle equipment failure

or even due to environmental conditions (for example, slippery roads). Since

automated systems reduce driver burden and provide driver assistance, it

is expected that the employment of well-designed automated systems will

certainly lead to improve traffic safety.

• Weather: Weather and environmental conditions will impact little on high

performance driving. Fog, haze, blowing dirt, low sun angle, rain, snow,

darkness, and other conditions affecting driver visibility and thus, safety and

traffic flow will no longer impede progress.

• Mobility: It offers enhanced mobility for the elderly, and less experienced

drivers, etc.

• Energy consumption and air quality: Fuel consumption and emissions can be

reduced. In the short term, these reductions will be accomplished because

vehicles travel in a more efficient manner, lesser traffic congestion occurs.

• Land use: ITS help us to use the road efficiently, thus using the land in a

efficient way.

• Travel time saving: Travel time is saved by reducing congestion in urban high-

way travel, and permitting higher cruise speed than today’s driving.

• Commercial and transit efficiency: More efficient commercial operations and

transit operations. Commercial trucking can realize better trip reliability and

transit operations can be automated, extending the flexibility and convenience

of the transit option to increase ridership and service.
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1.2.4. Previous researches

The development of ITS in different countries can be divided into two steps [184].

The first step is mainly concerned about transportation information acquisition and

processing intellectualization. In the 70s the CACS (Comprehensive Automobile

Traffic Control System) was developed in Japan, in which different technological

programs were conducted to tackle the large number of traffic deaths and injuries

as well as the structural ineffective traffic process [80]. While in Europe, the first

formalized transportation telematics program named PROMETHEUS (Programme

for European Traffic with Highest Efficiency and Unprecedented Safety) was ini-

tiated by governments, companies and universities in 1986 [174]. In 1988, DRIVE

(Dedicated Road Infrastructure and Vehicle Environment) program was set up by

the European authorities [17]. In the United States, during the late 80s, the team

Mobility 2000 begins the formation of the IVHS (Intelligent Vehicle Highway Sys-

tems), which is a forum for consolidating ITS interests and promoting international

cooperation [11]. In 1994, USDOT (United States Department of Transportation)

changed the name to ITS America (Intelligent Transportation Society of America).

A key project, AHS (Automated Highway System) was conducted by NAHSC (Na-

tional Automated Highway System Consortium) formed by the US Department

of Transportation, General Motors, University of California and other institutions.

Under this project various fully automated test vehicles were demonstrated on Cal-

ifornia highways [68].

In the second step, the technologies for vehicle active safety, collision avoid-

ance and intelligent vehicle were rapidly developed. The DEMO’ 97 [113] was the

most inspiring project in America. Meanwhile in Europe, ERTICO (European Road

Transport Telematics Implementation Coordination Organization) was installed to

provide support for refining and implementing the Europe’s Transport Telematics

Project [41]. And the organization takes advantage of information and communi-

cation to develop active safety and autonomous driving. The Technische Universit

at at Braunschweig is currently working on the project Stadtpilot with the objective

to drive fully autonomously on multi-lane ring road around Braunschweig’s city

[173, 108, 132].
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In our opinion, the development of ITS is coming to a new stage, where au-

tonomous vehicles, inter-vehicle communication and artificial intelligence will be

integrated to bring the data acquisition, data transmission and decision making

into a new level, in which the system is optimized by the cooperation of all the par-

ticipants of transportation. More details can be referred to the following sections

in this chapter.

1.3. Intelligent vehicle

The Automated Highway System (AHS) is one of the most important items among

the different topics in the research of ITS. The AHS concept defines a new relation-

ship between vehicles and the highway infrastructure. The fully automated high-

way systems assume the existence of dedicated highway lanes, where all the vehi-

cles are fully automated, with the steering, brakes and throttle being controlled by a

computer [160]. AHS uses communication, sensor and obstacle-detection technolo-

gies to recognize and react to external infrastructure conditions. The vehicles and

highway cooperate to coordinate vehicle movement, avoid obstacles and improve

traffic flow, improving safety and reducing congestion. In brief, the AHS concept

combines on-board vehicle intelligence with a range of intelligent technologies in-

stalled onto existing highway infrastructure and communication technologies that

connect vehicles to highway infrastructure [21].

Implementation of AHS requires autonomous controlled vehicles. Nowadays,

vehicles are becoming more and more "intelligent", with increasingly equipping

with electromechanical sub-systems that employ sensors, actuators, communica-

tion systems and feedback control. Thanks to the advances in solid state electron-

ics, sensors, computer technology and control systems during the last two decades,

the required technologies to create an intelligent transportation system is already

available, although still expensive for full implementation. According to Ralph

[130], today’s cars normally have 25 to 70 ECUs ( Electronic Control Unit), which

perform the monitoring and controlling tasks. Few people realize, in fact, that

today’s car has four times the computing power of the first Apollo moon rocket [5].

Intelligent vehicles are important roles in ITS, which are motivated by three de-
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sires: improved road safety, relieved traffic congestion and comfort driver experi-

ence [150]. The intelligent vehicles strive to achieve more efficient vehicle operation

either by assisting the driver (via advisories or warnings) or by taking complete

control of vehicle [9].

Figure 1.7 – Stanley at Grand Challenge 2005

Since 2003, Defense Advanced Research Projects Agency (DARPA) of USA

founded a prize competition "Grand Challenge" to encourage the development of

technologies needed to create the first fully autonomous ground vehicles. The

Challenge required autonomous vehicles to travel a 142-mile long course through

the desert within 10 hours. Unfortunately, in the first competition, none of the 15

participants have ever completed more than 5% of the entire course. while in the

second competition in 2005, five of 23 vehicles successfully finished the course, and

"Stanley" of Stanford (see Figure. 1.7) became the winner with a result of 6 h 53 min

[159, 138]. This robotic car was a milestone in the research for modern self-driving

cars. Then it comes to the “DARPA Urban Challenge” in 2007. This time the au-

tonomous vehicles should travel 97km through a mock urban environment in less

than 6 hours, interacting with other moving vehicles and obstacles and obeying all

traffic regulations [162, 99]. These vehicles were regarded as the initial prototype

of Google self-driving cars.

In 2010, a project is sponsored by the European Research Council: VisLab Inter-

continental Autonomous Challenge (VIAC) to build four driver-less vans to accom-

plish a journey of 13,000 km from Italy to China. The vans have experienced all
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kinds of road conditions from high-rise urban jungle to broad expanses of Siberia

[15].

(a) Google’s self-driving car (b) Baidu’s self-driving car

Figure 1.8 – Self-driving vehicles

For vehicle manufacturers, Google’s self-driving car project is well-known in

world wide and is considered to be currently the most successful project in the do-

main of intelligent vehicles [50] (see in Figure. 1.8a). On the top of the car, a laser

is installed to generate a detailed 3D map of the environment. The car then com-

bines the laser measurements with high-resolution maps of the world, producing

different types of data models that allow it to drive itself while avoiding obstacles

and respecting traffic laws. Other sensors are installed on board, which include:

four radars, mounted on the front and rear bumpers, that allow the car to "see" far

enough to be able to deal with fast traffic on freeways; a camera, positioned near

the rear-view mirror, that detects traffic lights; and a GPS, inertial measurement

unit, and wheel encoder, that determine the vehicle’s location and keep track of

its movements. When road test, an engineer sits behind the steering wheel to take

over if necessary.

Note that Google’s approach relies on very detailed maps of the roads and

terrain to determine accurately where the car is, because usually the GPS has errors

of several meters. And before the road test, the car is driven by human one or more

times to gather environment data, then a differential method is used when the

car drives itself to compare the real-time signal with the recorded data in order to

distinct pedestrians and stationary objects.

In China, the company Baidu announced its autonomous vehicle has success-
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fully navigated a complicated route through Beijing [31]. The car (see in Figure.

1.8b) drove a 30 km route around the capital that included side streets as well as

highways. The car successfully made turning, lane changing, overtaking, merging

onto and off the highway.

The commercialization of self-driving vehicles can not be realized without auto-

mobile manufacturers. Some of them have launched their own self-driving projects

targeting different scenarios [20], such as "Drive Me" of Volvo [197], "Buddy" of

Audi [30], Tesla [79] etc. These prototypes are still at test stage, but it is a necessary

step of self-driving car development.

Autonomous vehicles are considered to be capable to make better use of road

capacity, therefore cars would drive closer to each other. They would react faster

than humans to avoid accidents, potentially saving thousands of lives. Moreover,

autonomous vehicles could lower labor costs and bring the sharing economy to

a higher level, thus people don’t need to own cars, only use them when needed.

The number of vehicles would be reduced, then problems, such as congestion,

pollution, public space loss etc., could be subsequently solved.

However, the high price of sensors, especially the laser, may restrict the com-

mercialization of self-driving car. Therefore, researchers and engineers are trying

to use universal cameras combined with others cheap sensors to achieve the func-

tions of the current system. Breakthroughs in computer vision are needed to make

this come true [157].

1.4. Adaptive Cruise Control

1.4.1. Evolution: from autonomous to cooperative

As mentioned previously, for decades, researchers are trying to develop ITS in

order to obtain a safer and more efficient transport system. In vehicle terms, Ad-

vanced Driver-Assistant Systems (ADAS) has been developed aiming at enhancing

driving comfort, reducing driving errors, improving safety, increasing traffic ca-

pacity and reducing fuel consumption. The main applications of ADAS includes

Adaptive Cruise Control (ACC) [163], Automatic Parking [182], Lane Departure
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Warning [28], Lane Change Assistance [100], Blind Spot Monitor [84], etc. Al-

though the objective of ADAS is not to completely replace people in driving, it is

able to help relief people from repetitive and boring labor, such as lane keeping,

lane changing, space keeping, cruising, etc. Besides, the technologies developed in

ADAS could also be used in autonomous driving.

Among all ADAS, one of the most important is adaptive cruise control (ACC),

which is actually available in a wide range of commercial passenger vehicles. ACC

systems are an extension of cruise control (CC) systems. CC is able to maintain

vehicle’s velocity to a decided value, and the driver does not have to use the pedals,

therefore the driver can be more focused on steering wheel. CC can be turned off

both explicitly and automatically when the driver depresses the brake. For ACC,

if there is no preceding vehicle within a certain distance, it works as the same as a

conventional CC system; else, it utilities the range sensor (such as lidar, radar and

camera) to measure the distance and the relative velocity to the preceding vehicle.

Then the ACC system calculates and estimates whether or not the vehicle can still

travel at the user-set velocity. If the preceding vehicle is too close or is traveling

slowly, ACC shifts from velocity control to time headway control by control both

the throttle and brake [181]. However, ACC still has its own limits: in general, ACC

system is limited to be operated within a velocity range from 40km/h to 160km/h

and under a maximum braking deceleration of 0.5g [128]. The operations outside

these limits are still in the charge of driver, because it is very difficult to anticipate

the preceding vehicle’s motion only by using range sensors, so the vehicle cannot

react instantly.

With the development of inter-vehicle communication technologies and the in-

ternational standard of DSRC [96, 66], researchers have gradually paid attention

to cooperative longitudinal following control based on V2X communication in

order to truly improve traffic safety, capacity, flow stability and driver comfort

[183, 86, 32].
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1.4.2. Development of ACC

The notion "ACC" is firstly proposed by [16] within the program PROMETHEUS

[174] initiated in 1986 in Europe. Currently, a large proportion of the work in

this program was conducted as propriety development work by automakers and

their suppliers rather than publicly funded academic research. Therefore, most of

the results and methods are not documented in open literature, but kept secret in

order to enhance competitive advantage [181]. In 1986, the California Department

of Transportation and the Institute of Transportation Studies at the University of

California Berkeley initiated the state-wide program called PATH [145] to study

the use of automation in vehicle-highway systems. Then the program was extended

in national scope named as Mobility 2000 [41], which grouped intelligent vehicle

highway system technologies into four functional areas covering ACC systems. A

large-scale ACC system field operations test was conducted by Fancher’s group

[39] from 1996 to 1997, in which 108 volunteers drove 10 ACC-equipped vehicles to

determine the safety effects and user-acceptance of ACC systems.

The design of an ACC system begins with the selection and design of a spac-

ing policy. The spacing policy refers to the desired steady state distance between

two successive vehicles. In 1950s, the "law of separation" [116] is proposed, which

is the sum of the distance that is proportional to the velocity of the following ve-

hicle and a given minimum distance of separation when the vehicles are at rest.

Then, three basic spacing policies (constant distance, constant time headway) and

constant safety factor spacing have been proposed for the personal rapid transit

(PRT) system [89]. Some nonlinear spacing policies [170, 196] have been proposed

to improve traffic flow stability, which are called constant stability spacing policies.

In order to improve the user-acceptance rate, a drive-adaptive range policy ([54]

is proposed, which is called the constant acceptance spacing policy. Considering

feasibility, stability, safety, capacity and reliability [154], the constant time headway

(CTH) spacing policy is applied to ACC systems by manufacturers.

The longitudinal control system architecture of an ACC-equipped vehicle is

typical hierarchical, which is composed of an upper level controller and a lower

level controller [128]. The upper level controller determines the desired accelera-
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tion or velocity. The lower level controller determines the throttle and/or brake to

track the desired accelerations and returns the fault messages to the upper level

controller.

The ACC controller should be designed to meet two performance specifications:

• Individual stability: if the spacing error of the ACC vehicle converges to zero

when the preceding vehicle is operating at constant speed. If the preceding

vehicle is accelerating or decelerating, then the spacing error is expected to

be non-zero. Spacing error is defined as the difference between the actual

spacing from the preceding vehicle and the desired inter-vehicle spacing.

• String stability: this property is defined as the spacing errors are guaranteed

not to amplify as they propagate towards the tail of the string.

1.4.3. Related work in CACC

By adding V2V communications, CACC is a extent version, providing the ACC

system with more and better information about the preceding vehicles. With more

accurate information, the ACC controller will be able to better anticipate problems,

makes it to be safer and smoother in response [164].

The notion of AHS is defined as vehicle-highway systems that support au-

tonomous driving on dedicated highway lanes. In 1997, the National Automated

Highway System Consortium (NAHSC) demonstrated several highway automation

technologies. The highlight of the event was a fully automated highway system

[158, 126]. The objective of the AHS demonstration was a proof-of-concept of an

AHS architecture that enhanced highway capacity and safety. In creased capacity

was achieved by organizing the movement of vehicles in closely spaced platoons.

Autonomous vehicles had actuated-steering, braking and throttle that were con-

trolled by the on-board computer. Safety was improved because the computer

was connected to sensors that provided about itself, the vehicle’s location within

the lane, the relative speed and distance to the preceding vehicle. The most im-

portantly, an inter-vehicle communication system formed a local area network to

exchange information with other vehicles in the neighborhood, as well as to per-

mit a protocol among neighboring vehicles to support cooperative maneuvers such
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as lane-changing, joining a platoon, and sudden braking[191, 192]. Computer-

controlled driving eliminated driver misjudgment, which is a major cause of ac-

cidents today. At the same time, a suite of safety control laws ensured fail-safe

driving despite sensor, communication and computer faults. The AHS experiment

also showed that it could significantly reduce fuel consumption by greatly reducing

driver-induced acceleration and deceleration surges during congestion.

The influence on capacity of increasing market penetration of ACC and

CACC vehicles, relative to fully-manually driven vehicles, was examined by us-

ing microscopic-traffic simulation [167, 164]. The analyses were initially conducted

for situations where manually driven vehicles, ACC-equipped vehicles and CACC-

equipped vehicles separately have 100% penetration rate. The results shows that

capacity in these situations are respectively 2050, 2200 and 4550 vehicles per hour,

thus the route’s capacity can be greatly improved using CACC. Then mixed vehicle

populations were also analyzed, and it was concluded that CACC can potential

double the capacity of a highway lane at high penetration rate.

The CHAUFFEUR 2 project is launched in order to reduce a truck driver’s

workload by developing truck-platooning capacity [13]. A truck can automatically

follow any other vehicle with a safe following distance using ACC and a lane-

keeping system. Besides, three trucks can be coupled in a platooning mode. The

leading vehicle is driven conventionally, and the other trucks follow. Due to the

V2V systems installed on the trucks, the following distance can be reduced to 6 ∼

12m. Simulation results show that the systems have better usage of road capacity,

up to 20% reduction in fuel consumption and increased traffic safety.

Traffic simulation in virtual reality system plays an important part in the re-

search of microscopic traffic behavior[97, 88, 187]. In 2014, Yu focuses on the mod-

eling and simulation of microscopic traffic behavior in virtual reality system using

multi-agent technology, a hierarchical modular modeling methodology and dis-

tributed simulation. Besides, the dynamic features of the real world have been con-

sidered in the simulation system in order to improve the microscopic traffic analysis

[188]. [189] focuses on the modeling and simulation of the overtaking behavior in

virtual reality traffic simulation system involving environment information. A de-
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centralized CACC algorithm using V2X for vehicles in the vicinity of intersections

is proposed in [85]. This algorithm is designed to improve the throughput of inter-

section by reorganizing the vehicle platoons around it, in consideration of safety,

fuel consumption, speed limit, heterogeneous features of vehicles, and passenger

comfort.

Figure 1.9 – Vehicle platoon in GCDC 2011

In 2011, the Netherlands Organization for Applied Scientific Researche (TNO),

together with the Dutch High Tech Automotive Systems innovation programme

(HTAS) organized the Grand Cooperative Driving Challenge (GCDC) [118, 45, 73,

53, 165]. The 2011 GCDC mainly focused on CACC. Nine international teams par-

ticipated in the challenge (see Figure 1.9), and they need to form a two-lane platoon

with the help of V2X technologies and longitudinal control strategies. However, the

algorithms running at each vehicle are different and not available to each other. The

competition successfully showed cooperative driving of different vehicles ranging

from a compact vehicle to a heavy-duty truck. Several issues should be addressed

in the future like dealing with the flawed or missing data from other vehicles and

lateral motions such as merging and splitting to be closer to realistic situations.



28 Chapter 1. Introduction to ITS

1.5. Vehicle Ad hoc networks

Individual autonomous vehicles can not represent the whole intelligent vehicle sys-

tem. The ITS emphasis on the interaction with other vehicles and also the environ-

ments such as pedestrian, obstacles, traffic lights in order to exchange these infor-

mation in ITS all over the world. Dedicated Short-Range Communications (DSRC)

provide communications between a vehicle and the roadside in specific locations,

for example toll plazas. They may then be used to support specific Intelligent

Transport System applications such as Electronic Fee Collection. The standards of

Dedicated Short Range Communications (DSRC) technology have been formulated

for use in the V2V and V2I communication. DSRC is a kind of one-way or two-way

short-range multi-media wireless communication. Based on common communica-

tion protocols like IEEE802.11/3G/LTE, DSRC tends be a modified version specifi-

cally designed for high speed automotive use. The mainstream of DSRC standards

systems are TC278 formulated by CEN (European Committee for Standardization)

and TC204 formulated by ISO(International Organization for Standards). Other

standardization organizations such as European Telecommunications Standards In-

stitute (ETSI) and Japanese Association of Radio Industries and Businesses (ARIB)

have also been involved in the process of formulating DSRC standards. DSRC sys-

tems are used in the majority of European Union countries, but these systems are

currently not totally compatible. Therefore, standardization is essential in order

to ensure pan-European interoperability, particularly for applications such as elec-

tronic fee collection, for which the European imposes a need for interoperability

of systems. Standardization will also assist with the provision and promotion of

additional services using DSRC, and help ensure compatibility and interoperability

within a multi-vendor environment. Cooperation and harmonization efforts among

government and standards organizations have been made for global utilization.[71]

As intelligence vehicle is becoming an important method to decrease the rate of

traffic accidents and relive the urban traffic rush, this work becomes important for

the interpretability of systems and globalization of ITS. We can easily foresee the

development track of the ITS.
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DSRC tackles two main tasks: V2V communication and V2I communication.

V2V communications carry out through a MANET (mobile ad hoc network), in

which the word "ad hoc" comes from Latin and it means "for this purpose" and

MANET is a self-configuring infrastructureless network of mobile devices con-

nected by wireless. But the V2V network is still a little different from ad hoc and

cellular systems in resource availability and mobility characteristics. Therefore,

adopting existing wireless networking solutions to this environment may result in

low performance in delay, throughput, and fairness. The vehicle-to-infrastructure

communication transfers information between vehicles and the immobile infras-

tructures. The protocols may be also different from V2V networks because a rush

traffic may cause a concentration of the information. The V2I network will support

high throughput, low delay, and fair access to available resources.

Originally designed for ETC (Electronic toll collection) system, DSRC technol-

ogy has been developed and applied in many other typical fields, such as Coopera-

tive Adaptive Cruise Control, Cooperative Forward Collision Warning, Emergency

warning, Advanced Driver Assistance Systems, Vehicle safety inspection, Electronic

parking payments.

Although the DSRC standardization is in process, a number of institutes and

companies did some early researches on the DSRC applications with well de-

veloped short range communication systems such as Bluetooth[61, 58, 59, 48],

Zigbee[33, 34] and WiFi[98, 40, 57, 74], because they are off-the-shelf commercially

ready solutions.

• Bluetooth. Bluetooth network forms a Piconet with one master and a collec-

tion of slaves is called. There can only be one master and up to seven active

slaves in a single Piconet. The slaves only have a direct link to the master,

and not with each other. Multiple Piconets can be joined together to form a

Scatternet. A frequency-hopping channel based on the address of the master

defines each piconet. The master’s transmissions may be either point-to-point

or point-to-multipoint. Also, besides in an active mode, a slave device can be

in the parked or standby modes so as to reduce power consumptions. The

effective range of the original version of Bluetooth is less than 10 meters. But
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Figure 1.10 – DSRC demonstration

the later version promoted the function of Bluetooth and allows the device

to transmit data at the distance up to 100 meters, the data rate is also been

promoted.

• ZigBee. ZigBee is another short range wireless communication protocol de-

signed specifically for individual remote controls. ZigBee was designed cost-

less and "sleeping" strategy leads to low power consumption so that a Zig-

bee device would work for over years without changing the battery. But the

transmission has a lower data rate comparing to Bluetooth. Zigbee system is

widely used in the industrial environments which have lower requirement on

the data rate.

• Wireless fidelity (Wi-Fi). A series of standards for wireless local area networks

(WLAN). Wi-Fi is a wireless version of a common wired Ethernet network,

and requires configuration to set up shared resources, transmit data. Wi-Fi

uses the same radio frequencies as Bluetooth, but with higher power, resulting
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in higher data rates. As Wi-Fi is connected to the World Wide Web, it is easy

to exchange information with the database long distance away. It is more

complicate in installing the infrastructures and configuration, so using in V2V

communication maybe less advantaged compare to the former two systems.

But in the V2I communication which has the requirement of data rate and

node tolerance, the Wi-Fi would be more suitable.

In[34] a simulation of the performance of V2V communication with the uses

of AODV routing protocol is presented. Two different wireless protocols of

IEEE802.11 (WLAN) and IEEE802.15.1(Zigbee) were compared under the same con-

dition. The result showed that when the number of vehicle nodes increases, the

transmission in WLAN yields the higher successful rate and shorter delay than

that in Zigbee. In addition, when the number of vehicle nodes increases, WLAN

yields less number of hops and tends to be constant while the average number of

hops in Zigbee network keeps increasing as the network density increases. From

the comparison of these short range communication systems, we can see they all

have advantages and disadvantages in applying in ITS. [48] focused on issues relat-

ing to ad-hoc network formation in a mobile environment using Bluetooth technol-

ogy, the author found Bluetooth is a good choice for inter-vehicle communication

because the nodes (vehicles) are constantly moving in and out of range of the mas-

ter node and local piconets. Though Bluetooth provides a strong foundation in

forming ad-hoc networks for mobile vehicles, problems like large connection time

and topological changing for the mobile nodes have been showed too. While for

IEEE802.11 connection, the result of [74] showed the Wi-Fi protocol have also the

problems in routing overheads in the environment of long distance and high veloc-

ities. Besides, IEEE802.11 (Wi-Fi) standard were designed to provide a replacement

for wired infrastructure networks, so it is highly infrastructure-depended. How-

ever, the short-range communication system dedicated for ITS should have high

flexibility with respect to asymmetric data flows, allows the communication over

large distances and supports high velocities.
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Table 1.1 – Comparison of the short range communication systems

Standard Bluetooth Zigbee Wi-Fi
IEEE specification 802.15.1 802.15.4 802.11a/b/g

Maximum data rate 24Mb/s 250kb/s 54Mb/s
Transmission range 100m(class1) 100m 300m

Maximum number of
nodes

7(single piconet) 65536+ 2007

1.6. Machine Learning

Autonomous vehicles cannot always be programmed to execute predefined actions

because one does not always know in advance the unpredicted situations that the

vehicle might encounter. Today, however, most vehicles used in the researches are

pre-programmed and require a well-defined and controlled environment. Repro-

gramming is often a costly process requiring an expert. By enabling vehicles to

learn tasks either through autonomous self-exploration or through guidance from

a human teacher, task reprogramming can be simplified. Vehicles can be regarded

like intelligent robots that are able to learn.

Recent researches has shown a drift toward artificial intelligence approaches

to improve the robot autonomous ability based on accumulated experiences, and

artificial intelligence methods can be computationally less expensive than classical

ones. Machine learning approaches are often applied, to each the burden on sys-

tem engineers. Learning therefore has become a central topic in modern robotics

research.

Learning consists of a multitude of machine learning approaches, particularly

reinforcement learning, imitation learning, inverse reinforcement learning, and re-

gression methods, that have been adapted sufficiently to domain so that they al-

low learning in complex robot systems such as helicopters, flapping-wing flight,

legged robots, anthropomorphic arms and humanoid robots. While classical ar-

tificial intelligence-based robotics approaches have often attempted to manually

generate a set of rules and models that allows the robot systems to sense and act

in the real-world, robot learning centers around the idea that it is unlikely that we

can foresee all interesting real-world situations sufficiently accurate.
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While robot learning covers a wide range of fields, from learning to perceive, to

plan, to make decisions, etc., we focus our work on applying learning approaches

to intelligent vehicles. In general, learning control refers to the process of acquiring

a particular control system and a particular task by trial and error [141]. Rein-

forcement Learning (RL) and learning from Demonstration (LfD) are mentioned

as two popular families of algorithms for learning policies for sequential decision

problems [24].

• Reinforcement learning algorithms solve sequential decision problems posed

as Markov Decision Processes (MDPs), learning a policy by letting the agent

explore the effects of different actions in different situations while trying to

maximize a sparse reward signal. RL has been successfully applied to a vari-

ety of scenarios.

• Learning from demonstration is an approach to agent learning that takes as

input demonstrations from a human in order to build action or task models.

There are a broad range of approaches that fall under the umbrella of LfD

research[6]. These demonstrations are typically represented as state-action

tuples, and the LfD algorithm learns a policy mapping from states (input) to

actions (output) based on the examples seen in the demonstrations. Inverse

reinforcement learning (IRL), as one important branch of LfD methods, ad-

dresses the problem of estimating the reward function of an agent acting in a

dynamic environment.

Another approach is to provide a mapping from sensory inputs to actions that

statistically capture the key behavioral objectives without needing a model or de-

tailed domain knowledge [26]. Such methods are well-suited to domains where the

tools available to learn from past experience and adapt to emergent conditions are

limited.

With the advent of increasingly efficient learning methods, one can observe

a growing number of successful applications in this area, such as autonomous

helicopter control [106, 2, 1], self-driving car [159, 99, 162], autonomous underwater
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vehicles (AUVs) control [18], mobile robot navigation [69], robot soccer control

[135].

Recently, several interesting applications have appeared. [81] worked with a

Willow Garage Personal Robot 2 (PR2), named Berkeley Robot for the Elimination

of Tedious Tasks (BRETT), and empowered BRETT has acquired the ability to learn

to perform various tasks on its own via trial and error, without pre-programmed

details about its surroundings. Those tasks include assembling a wheel part onto

a toy airplane, stacking a Lego block, and screwing a cap on a water bottle. [102]

used imitation and reinforcement learning techniques to enable a Barrett WAM

arm to learn successful hitting movements in table tennis. [78] taught a robot to

flip a pancake. Other successful robot learning applications also include [131, 77,

179, 180, 176, 175, 178].

1.7. Conclusion

This chapter gives a detailed introduction to intelligent road transportation sys-

tems. Firstly, the background of the current traffic situation and problems were

introduced. Therefore it should be ameliorated and related technologies should

be developed. Then several historical researches worldwide are presented. As a

promising solution to reduce the accidents caused by human errors, autonomous

vehicles are being developed by research organizations and companies all over the

world. The state-of-art in autonomous vehicle development is introduced in this

chapter as well.

Secondly, we briefly introduced ITS, AHS and intelligent vehicle, which were

considered as the most promising solutions to the traffic problems.

Thirdly, the CACC system is presented. CACC is an extension of ACC systems

by enabling the communication among the vehicles in a platoon. CACC can not

only relief the driver from repetitive jobs like adjusting speed and distance to the

preceding vehicle like ACC, but also has safer and smoother response than ACC

systems.

Fourthly, a key aspect in developing ITS: the communication is introduced. Spe-

cific to road transportation systems, it is V2X communications, including V2V com-
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munication and V2I communication. By enabling communications among these

agents, the VANETs are formed. With VANET, autonomous systems can be up-

graded into cooperative systems, in which a vehicle’s range of awareness can be

extended, therefore it can anticipate in advance in an optimal way. Different kinds

of applications using VANET are developed in order to make the road transporta-

tion safer, more efficient and user friendly.

Finally, the technology of machine learning is introduced, which can be applied

on intelligent vehicles.

Safety and efficiency are two most demanded features of ITS. Therefore, in this

thesis, we focus on an Stop-and-Go scenario with different applications designed in

order to improve the throughput while guarantee safety and stability by controlling

the actions of vehicle platoons or individual vehicles.
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2.1. String stability

2.1.1. Introduction

Arriving at one place safely in a certain period is the basic requirement of trans-

portation. However, today’s road transportation is far from perfect. Incorrect driv-

ing behaviors like drunken driving, fatigue driving and speeding are thought to be

the main reasons for road accidents which on one hand cause injury, death, and

property damage, on the other hand make vehicles keep larger distance from each

other, thus the road capacity is not made full use of. Moreover, congestion caused

by incorrect driving behaviors, accidents, improper signal timing have become a

global phenomenon which has economically and ecologically negative effects, so

that people have to spend more time on road and more fuel is consumed, which

leads to more pollution.

More efficient, better space utilization and elimination of human error, self-

driving or semi self-driving car developed by Google and automobile manufac-

turers all over the world is a potentially revolutionizing technology to solve these

problems [120]. However, the intelligence of individual vehicles does not represent

the intelligence of the whole transportation system.

A completely different concept proposed by the California PATH Program, is

vehicle "platoon", where the vehicles travel together with a close separation [127].

String stability is an important goal to be achieved in (C)ACC system design [95].

A platoon of vehicles is called string stable only if disturbances propagated from

the leading vehicle to the rest of the platoon can be attenuated [117]. As opposed

to conventional stability notions for dynamical systems, which are basically con-

cerned with the evolution of system states over time, string stability focuses on the

propagation of system responses along a cascade of systems. Several approaches

exist regarding string stability, as reviewed below.

2.1.2. Previous research

Probably the most formal approach is based on Lyapunov stability, of which [143]

provides an early description, comprehensively formalized in [152]. In this ap-
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proach, the notion of Lyapunov stability is employed, focusing on initial condition

perturbations. Consequently, string stability is interpreted as asymptotic stability

of interconnected systems [29]. Recently, new results appeared in [75], regarding

a one-vehicle lookahead topology in a homogeneous vehicle platoon. In this brief,

the response to an initial condition perturbation of a single vehicle in the platoon

is considered, thereby conserving the disturbance-propagation idea behind string

stability. The drawback of this approach, however, is that only this special case is re-

garded, ignoring the effect of initial condition perturbations of other vehicles in the

platoon, as well as the effect of external disturbances to the interconnected system.

Consequently, the practical relevance of this approach is limited, since external dis-

turbances, such as velocity variations of the first vehicle in a platoon, are of utmost

importance in practice. The perspective of infinite-length strings of interconnected

systems [27] also gave rise to a notion of string stability, described in [93] in the

context of a centralized control scheme and in [23] for a decentralized controller.

Various applications regarding interconnected systems are reported in [8] and [83],

whereas [7] and [27] provide extensive analyzes of the system properties. In this

approach, the system model is formulated in the state space and subsequently

transformed using the bilateral Z-transform. The Z-transform is executed over the

vehicle index instead of over (discrete) time, resulting in a model formulated in the

"discrete spatial frequency" domain [7], related to the subsystem index, as well as

in the continuous-time domain. String stability can then be assessed by inspecting

the eigenvalues of the resulting state matrix as a function of the spatial frequency.

Unfortunately, the stability properties of finite-length strings, being practically rel-

evant, might not converge to those of infinite-length strings as length increases.

This can be understood intuitively by recognizing that in a finite-length platoon,

there will always be a first and a last vehicle, whose dynamics may significantly

differ from those of the other vehicles in the platoon, depending on the controller

topology. Consequently, the infinite-length platoon model does not always serve as

a useful paradigm for a finite length platoon as it becomes increasingly long [27].

The most important macroscopic behaviors of ACC vehicles is string stability.

Such stability has been first recognized by D. Swaroop [155]. The string stability
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of a string of vehicles refers to a property in which spacing errors are guaranteed

not to amplify as they propagate towards the tail of the string [154, 140]. This

property ensures that any spacing error present at the head of the string does not

amplify into a large error at the tail of the string. A general method to evaluate

string stability is to examine the transfer function from the spacing error of the

proceeding vehicle to that of the following vehicle. If the infinite norm of this

transfer function is less than 1, string stability is ensured [153, 169].

For an interconnected system, such as a platoon of automated vehicles, stability

of each component system itself is not sufficient to guarantee a certain level of

performance, such as the boundedness of the spacing errors for all the vehicles.

This is reasonable because our research object is a string of vehicles instead of only

one vehicle. Therefore, besides the individual stability of each vehicle, another

stability criterion known as the string stability is also required [62, 125].

Finally, a performance-oriented approach for string stability is frequently

adopted, since this appears to directly offer tools for controller design for linear cas-

caded systems. This approach is employed for the control of a vehicle platoon with

and without lead vehicle information in [144], whereas [129] and [104] apply inter-

vehicle communication to obtain information of the preceding vehicle. In [149], a

decentralized optimal controller is designed by decoupling the interconnected sys-

tems using the so-called inclusion principle, and in [72], optimal decentralized con-

trol is pursued by means of nonidentical controllers. Furthermore, [94] extensively

investigated the limitations on performance, whereas in [47], a controller design

methodology was presented. Finally, in [19] the performance-oriented approach

is adopted to investigate a warning system for preventing head-tail collisions in

mixed traffic.

2.1.2.1. Definition of string stability

In the performance-oriented approach, string stability is characterized by the am-

plification in upstream direction of either distance error, velocity, or acceleration,

the specific choice depending on the design requirements at hand.

A simple scenario can be used to explain the string stability, illustrated in Fig-
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ure. 2.1. In this figure, a platoon of five vehicles, from left to right, is taking a brake

action. The leading vehicle is denoted as 1st while the last vehicle is denoted as 5th.

In the figure above, a speed vs. time coordinate graph for each of the five vehicles

is shown. As time goes by, the leading vehicle decelerates linearly and we can see

different response of the following vehicles in the platoon depending on whether

the platoon is string stable or not. In Figure. 2.1(a), the vehicle platoon is string

stable: the disturbance of the brake action of the leading vehicle is not amplified

through the following vehicles and the deceleration of following vehicles is smooth

with slight fluctuation of the speed. In Figure. 2.1(b), the platoon is considered not

string stable (string unstable): the following vehicles decelerate even more than the

leading vehicle. Though finally, the velocities of the following vehicles approach

the leading vehicle’s velocity, their response fluctuate significantly. Therefore, when

velocity of vehicles fluctuates, the distance between consecutive vehicles is also suf-

fering from great fluctuation. As a result, rear-end collisions between vehicles are

more likely to taken place.

Figure 2.1 – String stability illustration: (a) stable (b) unstable

The more formalized and generalized definition of string stability was given

by Swaroop [153]. The mathematical definitions for string stability, a symptotically

stability, and lp string stability were made. We use the definitions proposed by

Swaroop [152, 153]. At first, we use the following notations: ‖ fi(·)‖∞ denotes
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supt≥0 | fi(t) |, and ‖ fi(0)‖∞ denotes supi | fi(0)|. For all p < ∞, ‖ fi(·)‖p denotes

(
∫ ∞

0 | fi(t)|pdt)
1
p and ‖ fi(0)‖p denotes (∑∞

1 | fi(0)|p)
1
p .

Consider an interconnected system:

ẋi = f (xi, xi−1, · · · , xi−r+1) (2.1)

where i ∈N, xi−j ≡ 0 ∀i ≤ j, x ∈ Rn, f : Rn × · · · ×Rn︸ ︷︷ ︸
r times

→ Rn and f (0, · · · , 0) = 0.

Defnition 1 (String stability). The origin xi = 0, i ∈ N of (2.1) is string stable,

if given any ε > 0, there exist a δ > 0 such that :

‖xi(0)‖∞ < δ⇒ sup
i
‖xi(·)‖∞ < ε

Defnition 2 (Asymptotically (exponential) stability). The origin xi = 0, i ∈

N of (2.1) is asymptotically (exponentially) string stable if it is string stable and

xi(t)→ 0 asymptotically (exponentially) for all i ∈N.

A more general definition of string stability is given in follow:

Defnition 3 (lp String stability). The origin xi = 0, i ∈ N of (2.1) is lp string

stable if for any ε > 0, there exist a δ > 0 such that :

‖xi(0)‖p < δ⇒ sup
i

(
∞

∑
1
|xi(t)|p

) 1
p

< ε

It is clear that Definition 1 can be obtained as l∞ string stability of Definition 3.

The generalized string stability implies uniform boundedness of the system states

if the initial conditions are uniformly bounded.

2.1.2.2. String stability in vehicle following system

Figure 2.2 – Vehicle platoon illustration
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In the case of vehicle following system, such as a vehicle platoon as shown in

Fig. 2.2, for the ith vehicle, si is the location measured from an inertial reference, as

shown in the same figure. We define the spacing error for the ith vehicle as:

ei = si − si−1 + dr, i (2.2)

where dr, i is the desired spacing measured from vehicle i− 1 to i, and it includes

the preceding vehicle’s length Li − 1. A sufficient condition for string stability is

that [152, 153]:

‖ei‖∞ ≤ ‖ei−1‖∞ (2.3)

Let the signal of interest be denoted by zi for ith vehicle, and let Γi(jω) denote

the frequency response function describing the relation between the scalar output

zi−1 of a preceding vehicle i − 1 and the scalar output zi of the follower vehicle i.

Then the interconnected system is considered string stable if

sup
ω
|Γi(jω)| ≤ 1, 2 ≤ i ≤ n (2.4)

where n is the string length; the supremum of Γi(jω) equals the scalar version of

the norm. Since the H∞ norm is induced by the L2 norms of the respective signals,

this approach requires the L2 norm ||yi(t)||L2 to be non-increasing for increasing

index i. Because of its convenient mathematical properties, the L2 gain is mostly

adopted; nevertheless, approaches that employ the induced L∞ norm are also re-

ported [38]. Regardless of the specific norm that is employed, the major limitation

of the performance oriented approach is that only linear systems are considered,

usually without considering the effect of nonzero initial conditions.

2.2. Markov Decision Processes

In recent years, a fast development of using machine learning techniques onto robot

control problems is happening. Machine learning enables an agent to learn from

example data or past experience to solve a given problem. In supervised learning,

the learner is provided an explicit target for every single input, that is, the envi-
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ronment tells the learner what its response should. In contrast, in reinforcement

learning, only partial feedback is given to the learner about the learner’s decisions.

Therefore, under the framework of RL, the learner is a decision-making agent that

takes actions in an environment and receives reward (or penalty) for its actions in

trying to solve a problem. After a set of trial-and error runs, it should learn the

best policy, which is the sequence of actions that maximizes the total reward [151].

EnvironmentAgent

Reward r

State s

Action a

Figure 2.3 – The mechanism of interaction between a learning agent and its environment in
reinforcement learning

Reinforcement learning is generally operated in a setting of interaction, shown

in Figure 2.3: the learning agent interacts with an initially unknown environment,

and receives a representation of the state and an immediate reward as the feedback.

It then calculates an action, and subsequently undertakes it. This action causes the

environment to transit into a new state. The agent receives the new representation

and the corresponding reward, and the whole process repeats.

The environment in RL is generally formulated as a Markov Decision Process

(MDP), and the goal is to learn to a control strategy so as to maximize the total

reward which represents a long-term objective. In this chapter, we introduces the

structural background of Markov Decision Process and reinforcement learning in

robotics.

A Markov Decision Process describes a sequential decision-making problem

in which an agent must choose the sequence of actions that maximizes some

reward-based optimization criterion [123, 151]. Formally, an MDP is a tuple

M = {S ,A, T , r, γ}, where

• S = {s1, . . . , sN} is a finite set of N states that represents the dynamic envi-

ronment,
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• A = {a1, . . . , ak} is a set of k actions that could be executed by an agent,

• T : S × A × S 7−→ [0, 1] is a transition probability function, or transition

model, where T (s, a, s′) stands for the state transition probability upon ap-

plying action a ∈ A in state s ∈ S leading to state in state s′ ∈ S , i.e.

T (s, a, s′) = P(s′ | s, a),

• r : S × A 7−→ R is a reward function with absolute value bounded by Rmax;

r(s, a) denotes the immediate reward incurred when action a ∈ A is executed

in state s ∈ S ,

• γ ∈ [0, 1) is a discount factor.

Given an MDP M, the agent-environment interaction in Figure 2.3 works as

follows: let t ∈ N denote the current time, let St ∈ S and At ∈ A denote the

random state of the environment and the action chosen by the agent at time t,

respectively. Once the action is selected, it is sent to the system, which makes a

transition:

(St+1, Rt+1) ∼ P(· | St, At). (2.5)

In particular, St+1 is random and P(St+1 = s′ | St = s, At = a) = T (s, a, s′) holds

true for any s, s′ ∈ S , a ∈ A. Furthermore, E [Rt+1 | St, At] = r(St, At). The agent

then observes the next state St+1 and reward Rt+1, chooses a new action At+1 ∈ A

and the process is repeated.

The Markovian assumption [151] implies that the sequence of state-action pairs

specifies the transition model T :

P(St+1 | St, At, · · · , S0, A0) = P(St+1 | St, At). (2.6)

State transitions can be deterministic or stochastic. In the deterministic case,

taking a given action in a given state always results in the same next state; while in

the stochastic case, the next state is a random variable.

The goal of the learning agent is to figure out a theory of choosing the actions

so as to maximize the expected total discounted reward:
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R =
∞

∑
t=0

γtRt+1. (2.7)

If γ < 1 then the rewards received far in the future are exponentially less worthy

than those received at the first stage.

2.3. Policies and Value Functions

The action selection of the agent is based on a special function called policy. A

policy is defined as a mapping π : S × A 7−→ [0, 1] that assigns to each s ∈ S a

distribution π(s, ·) over A, satisfying ∑a∈A π(a | s) = 1, ∀s ∈ S .

A deterministic stationary policy is the case that for all s ∈ S , π(· | s) is concen-

trated on a single action, i.e. at any time t ∈ N, At = π(St). A stochastic stationary

policy is a function that maps each state into a probability distribution over the

different possible actions, i.e., At ∼ π(· | St). The class of all stochastic stationary

policies is denoted by Π.

Application of a policy works in the following way. First, a start state S0

is generated. Then, the policy π suggests the action A0 = π(S0) and this ac-

tion is performed. Based on the transition function T and reward function r,

a transition is made to state X1, with a probability T (S0, A0, S1) and a reward

R1 = r(X0, A0, X1) is received. This process continues, producing a sequence

S0, A0, R1, S1, A1, R2, S2, A2, ..., as shown in Figure 2.4.

S0 S1 S2 S3

A0 A1 A2

R1 R2 R3

Figure 2.4 – Decision network of a finite MDP



2.3. Policies and Value Functions 47

Value functions are functions of states (or of state-action pairs) that estimate how

good it is for the agent to be in a given state (or how good it is to perform a given

action in a given state). The notion of "how good" here is defined in terms of

future rewards that can be expected, or, to be precise, in terms of expected return.

Of course the rewards the agent can expect to receive in the future depend on

what actions it will take. Accordingly, value functions are defined with respect to

particular policies [151].

Given a a policy π, the value function is defined as a function Vπ : S 7−→ R

that associates to each state the expected sum of rewards that the agent will receive

if it starts executing policy π from that state:

Vπ(s) = Eπ

[
∞

∑
t=0

γtr(St, At) | S0 = s

]
, ∀s ∈ S . (2.8)

St is the random variable representing the state at time t, At is the random

variable corresponding to the action taken at that time instant and is such that

P(At = a | St = x) = π(x, a). (St, At)t≥0 is the sequence of random state-action

pairs generated by executing the policy π.

The value function of a stationary policy can also be recursively defined as:

Vπ(s) = Eπ

[
∞

∑
t=0

γtr(St, At) | S0 = s

]

= Eπ

[
r(S0, A0) +

∞

∑
t=1

γtr(St, At) | S0 = s

]

= r(s, π(s)) + Eπ

[
∞

∑
t=1

γtr(St, At) | S0 = s

]

= r(s, π(s)) + γEπ

[
∞

∑
t=0

γtr(St, At) | S0 ∼ T (s, π(s), ·)
]

= r(s, π(s)) + γ ∑
s′∈S
T (s, π(s), s′)Vπ(s′),

(2.9)

where π(s) is the action associated to state s.

If the uncertainty of a stochastic policy π(s) is taken into account, Vπ(s) can

also be specifically written as:
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Vπ(s) = ∑
a∈A(s)

π(s, a)

(
r(s, a) + γ ∑

s′∈S
T (s, a, s′)Vπ(s′)

)
. (2.10)

Similarly, the action-value function Qπ : S × A 7−→ R underlying a policy π is

defined as

Qπ(s, a) = Eπ

[
∞

∑
t=0

γtr(St, At) | S0 = s, A0 = a

]
, (2.11)

where St is distributed according to π(St, ·) for all t > 0. Finally, we defined the

advantage function associated with π as

Aπ = Qπ(s, a)−Vπ(s). (2.12)

A policy that maximizes the expected total discounted reward over all states

is called an optimal policy, denoted π∗. For any finite MDP, there is at least one

optimal policy.

The optimal value function V∗ and the optimal action-value function Q∗ are defined

by

V∗(s) = sup
π

Vπ(s), s ∈ S ,

Q∗(s, a) = sup
π

Qπ(s, a), s ∈ S , a ∈ A.
(2.13)

Moreover, the optimal value- and action-value functions are connected by the

following equations:

V∗(s) = sup
a∈A

Q∗(s, a), s ∈ S , (2.14)

Q∗(s, a) = r(s, a) + γ ∑
s′∈S

P(s′ | s, a)V∗(s′), s ∈ S , a ∈ A. (2.15)

It turns out that V∗ and Q∗ satisfy the so-called Bellman optimality equations

[123]. In particular,
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Q∗(s, a) = r(s, a) + γ ∑
s′∈S

P(s′ | s, a)max
b∈A

Q∗(s′, b), (2.16)

V∗(s) = max
a∈A

r(s, a) + V∗(s′). (2.17)

We call a policy that satisfies ∑a∈A π(a | s)Q(s, a) = maxa∈A Q(s, a) at all states

s ∈ S greedy w.r.t. the function Q. It is known that all policies that are greedy w.r.t.

Q∗ are optimal and all stationary optimal policies can be obtained these way.

Here, we present the following important results concerning MDP [151]:

Theorem 1 (Bellman Equations). Let a Markov Decision Problem M =

{S ,A, T , r, γ} and a policy π : S ×A −→ [0, 1] be given. Then, ∀s ∈ S , a ∈ A, Vπ

and Qπ satisfy

Vπ(s) = r(s, π(s)) + γ ∑
s′∈S
T (s, π(s), s′)Vπ(s′), (2.18)

Qπ(s, a) = r(s, a) + γ ∑
s′∈S
T (s, a, s′)Vπ(s′). (2.19)

Theorem 2 (Bellman Optimality). Let a Markov Decision Problem M =

{S ,A, T , r, γ} and a policy π : S × A −→ [0, 1] be given. Then, π is an optimal

policy forM if and only if, ∀s ∈ S ,

π(s) ∈ arg max
a∈A

Qπ(s, a). (2.20)

The transition probability T (s, a, s′) = P(s′ | s, a).

2.4. Dynamic Programming: Model-Based Algorithms

Dynamic programming (DP) is a method for calculation of an optimal policy π∗ in

order to solve a given Markov decision process.

Dynamic programming assumes complete knowledge of the Markov decision

process, including the transition dynamics of the environment and the reward func-

tion [10]. Therefore, it is classified into model-based learning algorithms. On the
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contrary are model-free learning algorithms, which do not require a perfect model

of the environment, and will be introduced them later in this chapter.

Dynamic programming algorithms for solving MDPs can be categorized into

one of the two aspects: value iteration (VI) and policy iteration (PI) [151]. Both

of these approaches share a common underlying mechanism, the generalized policy

iteration (GPI) principle [151], depicted in Figure 2.5. This principle consists of two

interaction processes. The first step, policy evaluation, estimates the utility of the

current policy π, that is, it computes the value Vπ. This step gathers information

about the policy for computing the second step, the policy improvement step. In this

step, the values of the actions are evaluated for every state, in order ot find possible

improvements, that is, possibly other actions in particular states that are better than

the action the current policy proposes. This step computes an improved policy π′

from the current policy π using the information in Vπ. As long as both processes

continue to update all states, the ultimate goal is to converge to the optimal value

function and an optimal policy. Figure 2.6 presents a geometric metaphor for con-

vergence of both the value function and the policy in GPI.

V!V
"

"! V

Figure 2.5 – Interaction of policy evaluation and improvement processes

2.4.1. Policy Iteration

Policy iteration iterates between the two processes of GPI. This is repeated until

converging to an optimal policy. This method is depicted in Algorithm 1.

It consists in starting with a randomly chosen policy πt and a random initial-

ization of the corresponding value function Vk, for k = 0 and t = 0 (Steps 1 to 3),

and iteratively repeating the policy evaluation and the policy improvement operations.
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!

!*

V*

V, !

Figure 2.6 – The convergence of both the value function and the policy to their optimals

Algorithm 1: Policy Iteration [151]
Require: An MDP model 〈S ,A, T , r, γ〉;
/* Initialization */
t = 0, k = 0;
∀s ∈ S : Initialize πt(s) with an arbitrary action;
∀s ∈ S : Initialize Vk(s) with an arbitrary value;
repeat
/* Policy evaluation */
repeat
∀s ∈ S : Vk+1(s) = r(s, πt(s)) + γ ∑s′∈S T (s, πt(s), s′)Vk(s′);
k← k + 1;

until ∀s ∈ S : |Vk(s)−Vk−1(s)| < ε;
/* Policy improvement */
∀s ∈ S : πt+1(s) = arg maxa∈A [r(s, a) + γ ∑s′∈S T (s, a, s′)Vk(s′)];
t← t + 1;

until πt = πt−1;
π∗ = πt;
return An optimal policy π∗.

Policy evaluation (Steps 5 to 8) consists in calculating the action value of policy

πt+1 by solving the solving the equations (2.19) for all the states s ∈ S . An efficient

iterative way to solve this equation is to initialize the value function of πt+1 with

the value function Vk of the previous policy, and then repeat the operation:

∀s ∈ S : Vk+1(s) = r(s, πt(s)) + γ ∑
s′∈S
T (s, πt(s), s′)Vk(s′), (2.21)

until ∀s ∈ S : |Vk(s)−Vk−1(s)| < ε, for a predefined error threshold ε.

Policy improvement (Steps 9 to 10) consists in finding the greedy policy πt+1
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given the value function Vk:

∀s ∈ S : πt+1(s) = arg max
a∈A

[
r(s, a) + γ ∑

s′∈S
T (s, a, s′)Vk(s′)

]
. (2.22)

This process stops when πt = πt−1, in which case πt is an optimal policy, i.e.,

π∗ = πt.

In sum, PI generates a direct sequence of alternating policies and value func-

tions:

π0 → Vπ0 → π1 → Vπ1 → · · · → π∗ → V∗ → π∗

The policy evaluation processes occur in the transitions of πt → Vπt ; while the

Vπt → πt+1 conversions are realized by the policy improvement processes.

2.4.2. Value Iteration

One of the drawbacks of policy iteration is that a complete policy evaluation is

involved in each iteration. Value iteration consists in overlapping the evaluation

and improvement processes.

Instead of completely separating the evaluation and improvement processes,

the value iteration approach breaks off evaluation after just one iteration. In fact, it

immediately blends the policy improvement step into its iterations, thereby purely

focusing on estimating directly the value function.

Value iteration, described in Algorithm 2, can be written as a simple backup

operation:

∀s ∈ S : Vk+1(s) = max
a∈A

[
r(s, a) + γ ∑

s′∈S
T (s, a, s′)Vk(s′)

]
. (2.23)

This operation is repeated (Steps 3 to 6) until ∀s ∈ S : |Vk(s)−Vk−1(s)| < ε, in

which case the optimal policy is simply the greedy policy with respect to the value

function Vk (Step 7).

VI produces the following sequence of value functions:
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Algorithm 2: Value Iteration [151]
Require: An MDP model 〈S ,A, T , r, γ〉;

k = 0;
∀s ∈ S : Initialize Vk(s) with an arbitrary value;
repeat
∀s ∈ S : Vk+1(s) = maxa∈A [r(s, a) + γ ∑s′∈S T (s, a, s′)Vk(s′)];
k← k + 1;

until ∀s ∈ S : |Vk(s)−Vk−1(s)| < ε;
∀s ∈ S : π∗(s) = arg maxa∈A [r(s, a) + γ ∑s′∈S T (s, a, s′)Vk(s′)];
return An optimal policy π∗.

V0 → V1 → V2 → V3 → V4 → V5 → · · · → π∗

2.5. Reinforcement Learning: Model-Free Algorithms

Reinforcement learning is a one method of machine learning framework for solving

sequential decision problems that can be modeled as MDPs [70]. Unlike dynamic

programming that assumes the complete knowledge of a perfect model of the en-

vironment, RL is primarily concerned with how to obtain an optimal policy when

such a model is not available. Therefore, reinforcement learning is model-free. In

addition, RL adds to MDPs a focus on approximation and incomplete information,

and the need for sampling and exploration to gather statistical knowledge about

this unknown model.

For a RL problem, the agent and its environment could be modeled being in a

state s ∈ S and can perform actions a ∈ A, each of which may be members of either

discrete or continuous sets and can be multi-dimensional. A state s contains all

relevant information about the current situation to predict future states. An action

a is used to control the state of the system. For every step, the agent also gets a

reward R, which is a scalar value and assumed to be a function of the state and

observation. It may equally be modeled as a random variable that depends on only

these variables. In the navigation task, a possible reward could be designed based

on the energy costs for taken actions and rewards for reaching targets. Reinforce-

ment learning is designed to find a policy π from states to actions, that picks action

a in given state s maximizing the cumulative expected reward. The policy π is ei-
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ther deterministic or stochastic. The former always uses the exact same action for a

given state in the form a = π(s), the later draws a sample from a distribution over

actions when it encounters a state, i.e., a ∼ π(s, a) = P(a|s). The reinforcement

learning agent needs to discover the relations between states, actions, and rewards.

Hence exploration is required which can either be directly embedded in the pol-

icy or performed separately and only as part of the learning process. Different

types of reward functions are commonly used, including rewards depending only

on the current state R = R(s), rewards depending on the current state and action

R = R(s, a), and rewards including the transitions R = R(s′, a, s).

A detailed survey of reinforcement learning in robotics can be found in [76].

2.5.1. Objectives of Reinforcement Learning

The objectives of RL is to discover an optimal policy π∗ that maps states or observa-

tions to actions so as to maximize the expected return J, which corresponds to the

cumulative expected reward. A finite-horizon model only attempts to maximize

the expected reward for the horizon H, i.e., the next H (time-)steps h:

J = E

{
H

∑
h=0

Rh

}
. (2.24)

This setting can also be applied to model problems where it is known how

many steps are remaining.

Alternatively, future rewards can be discounted by a discount factor γ (with

0 ≤ γ < 1):

J = E

{
∞

∑
h=0

γhRh

}
. (2.25)

Two natural objectives arise for the learner. In the first, we attempt to find an

optimal strategy at the end of a phase of training or interaction. In the second, the

objective is to maximize the reward over the whole time the agent is interacting

with the world.

compared to supervised learning, the agent must first discover its environment

and is not told the optimal action it needs to take. To gain information about the
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rewards and the behavior of the system, the agent needs to explore by consider-

ing previously unused actions or actions it is uncertain about. It needs to decide

whether to play it safe and stick to well known actions with (moderately) high re-

wards or to dare trying new things in order to discover new strategies with an even

higher reward. This problem is commonly known as the exploration-exploitation

trade-off.

RL relies on the interaction between a learning agent and its environment (see

Figure 2.3), the process is similar:

1. A learning agent interacts with its environment in discrete time steps;

2. At each time step t, the agent observes the environment, and receives a rep-

resentation of state st and a reward rt;

3. The agent infers an action at, and subsequently undertaken in the environ-

ment.

4. The agent observes the new environment, and receives a new state represen-

tation st+1 and an associated reward rt+1.

Based on how the agent chooses an action, RL can be distinguished between

off-policy and on-policy methods. Off-policy algorithms learn independent of the

employed policy, i.e., an explorative strategy that is different from the desired final

policy can be employed during the learning process. On-policy algorithms collect

sample information about the environment using the current policy. As a result,

exploration must be built into the policy and determines the speed of the policy

improvements. Such exploration and the performance of the policy can result in

an exploration-exploitation trade-off between long- and short-term improvement

of the policy. A simple exploration scheme known as ε-greedy, performs a random

action with probability ε and otherwise greedily follows the state-action values.

2.5.2. Monte Carlo Methods

Monte Carlo methods use sampling in order to estimate the value function and dis-

cover the optimal policy [151]. The procedure can be used to replace the policy eval-
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uation step of the dynamic programming-base methods above. Unlike DP, Monte

Carlo methods do not assume complete knowledge of the environment. Monte

Carlo methods are model-free, i.e., they do not need an explicit transition function.

They require only experience – sample sequences of states, actions, and rewards

from online or simulated interaction with an environment. Learning from online

experience requires no prior knowledge of the environment’s dynamics, yet can

still attain optimal behavior. Learning from simulated experience requires a model,

but the model need only generate sample transitions, not the complete probability

distributions of all possible transitions that is required by dynamic programming

methods.

Monte Carlo methods solve reinforcement learning problems based on averag-

ing sample returns. They perform rollouts by executing the current policy on the

system, hence operating on-policy. The frequencies of transitions and rewards are

kept track of and used to form estimates of the value function. For example, in an

episodic setting the state-action value of a given state action pair can be estimated

by averaging all the returns that were received when starting from them.

2.5.3. Temporal Difference Methods

Temporal Difference (TD) Methods is a combination of Monte Carlo methods and dy-

namic programming methods [151]. Unlike Monte Carlo methods, TD learning

methods do not have to wait until an estimate of the return is available (i.e., at the

end of an episode) to update the value function. Instead, they use temporal errors

and only have to wait until the next time step. The temporal error is the difference

between the old estimate and a new estimate of the value function, taking into

account the reward received in the current sample. These updates are done itera-

tively and, in contrast to dynamic programming methods, only take into account

the sampled successor states rather than the complete distributions over successor

states. Like the Monte Carlo methods, these methods are model-free, as they do

not use a model of the transition function to determine the value function, and can

learn directly from raw experience without a model of the environment’s dynam-
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ics. In this setting, the value function cannot be calculated analytically but has to

be estimated from sampled transitions in the MDP.

Q-Learning [172] is a representative off-policy, model-free RL algorithm. It in-

crementally processes the transition samples. Q-value is updated iteratively by

Q′(s, a)← Q(s, a) + α

(
r(s, a) + γ max

b∈A
Q(s′, b)−Q(s, a)

)
. (2.26)

SARSA [137] is a representative on-policy, model-free RL algorithm. Different

from Q-learning that uses maxb∈A Q(s′, b) for estimating future rewards, SARSA

uses Q(s′, a′) for a′ the action executed in s′ under the current policy that generates

the transition sample (s, a, , r, s′, a′). Mathematically, the update rule is:

Q′(s, a)← Q(s, a) + α
(
r(s, a) + γQ(s′, a′)−Q(s, a)

)
. (2.27)

If each action is executed in each state an infinite number of times, and for all

state-action pairs (s, a), the learning rate α is decayed appropriately, the Q-values

will converge with probability 1 to the optimal Q∗ [171]. Similar guarantee of

convergence for SARSA can be found in [147] with a more strict requirement on

the exploration of all states and actions.

More contents about reinforcement learning will be subsequently presented in

Chapter 5.

2.6. Conclusion

This chapter has presented the most important criterion to evaluate the perfor-

mance of intelligent vehicle platoon, the string stability. Then the Markov decision

processes, which are the underlying structure of reinforcement learning. Several

classical algorithms for solving MDPs were also briefly introduced. The funda-

mental concepts of the reinforcement learning was then brought.
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3.1. Introduction

With the increasing problems of traffic congestion and safety, the idea of using

automated vehicles driving in automated highway is growing steadily more attrac-

tive. Longitudinal control is one of the basic functions of the vehicle automation.

Longitudinal control system controls the longitudinal motion of the vehicle, such

as velocity, acceleration or the its longitudinal distance from the front vehicle in

the same lane, by using throttle and brake controllers [125], thus to realize the

lane-keeping tasks for the automatic vehicles.

The longitudinal vehicle motion control has been pursued for several decades

and at many different levels by researchers and automotive manufactures. From

1970s to 1980s, there appeared some researches in the control system design for

vehicle engines and brake systems, as shown in [42, 51, 52, 101, 122]. Since then,

some first generation of engine control systems appeared in [22, 49], and some

results in the brake system control have obtained great success, such as the ABS

(Anti-lock Brake System), which have been widely accepted in the automobile in-

dustry. Based on these results, and since 1990s, the researches in the longitudinal

control combined with throttle and brake control has become steadily more attrac-

tive, and a variety of solutions have been proposed in [156, 92] and [60, 91]. In

addition, in 1986, the California PATH (U.S.A.), one of the most fruitful organi-

zation in transportation researches, was established. Almost in the same time, the

program of AHSS (Advanced Highway Safety System) in Japan, and the program of

PROMETHEUS (PROgraMme for a European Traffic of Highest Efficiency and Un-

precedented Safety) in Europe were carried out. These programs have contributed

a considerable efforts and encouraging results in such a control system.

Nowadays, the standard CC system, which can automatically control the throt-

tle to maintain the pre-set speed, is widely available on passenger cars. How-

ever, during the past decade, traffic congestion has become a severe problem

in industrialized nations worldwide due to undesirable human driving behavior

and limited transportation infrastructure. An effective solution to increase traf-

fic throughput is to reduce the inter-vehicle distance, which is however parlous
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for human drivers. To this end, ACC is being developed by researchers and au-

tomotive manufactures to improve traffic flow stability, throughput and safety

[193][90][129][12][115][87][103]. In the case of absence of preceding vehicles, the

ACC vehicle travels the same as a CC vehicle. Compared to simple CC, which is

already equipped in certain commercial vehicles, ACC system is able to improve

driver convenience, reduce workload, which however results in string instability in

most cases.

As described in last chapter, the concept of string stability is generally charac-

terized as the attenuation of the disturbances in the upstream platoon, e.g., brake

or acceleration of leading vehicle. String stability of ACC system can be improved

if the information through V2V transmission of the preceding vehicle is used in

the feedback loop. This transmission is realized by a low latency communication

medium. The most distinctive difference between ACC and CACC is that besides

the preceding vehicle’s speed and position used as inputs in ACC, the desired ac-

celeration of the preceding vehicle transmitted through the wireless channel is also

adopted as input in CACC controller. Therefore, CACC is treated as a solution to

achieve a desired following distance with string stability. However, no generic ap-

proach for the design of CACC system is adopted. Most of the relative researches

relied on the classic control theory [148][67][55]. In [166], a fault tolerance crite-

rion for which CACC systems still is functional is defined. [142] has developed

a generic safety checking strategy within the loop of vehicle-controller in a pla-

toon of vehicles, which guarantees performance when the inter-vehicle distance in

platoon is changed during a maneuver in emergency situation. Considering the

tracking capability, fuel economy and driver desired response, a predictive model

of CACC system is designed in [82]. Above all, decent performance of CACC in

traffic throughput has been proved in many researches with a low time gap and

increased traffic throughput, while maintaining safety, comfort and stability. In-

spired by the concept of "platoon", our principal objective is to design a vehicle

longitudinal control system which can enhance vehicle safety while at the same

time improving traffic capacity. Thus, we need to envisage not only the control

problems of a single vehicle but also the behaviors of a string of vehicles.
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This chapter concentrates on the design problems of vehicle longitudinal control

system design. At first, the notion of string stability is introduced in detail. Sec-

ondly, the longitudinal control system architecture of two different spacing policies

are designed.To validate the proposed controllers, simulation tests will be carried

out and their string stability will be analyzed. And some conclusion will be given

in the end of this chapter.

3.2. Problem formulation

3.2.1. Architecture of longitudinal control

As we have introduced in chapter 1, the control architecture of an ITS is hierar-

chical and has 3 layers shown in Fig.1.5. In the information processing layer, the

longitudinal control system, as one of the control strategy proposition, is in charge

of the steady and transient longitudinal maneuvers. The architecture of longitu-

dinal control system is illustrated in Fig. 3.1. In an intelligent vehicle structure,

the module "CACC Controller" together with the module "Vehicle Dynamics" pro-

vides the prototype of CACC functionality. At the beginning of each simulation

step, the module "CACC Controller" reads relative speed and inter-vehicle distance

to the preceding vehicle from the "Radar" module. The host vehicle’s acceleration

and speed are read from the module "sensor" as inputs. In addition, CACC would

read the desired acceleration of the preceding vehicle from the "Wireless Medium"

by "Ad hoc network" module, which is not necessary for ACC. Meanwhile, the

host vehicle transfers its own desired acceleration to the medium as well which is

used for the CACC controllers of other vehicles. The desired time headway, de-

sired distance at standstill and cruise speed are pre-set before the simulation starts.

The time headway is the time it takes for ith vehicle to reach the current position

of its preceding i− 1th vehicle when continuing to drive with a constant velocity.

Finally, the CACC controller renews the spacing error input and recalculate the

new desired acceleration in next time step. The control objective is to realize a

desired distance, taking into account a pre-defined maximum speed, referred to as

the cruise speed. Note that the cruise speed is a maximum speed when the vehicle
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operates in CACC mode. If there is no target vehicle, the system switches to a

cruise control mode, in which case the cruise speed becomes the target speed.

Figure 3.1 – Architecture of CACC longitudinal control system

3.2.2. Design objectives

As we have introduced in the previous section, the first-generation of longitudinal

control systems like CC or ACC systems are primarily being developed from the

point of view of increased driving comfort with some potential in increasing vehi-

cle safety. However, the impacts of these longitudinal control systems on highway

traffic have been inadequately studied [155, 140]. From the transportation plan-

ners’ point of view, the automated vehicles equipped with the longitudinal control

systems should heavily impact the traffic characteristics, including highway safety,

efficiency and capacity because of their more uniform behavior compared with hu-

man drivers [198]. Before the longitudinal control systems are widely equipped

on automated vehicles, their impacts on string behavior and flow characteristics

need to be carefully investigated. Otherwise traffic congestion may become worse

instead of being better.

As mentionned in previous chapter, the most important macroscopic behaviors

of CACC vehicles is the string stability. The string stability of a vehicle platoon

refers to the property in which spacing errors are guaranteed not to amplify as

they propagate towards the tail of the string [154, 140]. This property ensures that

any spacing error present at the head of the string does not amplify into a large

error at the tail of the string. A general method to evaluate string stability is to
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examine the transfer function from the spacing error of the proceeding vehicle to

that of the following vehicle. If the infinite norm of this transfer function is less

than 1, string stability is ensured [153, 169].

Based on the above discussions, the design of a CACC controller, which in-

cludes the specific spacing policy and the associated control laws, should be de-

signed to achieve the following objectives:

• By using the wireless communication with related vehicles in a platoon, the

host vehicle should follow its preceding vehicle while keeping a safe distance.

• The steady state of spacing error of each vehicle should be approximatively

equal to zero for tracking purpose.

• The acceleration/deceleration and the velocity should be decreasing in up-

stream platoon which means the string stability is guaranteed.

• Instead of a centralized algorithm, a decentralized one should be proposed in

order to reduce the computational cost.

• The control effort required by the control law should be within the vehicle’s

traction/braking capability.

• The passengers’ comfort should be taken into account, in other words, sharp

change of the acceleration should be averted.

• It should be used for a wide range of speed for vehicle operations in highway,

which includes low and high speed scenarios.

3.3. CACC controller design

3.3.1. Constant Time Headway spacing policy

At present, the most common spacing policy used by researchers and vehicle manu-

factures is the Constant Time Headway (CTH) spacing policy [169]. Much research

works have been done in the study of (C)ACC system with CTH spacing policy

[90, 109, 65].
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The desired distance is generally supposed to be an increasing function of host

vehicle’s velocity. The desired spacing of CTH spacing policy is given by

dr,i(t) = ri ++hvi(t) (3.1)

where d(r, i)(t) is the desired distance of ith vehicle from its front vehicle, ri is

the standstill distance and h is the constant time headway time.

Figure 3.2 – Vehicle platoon illustration

Consider a platoon of vehicles shown in Fig. 3.2. A schematic of a homoge-

neous platoon of vehicles equipped with the CACC functionality is described, in

which di, vi, ui and Li represent the rear distance between the front bumper of ith

vehicle and the rear bumper of i− 1th vehicle, the velocity, the desired acceleration

and the length of ith vehicle respectively. In this section, the homogeneity traffic

is considered, i.e., vehicles with identical characteristics. With different types of

vehicles in the platoon, the homogeneity can be obtained by low-level acceleration

controllers so as to arrive at identical vehicle behavior. Vehicles in platoon utilize

distance sensors to get the inter-vehicle distance and relative speed. Besides, the

feedforward term ui of the nearest front vehicle is transferred through the wireless

V2V communication. Hence, the ACC functionality is still available if no commu-

nication is present.

Therefore, the spacing error ei is then defined as

ei(t) = di(t)− dr,i(t) = (si−1(t)− si(t)− Li)− (ri + hvi(t)) (3.2)

The purpose of a CACC controller is to regulate the inter-vehicle distance di(t)



66 Chapter 3. CACC system design

to the desired distance dr,i(t), i.e. zero spacing error.

a0(t) = 0 ∀t ≥ 0⇒ lim
t→∞

ei(t) = 0 ∀1 ≤ i ≤ n (3.3)

The driving state of an intelligent vehicle includes its position, velocity, accel-

eration and spacing error. The first vehicle of the platoon, called leading vehicle,

should be considered differently from the rest. It is manipulated either by human

or following a virtual CACC-equipped vehicle.

3.3.2. Multiple V2V CACC system

Having formulated the control problem, a decentralized longitudinal control law

of Two-Vehicle-Ahead (TVA) CACC system is designed in this section.

In actual situation, the host vehicle is influenced not only by its nearest front

vehicle but also all the vehicles before it in the platoon, especially the first vehicle

of the string, so called virtual leading vehicle, which plays an important role in

the platoon that may determine the performance of the whole platoon. In order

to imitate human behavior and make an optimized decision, the multiple V2V

communication is favorable to be taken into account instead of conventional one-

vehicle transmission. A longitudinal tracking control law is proposed in [56], in

which the information of the front vehicle and the designed platoon leading vehicle

are used as feedforward terms. The weights of the information differ from the

different relative positions of vehicles in the platoon. The greater the distance

between the host and the leading vehicle, the less weight is taken into account for

the host vehicle. Then the expected velocity vr,i and acceleration ar,i are defined as:

vr,i = (1− pi)vi−1(t) + pivl(t) 3 ≤ i ≤ n (3.4)

ar,i = (1− pi)ai−1(t) + pial(t) 3 ≤ i ≤ n (3.5)

where pi is the influence weight of the ith vehicle compared to the platoon

leader. n is the number of CACC-equipped vehicles in the platoon. Note that pi
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is dependent of index i because it differs from different relative position of the

platoon. Compared to the basic CACC controller, the complex communication

topology leads to a faster accelerator response.

However, the quality of the inter-vehicle communication between the host and

the virtual leading vehicle can hardly be guaranteed. The transmission could be

affected by the noise, weather, obstacles etc. For the vehicles with a large index

in the platoon, the V2V communication between the host and the leading vehicle

will degrade, losing data and slowing down the transmission, which leads to string

instability and overshoots. Moreover the influence weight will be little for the host

vehicle, even neglectable.

To illustrate the design procedure in the case of a more complex information

topology and to investigate the possible benefits of this topology with respect to

string stability, a novel Two-Vehicle-Ahead Cooperative Adaptive Cruise Control

(TVACACC) controller is proposed in this section. Instead of using one input ui−1

from the i − 1 vehicle, an additional input ui−2 is taken into account to improve

the tracking capacity. Besides, the second vehicle is following the leading vehicle,

which is considered as a conventional CACC controller with only one input u1,

while the rest vehicles of the platoon are TVACACC controllers. The influence

weights are pi−1 and pi−2. Therefore, the desired acceleration of the host vehicle is

defined as follow. The benifits compared to the conventional CACC controller will

be shown in the simulation section.

ui,input(t) = pi−1ui−1(t) + pi−2ui−2(t) 3 ≤ i ≤ n (3.6)

3.3.3. System Response Model

Let us consider a platoon of n vehicles. As a basis for control design, the accelera-

tion response can be approximated by a first-order system:

τȧi + ai = ui (3.7)

where ai is the vehicle’s actual acceleration, ui is the desired acceleration, and τ

is a constant time lag.
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Then, the following vehicle dynamic model is adopted:


ḋi

v̇i

ȧi

 =


vi−1 − vi

ai

− 1
τ ai +

1
τ ui

 2 ≤ i ≤ n (3.8)

where ai is the acceleration, ui is the desired acceleration of of ith vehicle. In

order to satisfy the tracking objective defined in equation 3.3, the error dynamics

are formulated as:


e1,i

e2,i

e3,i

 =


ei

ėi

ëi

 2 ≤ i ≤ n (3.9)

Combining equation 3.2 and 3.9, we obtain:

e2,i = vi−1 − vi − hai (3.10)

e3,i = ai−1 − ai − hȧi (3.11)

˙e3,i = −
1
τ

e3,i +
1
τ

ui−1 −
1
τ

qi (3.12)

with a new input

qi
.
= hu̇i + ui (3.13)

The input qi is designed to regulate the inter-vehicle distance to dr,i. In addition,

the input ui,input = pi−1ui−1 + pi−2ui−2 should be compensated as well. Hence, the

control law of qi is designed as

qi = K


e1,i

e2,i

e3,i

+ pi−1ui−1 + pi−2ui−2 3 ≤ i ≤ n (3.14)

Where K = [kp kd kdd] represents the controller coefficient vector. The two

feedforward terms are obtained through ad hoc network with the front vehicles.

Due to the additional controller dynamic defined in equation 3.13, the platoon
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model is augmented with one more state ui, which can be obtained by using equa-

tion 3.13 and 3.14:

u̇i =
kp

h
ei −

kd

h
vi −

τhkd + τkdd − hkdd

τh
ai −

τ + hkdd

τh
ui

+
kd

h
vi−1 +

kdd

h
ai−1 +

1
2h

(ui−1 + ui−2)

(3.15)

As a result, the 4th order closed-loop vehicle model is established. From the

third to the last vehicle of the platoon, i.e., 3 ≤ i ≤ n, the vehicle dynamics:


ėi

ȧi

v̇i

u̇i

 =


0 −1 −h 0

0 0 1 0

0 0 − 1
τ

1
τ

kp
h − kd

h − τhkd+τkdd−hkdd
τh − τ+hkdd

τh




ei

ai

vi

ui



+


0 1 0 0

0 0 0 0

0 0 0 0

0 kd
h

kdd
h

1
2h




ei−1

ai−1

vi−1

ui−1

+


0

0

0
1

2h

 ui−2

(3.16)

or in short

Ẋ = AXi + BXi−1 + Cui−2 (3.17)

where the vehicle state is X .
= (ei vi ai ui)

T and the matrices A, B, C are

defined correspondingly.

Note that the virtual leading, the second and the rest vehicles of the platoon

are of different state model. The second vehicle (i = 2) is assumed to follow a

virtual vehicle (i = 1) where only the information from the virtual leading vehi-

cle is applied, i.e., conventional CACC controller. Thus both vehicles state model

are different from the rest of the platoon. The first vehicle may be formulated as

follows.
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ė2

ȧ2

v̇2

u̇2

 =


0 −1 −h 0

0 0 1 0

0 0 − 1
τ

1
τ

kp
h − kd

h − τhkd+τkdd−hkdd
τh − τ+hkdd

τh




e2

a2

v2

u2



+


0 1 0 0

0 0 0 0

0 0 0 0

0 kd
h

kdd
h

1
h




e1

a1

v1

u1



(3.18)

The virtual leading vehicle, not having any information from other vehicles, can

also be modeled, in which ė1(t) = e1(t) = 0is adapted, assuming that there is no

error for the virtual leading vehicle.


ė1

ȧ1

v̇1

u̇1

 =


0 0 0 0

0 0 1 0

0 0 − 1
τ

1
τ

0 0 0 − 1
h




e1

a1

v1

u1

+


0

0

0
1
h

 qi (3.19)

According to the Lienard-Chipart stability criterion, it is shown that for bounded

inputs ui−1 and ui−2, the vehicle controller defined in euqation 3.16 and 3.18 will

be stable if the following constraints are satisfied.

kp > 0, kddh + τ > 0 (3.20)

However, the single vehicle stability means that the spacing error is stable,

which is not equivalent to the string stability mentioned in the previous section.

The latter focuses on the decreasing of spacing error in the upstream direction. In

fact, due to degradation of V2V communication, the headway time h and transmis-

sion delay θ may vary, which will greatly influence the string stability. This issue is

discussed in the following chapter.
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3.3.4. TVACACC diagram

According to the previous subsection, The block diagram of this TVA-CACC system

transferred in Laplace domain is depicted in Fig. 3.3. In this diagram the following

definitions are used. The influence weights of i− 1th and ith vehicles are selected

to be equal: pi−1 = pi−2 = 0.5.

Figure 3.3 – Block diagram of the TVACACC system

• Ŝi−1(s): position of the front vehicle, the input by ranging sensor;

• Ŝi(s): position of the host vehicle;

• s̃i(s): virtual position of the host vehicle;

• D(s): delay θ of wireless communication ûi−1 due to queuing, connection and

propagation;

D(s) = e−θs (3.21)

• K(s) = q̂i(s)/êi(s): the controller defined in equation 3.14;

K(s) = kp + kds + kdds2 (3.22)

• H(s) = q̂i(s)/ûi(s): the CTH spacing policy transfer function defined in equa-

tion 3.13;

H(s) = hs + 1 (3.23)
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• G(s) = ŝi(s)/ûi(s): the vehicle transfer function from acceleration to position

with θG the time delay of the engine;

G(s) =
e−θG

s2(τs + 1)
(3.24)

3.4. String stability analysis

For a cascaded system, such as a platoon of automated vehicles, stability of each

component system itself is not sufficient to guarantee a decent performance of all

systems, such as the non-convergence of spacing error for two consecutive vehicles.

This is the reason why our research object is a string of vehicles instead of only

one vehicle. Therefore, besides the individual stability of each vehicle, another

stability criterion known as the string stability is also required. The condition

of individual vehicle stability of TVACACC system is already given in equation

3.20. In this subsection, the string stability of conventional ACC, CACC and the

proposed TVACACC functionality will be shown theoretically.

Recall equation 2.4 in chapter 2, the condition for the string stability of vehicle

platoon:

sup
ω
|Γi(jω)| ≤ 1, 2 ≤ i ≤ n (3.25)

where Γi(jω) is the frequency response function describing the relation between

the scalar output zi−1 of a preceding vehicle i − 1 and the scalar output zi of the

follower vehicle i. In our case, we choose the input of interest to be the acceleration

Γi(jω) = êi(jω)/êi−1(jω). While, if the system is string is unstable, supω|Γi(jω)|

will exceed 1. Still in that case, we would aim at keeping this norm as low as

possible to minimize the disturbance amplification in upstream direction.

3.4.1. String stability of TVACACC

Parameters are chosen as τ = 0.1, kp = 0.2, kd = 0.7, kdd = 0 to avoid feedback of

the and h = 0.5s, transmission delay θ=0.2s.

In order to improve the string stability of the platoon and to help intelligent
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vehicles making a more conservative and reasonable decision, the TVACACC con-

troller is proposed in this work. Regarding the second vehicle, there is only one

vehicle before, the leading vehicle of the platoon. Therefore, the second vehicle

receives only the information of first vehicle transmitted by V2V communication,

which is different from the rest of the platoon. Thus the transfer function of second

vehicle is obtained by replacing the input ui,input = pi−1ui−1 + pi−2ui−2 by ui−1.

||Γ2(jω)||L2 =
||a2(s)||L2

||a1(s)||L2

=
||D(s) + G(s)K(s)||L2

||H(s)(1 + G(s)K(s)||L2

(3.26)

The transfer function ||Γi(jω)||L2 of the rest vehicles in the platoon is derived

from equation 3.16.

For 3 ≤ i ≤ n,

||Γi(jω)||L2 =
||ai(s)||L2

||ai−1(s)||L2

=
||D(s)(1 + D(s)

Γi−1(s)
+ G(s)K(s))||L2

||2H(s)(1 + G(s)K(s))||L2

(3.27)

Note that the transfer function for ith vehicle depends on the string stability

of i − 1th vehicle due to the two vehicle inputs. Thus the string stability differs

for different vehicles in the platoon. Choosing the same parameters in the last

paragraph, the transfer function from the second to the sixth vehicle of the platoon

with transmission delay θ = 0.2s, is shown in Fig. 3.4a. The transfer function

response of the second vehicle, which receives only the information from the first

vehicle, is represented by solid black line. The third to sixth vehicles are represented

by colored line. Although the curves seem to be arbitrary, but it is shown that

the norms is always smaller than 1, i.e., the string stability is guaranteed and the

disturbance attenuates.

As mentioned above, communication degradation may happen while applying

V2V communication. Assuming that the transmission delay increases to θ = 1s

instead of 0.2s, the transfer function ||Γi(jω)||L2 is shown in Fig. 3.4b. The second

vehicle of the platoon is the same as conventional CACC system, shown by black

line, which is string unstable in transmission degradation situation. But the rest ve-

hicles keep the string stability in this case. When the transmission delay increases,

the vehicle platoon using conventional CACC system is unstable and worse than
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(a) Transmission delay 0.2s (b) Transmission delay 0.4s

Figure 3.4 – String stability comparison of ACC and two CACC functionality with different
transmission delays: ACC (dashed black), Conventional CACC (black) and TVACACC in which

the second vehicle (black) and the rest vehicles (colored)

the normal situation. Instead, the string stability is maintained in the TVACACC

case. The TVACACC model uses not only the input from vehicle i− 1 but also i− 2,

so that the communication degradation from vehicle i− 1 will have less influence,

which leads to a better string stability.

3.4.2. Comparison of ACC, CACC AND TVACACC

The string stability of conventional CACC system is the same as the second vehicle

in TVACACC system as mentioned above. Therefore, the transfer function is the

same as equation 3.26.

||ΓCACC(jω)||L2 =
||D(s) + G(s)K(s)||L2

||H(s)(1 + G(s)K(s)||L2

(3.28)

Moreover, ACC system is easily obtained by choosing the transmission delay

block D(s) = 0, because there is no transmission between the host and its front

vehicle. The transfer function of ACC is then derived as

||ΓACC(jω)||L2 =
||G(s)K(s)||L2

||H(s)(1 + G(s)K(s)||L2

(3.29)

In the case of transmission delay θ = 0.2s, the frequency domain response of
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ACC and conventional CACC systems are represented by dashed black and solid

black line in Figure. 3.4a respectively. It is clearly shown that for an ACC system,

the disturbance amplifies in the platoon upstream, resulting in worse influences on

the rest vehicles in platoon. On the contrary, thanks to the V2V technology, the

conventional CACC system as well as the proposed TVACACC system guarantee

the string stability.

If the transmission delay degrades to θ = 1s, the string stability is illustrated in

Figure 3.4b. However in this situation, the same platoon using conventional CACC

system is no longer string stable.We can see that the amplification of disturbance

is almost the same compared to ACC system. ACC system is not changed as no

V2V transmission is applied. Therefore, if transmission degradation occurs, the

CACC functionality degrades and if the transmission delay continues to increases,

the performance may be worse than ACC system.

Therefore, in the case of TVACACC system, an increased traffic flux and a

decreased disturbance are obtained compared to the conventional CACC system.

Besides, it performs better facing an increasing transmission delay than the existent

CACC system.

3.5. Simulation tests

To validate the theoretical results and demonstrate its feasibility of the conventional

and proposed CACC functionality, a series of simulations is carried out within a

platoon of V2V communication equipped vehicles. It is shown whether the distur-

bance of the leading vehicle is attenuated upstream through the platoon, which is

defined as string stability in chapter 2. Therefore, the vehicle’s velocity and accel-

eration are selected as string stability performance measures. The results in both

normal and degraded situations will be shown.

For validation of the theories of the proposed model in the previous sections,

a stop-and-go scenario is chosen because it is the most dangerous situation of all

possible situations in longitudinal control. The platoon is composed of six CACC

equipped vehicles and they are assumed to share identical characters. The platoon

starts in steady state with speed of 30m/s (108km/h). At t = 10s, the leading vehicle
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of the platoon performs a brake with deceleration of −5m/s2, and reaccelerates

until regaining the initial velocity 30m/s with acceleration of 2m/s2 at t = 30s.

3.5.1. Comparison of ACC CACC and TVACACC

The Conventional CACC and ACC system are introduced in Figure. 3.5(a) and (c),

to make a clear comparison to the TVACACC system. Each vehicle is following

its front vehicle by respecting a safe distance with a headway time of 0.5s. The

transmission delay of the input ui is set to be 0.2s for CACC system while there is

no V2V communication in ACC system. It can be clearly seen that the simulation

results correspond to the theoretical analysis shown in Figure. 3.4a. Under the de-

signed condition, the platoon equipped with conventional CACC system is string

stable. The influence of acceleration disturbance decreases in the upstream direc-

tion. However, the ACC system is not string stable under the same condition. The

further the following vehicle is to the leading vehicle, the greater are the accelera-

tion and deceleration responses. The string stability is a crucial criterion for CACC

systems. It ensures that the following vehicles’ safety and low fuel cost. On the

contrary, the string instability results in larger acceleration and deceleration facing

the stop-and-go scenario, which is the case of ACC system in this case. If there

are more vehicles in the platoon, the last vehicle will suffer from a hard brake and

acceleration to catch up the platoon, even beyond its physical limit which is not

only harmful for the entire traffic flow, safety and comfort, but also might result

in rear-end collision. That is the reason why conventional ACC system requires

greater headway time to guarantee the string stability, which means lower traffic

flux.

The simulation of the proposed TVA-CACC system in the same scenario is

shown in Figure. 3.5(b) with the same parameters. It is obvious that the string

stability is obtained, the same as conventional CACC system, i.e. the acceleration

and deceleration disturbance decrease in the upstream direction. Moreover, the

acceleration response is smaller which means better string stability. The result

corresponds to the theoretical analysis in Figure. 3.4a. Therefore, with the proposed
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system, a better traffic flux, a safer and more comfortable driving experience is

obtained, compared to the conventional one-vehicle-ahead CACC system.

Figure 3.5 – Acceleration response of a platoon in Stop-and-Go scenario using conventional CACC
system (a), TVA-CACC system (b) and ACC system (c) with a communication delay of 0.2s

3.5.2. Increased transmission delay

In this subsection, it is assumed that the CACC systems are suffering from trans-

mission delay. Instead of a normal delay of 0.2s, the lagged transmission delay is

1s. In Figure. 3.6, it is clearly seen that the conventional CACC system is badly

degraded, compared to the normal situation shown in Figure. 3.5, due to increased

transmission delay. The acceleration response is overshoot and increases in the

upstream direction which means the system is string unstable. The experimental
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results correspond to the theoretical analysis of string stability. One solution is re-

gain the string stability is to increase the headway time, which however, decrease

the traffic flow. On the contrary, in the case of TVA-CACC system, the acceler-

ation disturbance still attenuates in upstream direction, i.e., the string stability is

maintained in the degraded situation. However, the acceleration response of the

same vehicle slightly increases which means the string is less stable than it is in

the normal transmission situation. And if is transmission is even more delayed,

the proposed CACC system cannot guarantee its string stability. The threshold

according to simulation is about 2.5s.

Figure 3.6 – Acceleration response of a platoon in Stop-and-Go scenario using conventional CACC
system (a) and TVACACC system (b) with a communication delay of 1s

3.6. Conclusion

In this chapter, we concentrated on the vehicle longitudinal control system design.

The spacing policy and its associated control law were designed with the con-

strains of string stability. The CTH spacing policy is adopted to determine the

desired spacing from the preceding vehicle. It was shown that the proposed TVA-
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CACC system could ensure both the string stability. In addition, through the com-

parisons between the TVACACC and the conventional CACC and ACC systems,

we could find the obvious advantages of the SSP system in improving traffic capac-

ity especially in the high-density traffic conditions.

The above proposed longitudinal control system was validated to be effective

through a series of simulations.
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4.1. Introduction

Wireless communication systems are applied in the control systems to substitute

the cables, simplify the hardware system. But unlike the system with the cables,

the data transmission (state parameters or control signals) is not that reliable or

predictable. Transmission through the air often get interfered by the noise, obstacle

etc. and randomly cause the transmission delay and data fault or loss. All these

kinds of error will somehow influence the performance of the control system. The

extent depends on the extent of the error and the system itself. In some of the

systems which have the long settling time would be hardly influenced by little of

the transmission fault. But nowadays more and more control systems are required

for faster, more accurate and stable. The fault discussed above can slow the process,

make it inaccurate and unstable. Performance will be degraded such as bigger

settling time and overshoot, or sometimes the whole system will be harmed for

example the system become unstable.

Previous work has more focused on the stability problems that the transmission

error would cause to the control system by finding the control methods of coun-

teract the effect of delay and loss. For the time delay system, reference[133] has

given a thorough analysis and summarized some of the optimal control methods

to deal with the delay. In the system with data delay, the stability of the new sys-

tem becomes the most important for the system. [14, 4] have applied the linkage

of time-delay e−τs to the close-loop transfer function of the system and used differ-

ent ways to deal with the quasi-polynomials according to the rules of stability. As

to the control system with packet loss, the stability of the system doesn’t change

no matter if there is or not loss because the structure of the system never changes

[111]. So the research on the system with the data-loss system is more emphasized

on the performance degradation of the system [111]. [139, 186] used state space

representation to describe the control system with the data loss. Methods are pro-

posed to deal with data loss. [111] proposed a compensation method to counteract

the effect to the performance of the loss of control signal. [63] has proposed the op-

timal control method under both the conditions that the communication network
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is acknowledgement-support (TCP) and no acknowledgement-support (UDP). But

when come across the systems without all these kinds of control strategy, the degra-

dation becomes important to be aware. [46] has applied the concept of dependabil-

ity to the close-loop control system with variable delays and message losses. He

used Mobius tools to simulate the control system. The influence of the delay and

data loss has been simulated using the Monte Carlo method. Some evaluations of

criteria of reliability were proposed (failure by overshoot, failure by stability).

Intelligent vehicles use wireless communications to make important driving

decisions, pass, speed control . . .[190]. This chapter focuses on the degradation of

control performance of the CACC systems. By analyzing the process of the system,

the method of estimation of the degradation will be proposed according to the

system characters, data delay and data loss. The second section of this chapter deals

with the discrete sampling control system analyzing and the model construction.

The third section discusses the degradation of performance that caused by the data

delay. The forth section is about the degradation of performance that caused by

data loss.

4.2. Transmission degradation

Wireless V2V communication is a key factor to realize CACC systems. Unlike the

on-board radar sensors equipped in ACC systems which are used to measure the

inter-vehicle distance and relative velocity, the extended V2V wireless communi-

cation is less reliable due to high latency and packet loss, which makes CACC

functionality dependent to the quality of transmission [112]. In case of communi-

cation degradation, one possible solution is that the CACC inherently degrades to

ACC, thus resulting in significantly larger time headway for string-stable behavior.

In [119] proved that the minimum headway time increases 10 times to keep the

string stable, which dramatically decreases the traffic throughput.

Previous researches focused mostly on the tracking control law of the CACC

systems and the transmission delay is assumed to be a constant. Nevertheless, the

data loss rate, which is an important factor that would degrade the transmission, is
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hardly concerned. This subsection focuses on the signal degradation of the discrete

sampling control system due to data loss.

Figure 4.1 – Structure of a vehicle’s control system

DSRC is a highly efficient wireless V2X communication technology. Among all,

the IEEE 802.11p protocol is drawing much attention, which is analytically studied

in a typical highway environment [19]. It is shown that this protocol with Quality of

Service (QoS) support provides a relatively good guarantee for higher priority ap-

plications. As the PID controller is widely used in many researches, the influence

of data transmission problems are widely studied on these systems. Both time-

fixed and time-varying delay and data loss are discussed using mathematical and

statistical simulation method respectively. The overshoot and the accommodation

time are considered to be two main criterion of the performance, which can help

evaluating the dependability of the system. Different conditions of control input

can cause different levels of overshoot, thus consequently different accommodation

time. The experiments in [195] and [194] show that the performance level is de-

cided by the several beginning sampling points. Once the second sampling point

is not lost, the performance will be at the first level with the overshoot 17% 18%. If

the second sampling point is lost while the third one is not, the performance will

be at the second level with the overshoot 54% 60%. Therefore, the overshoot of sig-

nal may occur due to data loss. Simulations results will show how CACC systems

degrade if data loss appears in the input of desired acceleration of previous vehi-

cle. Compared to V2V communication, the information gathered by laser ranging

sensor is much more stable and reliable. The delay is about 8ms and the accuracy
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is ±2mm. That’s why the improvement of the quality of V2V communication is

crucial for ITS.

4.3. Degradation of CACC

In previous section,a novel TVACACC system is proposed. The difference of the

proposed system with the conventional CACC system is that in the feedforward

term, the effect of two preceding vehicles’ input ui−1 and ui−2 are included into

the control loop. These inputs are implemented through wireless V2V communi-

cation. Consequently, if the wireless link fails or when the preceding vehicle is

not equipped with CACC, CACC would degrade to ACC, leading to a significant

increase in the minimum string-stable time headway. To implement an alternative

fallback scenario that more gracefully degrades the CACC functionality, it is pro-

posed to estimate the actual acceleration âi−1 of the preceding vehicle, which can

then be used as a replacement of the desired acceleration ui−1 in case no commu-

nication updates are received.

4.3.1. Estimation of acceleration

4.3.1.1. Filter Kalman

Kalman filtering, is an algorithm that uses a series of measurements observed over

time, containing statistical noise and other inaccuracies, and produces estimates

of unknown variables that tend to be more precise than those based on a single

measurement alone, by using Bayesian inference and estimating a joint probability

distribution over the variables for each timeframe. It is a useful tool to estimate

the acceleration of previous vehicle in case of transmission lost. Therefore, a brief

introduction of Kalman filter is introduced in this section.

Consider a continuous time-invariant model,

ẋ(t) = Ax(t) + Bu(t) + w(t) (4.1)

y(t) = Hx(t) + v(t) (4.2)
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where

• x, u and y are the state, system input and observation vector respectively;

• A is the state transition matrix;

• B is the control-input model;

• w is the input noise which is assumed to be drawn from a zero mean multi-

variate normal distribution with covariance Q;

w ∼ N (0, Q) (4.3)

• H is the observation model which maps the true state space into the observed

space;

• v is the observation noise which is assumed to be zero mean Gaussian white

noise with covariance R;

v ∼ N (0, R) (4.4)

• P is the error covariance matrix;

• w, v and x0 are uncorrelated.

The Kalman filter is a recursive estimator, which means that only the estimated

state from the previous time step and the current measurement are needed to com-

pute the estimate for the current state. In contrast to batch estimation techniques,

no history of observations and/or estimates is required. The notation x̂ represents

the estimate value of x.

The Kalman filter is conceptualized as two distinct phases: "Predict" and "Up-

date". The predict phase uses the state estimate from the previous time step to

produce an estimate of the state at the current time step. This predicted state esti-

mate is also known as the a prior state estimate because, although it is an estimate

of the state at the current time step, it does not include observation information

from the current time step. In the update phase, the current a prior prediction is
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combined with current observation information to refine the state estimate. This

improved estimate is termed the a posterior state estimate.

Predict phase

• Predicted state estimate x̂ = Ax + Bu

• Predicted estimate covariance P = APAT + Q

Update phase

• Optimal Kalman gain K = PHT(HPHT + R)−1

• Updated state estimate x̂ = x̂ + K(y− Hx̂)

• Updated estimate covariance P = (I − KH)P

4.3.1.2. Dynamic model

To describe an object’s longitudinal motion, the acceleration model in [146] is

adopted, which is used to describe the longitudinal vehicle dynamics. Note that

rigorous analysis of longitudinal vehicle behavior in everyday traffic, and the dy-

namic vehicle model may lead to other choices; this is, however, outside the scope

of this paper. The singer acceleration model is defined by the following linear

time-invariant system:

ȧ(t) = −αa(t) + u(t) (4.5)

where a is the acceleration of the host vehicle, u is the model input, α is a

constant time due to maneuver, the choice of which will be briefly exemplified at

the end of Section IV. The input u is chosen as a zero-mean uncorrelated random

process (i.e., white noise) to represent throttle or brake action that may cause the

host vehicle to accelerate or decelerate. To determine the variance of u, the object

vehicle is assumed to obey physical limits with a maximum acceleration amax and

a maximum deceleration amin with a probability Pmax and Pmin respectively. And

the probability of zero acceleration is P0, whereas other acceleration values are

uniformly distributed with probability Pr, such that the sum of probabilities equals
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to 1. Consequently, the mean of vehicle’s acceleration ā is equal to

ā = Pmaxamax + Pminamin +
∫ amax

amin

xPr dx (4.6)

Thus the acceleration variance is

σ2
a = (amax − ā)2Pmax + (amin − ā)2Pmin + (a0 − ā)2P0 +

∫ amax

amin

(x− ā)2Pr dx (4.7)

It is shown in [146] that in order to satisfy p(a), the covariance Cu(τ) of the

white noise input u in 4.5 is

Cu(τ) = 2ασ2
a δ(τ) (4.8)

where δ is the unit impulse function. As a result, the random variable a in equa-

tion 4.5, satisfying a probability density function p(a) with variance σ2
a is described,

with with a white noise input u(t) satisfying equation 4.8.

Using the acceleration model 4.5, the corresponding equation of motion can be

described in the state space as

ẋ(t) = Ax(t) + Bu(t) (4.9)

y(t) = Cx(t) (4.10)

where xT = [s v a] in which s, v, a represent the host vehicle’s position, velocity

and acceleration respectively. The vector yT = [s v] is the output of the model,

which is in practical measured by vehicle onboard sensor. The matrix A, B, and C

are defined as

A =


0 1 0

0 0 1

0 0 −α

 , B =


0

0

1

 , C =

1 0 0

0 1 0

 (4.11)

Note that the state equation 4.9 closely resembles the vehicle dynamics model

in equation 3.7 when replacing α by 1/τ.
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The model 4.9 is used as a basis for the estimation of the object vehicle acceler-

ation by means of a Kalman filter. To design this observer, the state-space model

4.9 is extended so as to include a process noise term w(t), representing model

uncertainty, and a measurement noise term v(t), yielding

ẋ(t) = Ax(t) + w(t) (4.12)

y(t) = Cx(t) + v(t) (4.13)

The input u(t) in equation 4.9, which was assumed to be white noise, is in-

cluded in 4.12 by choosing w(t) = Bu(t). v(t) is a white noise signal with co-

variance matrix R = E[v(t)vT(t)], as determined by the noise parameters of the on-

board sensor used in the implementation of the observer, Furthermore, using equa-

tion 4.8, the continuous-time process noise covariance matrix Q = E[w(t)wT(t)] is

equal to

Q = BE[w(t)wT(t)]BT
a =


0 0 0

0 0 0

0 0 2ασ2
a

 (4.14)

With the given Q and R matrix, the following continuous-time observer is ob-

tained:

˙̂x(t) = Ax̂ + K(y− Cx̂) (4.15)

where x̂ is the estimate of the object vehicle state xT = [s v a], K is the continuous-

time Kalman filter gain matrix, and y is the measurement vector, consisting of

position s and velocity v of the object vehicle. This observer provides a basis for

the design of the fallback control strategy, as explained in the following subsection.

4.3.2. DTVACACC

The fallback CACC strategy, which is hereafter referred to as Degraded Two-

Vehicle-Ahead CACC (DTVACACC), aims to use the observer 4.15 to estimate the

acceleration ai−1 of the preceding vehicle, when the communication between the

host and its nearest front vehicle is degraded. However, the measurement y in
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equation 4.15, containing the absolute vehicle position and velocity, is not avail-

able. Instead, the onboard sensor of the host vehicle provides inter-vehicle distance

and relative velocity. Consequently, the estimation algorithm needs to be adapted,

as described below.

When the transmission of ai−1 is lost or badly degraded, the observer 4.15 is

described in the Laplace domain by a transfer function T(s), which takes the actual

position si−1 and velocity vi−1 of the preceding vehicle, contained in the measure-

ment vector y, as input. The output of T(s) is the estimate âi−1 of the preceding

vehicle’s acceleration, being the third element of the estimated state. This yields

the estimator

âi−1 = T(s)

si−1

vi−1

 (4.16)

where âi−1(s) denotes the Laplace transform of âi−1(t), and si−1(s) and vi−1(s)

are the Laplace transforms of si−1(t) and vi−1(t) respectively. Moreover, the esti-

mator transfer function T(s) is is derived from equation 4.15:

T(s) = Ĉ(sI − A− KC)−1K (4.17)

where Ĉ = [0 0 1].

The second step involves a transformation to relative coordinates,using the re-

lation that

si−1(s) = di(s) + si(s) (4.18)

vi−1(s) = ∆vi(s) + vi(s) (4.19)

where ∆vi(s) denotes the Laplace transform of the relative velocity ∆vi(t) =

ḋi(t). Substituting 4.18 and 4.19 into 4.16, we obtain

âi−1(s) = T(s)

 di(s)

∆vi(s)

+ T(s)

si(s)

vi(s)

 (4.20)

As a result, the acceleration estimator is, in fact, split into a relative coordinate

estimator ∆âi(s) and an absolute coordinate estimator âi(s), i.e., âi−1(s) = ∆âi(s) +

âi(s).
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∆âi(s) := T(s)

 di(s)

∆vi(s)

 (4.21)

âi(s) := T(s)

si(s)

vi(s)

 (4.22)

where ∆âi(s) is the Laplace transform of the estimated relative acceleration

∆âi(t) and âi(s) is the Laplace transform of the estimated local acceleration.

Finally, âi(s) in 4.22 can be easily computed with

âi(s) = T(s)

si(s)

vi(s)

 =
(

Tas(s) Tav(s)
)si(s)

vi(s)


= (

Tas(s)
s2 +

Tav(s)
s

)ai(s) := Taa(s)ai(s)

(4.23)

Using the fact that the local position si(t) and velocity vi(t) are the result of

integration of the locally measured acceleration ai(t), thereby avoiding the use of

a potentially inaccurate absolute position measurement by means of a global po-

sitioning system. The transfer function Taa(s) acts as a filter for the measured

acceleration ai, yielding the "estimated" acceleration âi. In other words, the local

vehicle acceleration measurement ai is synchronized with the estimated relative

acceleration ∆ai by taking the observer phase lag of the latter into account.

The control law of the fallback DTVACACC system is now obtained by replac-

ing the preceding vehicle’s input ui−1 in equation 3.6 by the estimated acceleration

âi−1. As a result, the control law is formulated in the Laplace domain as

ui(s) = H−1(s)(K(s)ei(s) + T(s)

 di(s)

∆vi(s)

+ Taa(s)ai(s)) (4.24)

which can be implemented using the radar measurement of the distance di

and the relative velocity ∆vi, and the locally measured acceleration ai and velocity

vi, the latter being required to calculate the distance error ei. The corresponding

block diagram of the closed-loop DTVACACC system as a result of this approach
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is shown in Figure. 4.2, which can be compared with Figure. 3.3, showing the

TVACACC scheme.

Figure 4.2 – Block diagram of the DTVACACC system

4.3.3. String stability analysis

To analyze the DTVACACC string stability properties, the output of interest is

chosen to be the acceleration. Recall that parameters are chosen as the same as we

defined in previous chapter. τ = 0.1, kp = 0.2, kd = 0.7, kdd = 0 to avoid feedback

of the and h = 0.5s, transmission delay θ=0.2s. Besides, the novel parameters for

DTVACACC is defined as amax = 3m/s2, amin = −5m/s2, Pmax = Pmin = 0.01,

P0 = 0.1, Pr = 0.11, α = 1.25, σ2
d = 0.029 and σ2

∆v = 0.029. As a result, with the

closed-loop configuration given in Figure. 4.2, the transfer function is obtained:

||ΓDTVACACC(jω)||L2 =
||ai(s)||L2

||ai−1(s)||L2

=
||G(s)K(s) + 0.5s2TaaG(s) + 0.5D(s)/Γ2(jω)||L2

||H(s)(1 + G(s)K(s)||L2

(4.25)

where Γ2 is the transfer function of second vehicle in the platoon which receives

only one input from the leading vehicle. Therefore, it uses the conventional CACC

system. The transfer function is the same as equation 3.26
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||Γ2(jω)||L2 =
||a2(s)||L2

||a1(s)||L2

=
||D(s) + G(s)K(s)||L2

||H(s)(1 + G(s)K(s)||L2

(4.26)

The platoon of vehicles is string stable if the infinite norm of the transfer func-

tion is less than 1, i.e., ||ΓDTVACACC(jω)||L∞ ≤ 1. Furthermore, if the system is

string unstable, ||ΓDTVACACC(jω)||L∞ will exceed 1; still, in that case, we would aim

at making this norm as low as possible to minimize disturbance amplification. The

L2 norm is here used to make a comparison between different CACC systems. The

frequency response magnitudes ||ΓDTVACACC(jω)||L∞ from 4.25, ||ΓTVACACC(jω)||L∞

from 3.27, ||ΓACC(jω)||L∞ from 3.29 as a function of the frequency ω, are shown in

Figure. 4.3a and 4.3b for different headway time h = 0.5s and h = 2s, respectively.

(a) headway time h = 0.5s (b) headway time h = 2s

Figure 4.3 – Frequency response magnitude with different headway time, in case of (blue)
TVACACC, (green) DTVACACC, and (red) ACC

Recall the string stability criterion defined in equation 2.4, ||Γi(jω)||L∞ =

supω ||Γi(jω)|| ≤ 1. From the frequency response magnitudes, it follows that

for h = 0.5s, only TVACACC system results in string-stable behavior that

||ΓTVACACC(jω)||L∞ = 1; whereas both DTVACACC and ACC system is not string

stable, ||ΓDTVACACC(jω)||L∞ = 1.0192 and ||ΓACC(jω)||L∞ = 1.2782. But even if

the system is unstable, we try to find the lowest response to keep the disturbance

amplification as small as possible. Therefore it is clear that the DTVACACC sys-

tem helps to improve the performance compared to ACC system, in case of no

communication from i− 1th vehicle.



94 Chapter 4. Degraded CACC system design

As for h = 1.3s, both TVACACC and DTVACACC yield string stability.

Clearly, ACC is still not string stable in either case. Here, ||ΓTVACACC(jω)||L∞ =

||ΓDTVACACC(jω)||L∞ = 1, ||ΓACC(jω)||L∞ = 1.0859. This is logical because increas-

ing headway time helps to improve the string stability, which however results in

large inter-vehicle distance and low traffic flow capicity.

4.3.4. Model switch strategy

Until now, either full wireless communication under nominal conditions or a per-

sistent loss of communication has been considered. However, in practice, the loss

of the wireless link is often preceded by increasing communication latency, rep-

resented by the time delay θ. Intuitively, it can be expected that above a certain

maximum allowable latency, wireless communication is no longer effective, upon

which switching from TVACACC to DTVACACC is beneficial in view of string

stability. This section proves this intuition to be true and also calculates the ex-

act switching value for the latency, thereby providing a criterion for activation of

DTVACACC.

Figure 4.4 – Minimum headway time (blue) hmin,TVACACC and (red) hmin,DTVACACC versus
wireless communication delay θ

From analysis of string stability of DTVACACC system in equation 4.25, it is

shown that the magnitude of the transfer function changes its string stability when

different headway time is chosen. This infinite norm value ||ΓTVACACC(jω)||L∞ is
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reduced by increasing headway time h, of which the effect is increasing the H(s)

in denominator. Consequently, for TVACACC, a minimum string-stable headway

time hmin,TVACACC must exist, which depends on the delay θ. Along the same line

of thought, it can be shown that for DTVACACC, a minimum string-stable head-

way time also exists, which is obviously independent of the communication delay.

Figure. 4.4 shows hmin,TVACACC and hmin,DTVACACC as a function of θ. Here, the min-

imum headway time is obtained by searching for the smallest h for each Î¸, such

that ||Γi(jω)||L∞ = 1 for each system. This figure clearly shows a breakeven point

θb of the delay θ, i.e., hmin,DTVACACC = hmin,TVACACC(θb), which is equal to θb = 1.53s

for the current controller and acceleration observer. The figure also indicates that

for θ ≤ θb, it is beneficial to use TVACACC in view of string stability, since this

allows for smaller time gaps, whereas for θ ≥ θb, DTVCACC is preferred. This is

an important result, since it provides a criterion for switching from TVACACC to

DTVCACC and vice versa in the event that there is not (yet) a total loss of com-

munication, although it would require monitoring the communication time delay

when CACC is operational. As a final remark on this matter, it should be noted

that the above analysis only holds for a communication delay that slowly varies,

compared with the system dynamics. Moreover, it does not cover the situation in

which data samples (packets) are intermittently lost, rather than delayed.

4.4. Simulation

To test the performance of the proposed model, a stop-and-go scenario is chosen

because it is the most dangerous situation of all possible situations in longitudinal

control. The platoon consists of several CACC equipped vehicles and they are

assumed to be identical. The platoon starts at a constant speed of 30m/s. At

t=50s, the leading vehicle of the platoon brakes with a deceleration of −5m/s2,

and reaccelerates until regaining the initial velocity 30m/s with an acceleration of

2m/s2 at t=70s. The results in different headway time will be shown. The numerous

parameters are described in the table below.

The conventional ACC and TVACACC systems are introduced to make a clear

comparison with the DTVACACC system. The first vehicle’s acceleration is repre-
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Figure 4.5 – Acceleration response of the third vehicle in Stop-and-Go scenario using conventional
ACC system (red), TVACACC system (gray) and DTVACACC system (blue) with a

communication delay of 1s and headway 0.5s

Figure 4.6 – Velocity response of the third vehicle in Stop-and-Go scenario using conventional
ACC system (red), TVACACC system (gray) and DTVACACC system (blue) with a

communication delay of 1s and headway 0.5s

sented in black line. And the third vehicle is chosen to investigate the difference

between the conventional ACC system (red), TVACACC system (gray) and DTVA-

CACC system (blue), shown in Figure. 4.5. We can see that each vehicle is follow-

ing its preceding vehicle by respecting a safe distance with a headway time of 0.5s.

However, the string stability criterion, is obviously not satisfied in existent ACC

system as the absolute values of deceleration and acceleration are much greater

than the first vehicle.The DTVACACC system is not string stable either. However

we can see that the response is less overshoot. The vehicle is keeping a lower ac-
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celeration and deceleration for the following objective. It is reasonable to conclude

that the proposed acceleration estimate approach by Kalman filter helps to improve

the string stability in case of V2V communication degradation. Similar results are

obtained for velocity responses. The ACC system always responses greater than

the leading vehicle. If a platoon consists of a large number of vehicles, the velocity,

acceleration and spacing error will become extremely great in the upstream direc-

tion under the determined condition by using the existent ACC system, which is

uncomfortable and dangerous. It is obvious that the proposed DTVACACC system

outperforms ACC again, but still worse than the TVACACC system. Because the

transmission of the front vehicle i− 1th is degraded or lost.

Figure 4.7 – Velocity response of the third vehicle in Stop-and-Go scenario using conventional
ACC system (red), TVACACC system (gray) and DTVACACC system (blue) with a

communication delay of 1s and headway 1.5s

As we have discussed above, increasing the headway time can improve the

string stability. Therefore, different headway time of 1.5s and 3S are chosen to

determine the improvement of the performance. If h = 1.5 shown in Figure. 4.7,

the DTVACACC system is now string stable while ACC is still not. Then if we

continue to increase headway time h = 3s shown in Figure. 4.8, all three systems

obtain the string stability. ACC system needs the largest headway time to keep the

platoon string stable, then DTVACACC and finally TVACACC, which is the same

as our theoretical analysis. The string instability is not only wasting energy, but

also making the situation dangerous. Imagine a platoon of twenty vehicles, the last
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Figure 4.8 – Velocity response of the third vehicle in Stop-and-Go scenario using conventional
ACC system (red), TVACACC system (gray) and DTVACACC system (blue) with a

communication delay of 1s and headway 3s

vehicle will suffer from a hard brake and acceleration, even beyond its physical

limit which may result in rear-end collision.

4.5. Conclusion

In this chapter, we concentrated on the degradation of CACC system.

To accelerate practical implementation of CACC in everyday traffic, wireless

communication faults must be taken into account. To this end, a graceful degrada-

tion technique for CACC was presented, serving as an alternative fallback scenario

to ACC. The idea behind the proposed approach is to obtain the minimum loss of

functionality of CACC when the wireless link fails or when the preceding vehicle is

not equipped with wireless communication means. The proposed strategy, which

is referred to as DTVACACC, uses an estimation of the preceding vehicle’s current

acceleration as a replacement to the desired acceleration, which would normally be

communicated over a wireless link for this type of CACC. In addition, a criterion

for switching from TVACACC to DTVACACC was presented, in the case that wire-

less communication is not (yet) lost, but shows increased latency. It was shown that

the performance, in terms of string stability of DTVACACC, can be maintained at

a much higher level compared with an ACC fallback scenario. Both theoretical as

well as experimental results showed that the DTVACACC system outperforms the
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ACC fallback scenario with respect to string stability characteristics by reducing

the minimum string-stable time gap to less than half the required value in case of

ACC.
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5.1. Introduction

Endowing vehicles with human-like abilities to perform specific skills in a smooth

and natural way is one of the important goals of ITS. Reinforcement learning (RL)

is the key tool that helps us to create vehicles that can learn new skills by them-

selves, just similarly to our human beings. Reinforcement learning is realized by

interacting with an environment. In RL, the learner is a decision-making agent that

takes actions in an environment and receives an reinforcement signal for its actions

in trying to accomplish a task. The signal, well known as reward (or penalty),

evaluates an action’s outcome, and the agent seeks to learn to select a sequence of

actions, i.e. a policy, that maximize the total accumulated reward over time. Rein-

forcement learning can be formulated as a Markov Decision Process. Model-based

RL algorithms can be used if we know the state transition function T(s, a, s′).

The whole learning scenario is a process of trial-and-error runs. We apply

a Boltzmann probability distribution to tackle the problem of the exploration-

exploitation trade-off, that is, the dilemma between should we exploit the past

experiences and select the actions that as far as we know are beneficial, or should

we explore some new and potentially more rewarding states. Under the circum-

stances, the policies are stochastic.

Analytic methods to ACC and CACC control problems are often different be-

cause of nonlinear dynamics and high-dimensional state spaces. Generally speak-

ing, linearization is not sufficient to help solving this problem, thus it would be

preferred to investigate new approaches, particularly RL, in which the knowledge

of the Markov decision process (MDP) that sustains it is not necessary. In this chap-

ter, a new RL approach to the CACC system that uses policy search is designed,

i.e., directly modifying the parameters of a control policy based on obtained re-

wards. The policy-gradient method is adopted, because unlike other RL methods,

it converges very well to high-dimensional systems. The advantages of the policy-

gradient methods are obvious [114]. Among all the most important methods, it is

indispensable that the policy representation can be chosen such that it is useful for

the task, i.e., the domain knowledge can easily be incorporated. The proposed ap-
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proach, in general, leads to fewer parameters in the learning process compared to

other RL methods. Besides, there are already many different algorithms for policy-

gradient estimation in the literature, most of which are based on strong theoretical

foundations. Finally, we use policy-gradient methods for model free problem and

it can therefore be applied to problems without analytically knowing task and re-

ward models as well. Consequently, in this chapter, we propose a policy-gradient

algorithm for CACC, where the algorithm repeatedly estimates the gradient of the

value with respect to the parameters, based on the information observed during

policy trials, and then updates the parameters in the upstream direction.

5.2. Related Work

Most of the researches on CACC systems have concerned about the classic con-

trol theory to develop autonomous controllers. However, recent projects based on

machine-learning approach has been launched promising theoretical and practical

results for the resolution of control problems in uncertain and partially observable

environments, and it would be desirable to apply it on CACC. One of the first

project efforts to use machine learning for autonomous vehicle control was Pomer-

leau’s autonomous land vehicle in a neural network (ALVINN) [121], in which it

consisted of a computer vision system, based on a neural network, that learns to

correlate observations of the road to the correct action to take. The results are

tested on autonomous controller which drove a real vehicle by itself for more than

30 miles. In [175, 179, 177], a RL based self-learning algorithm is designed in the

cases where former experiences are not available to learning agents in advance

and they are obliged to find a robust policy via interacting with the environment.

Experiments are realized on the autonomous navigation tasks for mobile robots.

To our knowledge, Yu [185] was the first researcher that gave the idea to use RL

for steering control. According to it, using RL approach allows control designers

to remove the requirement for extra supervision and also to provide continuous

learning abilities. RL is one of the machine-learning approach which has shown

as the adaptive optimal control of a process P , where the controller (called agent)

interacts with P and learns to control it. To this end, the agent learns behavior
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through trial-and-error interactions with P . The agent then perceives the state of

P , and it select an action which maximizes the cumulative return that is based on

a real-valued reward signal, which comes from P after each action. Thus, RL relies

on modifying the control policy, which associates an action a to a state s, based on

the state of the environment. Vehicle following has also been investigated in [110],

using RL and vision sensor. Through RL, the control system indirectly learns the

vehicle-road interaction dynamics, the knowledge of which is essential to stay on

the road in high-speed road tracking.

In [43], the author has been directed toward obtaining a vehicle controller using

instance-based RL. To this objective, the stored instances of past observations are

used as values estimates for controlling autonomous vehicles that were extended

to automobile control tasks. Simulations in an extensible environment and a hier-

archical control architecture for autonomous vehicles have been realized. Particu-

larly, the controllers proposed from this architecture were evaluated and improved

in the simulator until difficult traffic scenarios are taken into account in a variety

of (simulated) highway networks. However, this approach is, limited to the mem-

ory storage, which can be very rapidly developed when it deals with a realistic

application.

More recently, in [107], an adaptive control system using gain scheduling

learned by RL is proposed. In this research, they somehow kept the nonlinear

nature of vehicle dynamics. This proposed controller performs better than a sim-

ple linearization of the longitudinal model, which is not be suitable for the entire

operating range of the vehicle. The performance of the proposed approach at spe-

cific operating points shows accurate tracking ability of both velocity and positions

in most cases. However in the case of adaptive controller deployed in a convoy

or a platoon, the tracking performance is less desirable. In particular, the second

car attempts to track the leader, resulting in slight oscillations. This oscillation is

passed onto the following vehicles, but in the upstream direction of the platoon,

the oscillations decrease, implying string stability. Thus, this approach is more con-

venient for platooning control than the CACC, because sometimes in this later case,

it engenders slight oscillations.
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Thus, although some researches are dedicated to the longitudinal control using

RL, no researcher has particularly used RL for controlling CACC. In this chapter,

we will try to fix this problem.

5.3. Neural Network Model

An artificial neural network (ANN) [136, 105] is organized in layers and each layer

is composed of a bunch of "neuron" nodes. A neuron is a computational unit that

can reads inputs, processes them and generates an output, see Figure 5.1 as an

example.

+1

x1

x2

x3

+1

a1
(2)

a2
(2)

a3
(2)

a0
(2)

Layer L1 Layer L2 Layer L3

hw,b(x)

Figure 5.1 – A neural network example

The whole network is constructed by interconnecting many neurons. In this

figure, one circle represents one neuron. The leftmost layer of the network is called

the input layer, and the rightmost layer the output layer. The middle layer of nodes

is called the hidden layer, since its values are not observed in the training set. The

input layer and output layer serve respectively as the inputs and outputs of the

neural network. The neurons labeled "+1" are called bias units. A bias unit has

no input and always outputs +1. Hence, this neural network has 3 input units

(excluding the bias unit), 3 hidden units (excluding the bias unit), and 1 output

unit.

We use nl to denote the number of layers and label each layer l as Ll . In

Figure 5.1, nl = 3, layer L1 is the input layer, and layer Lnl the output layer.
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The links connecting two neurons are named weights, representing the connec-

tion strength between the neurons. The parameters inside the neural network are

(W, b) = (W(1), b(1), W(2), b(2)), where we write W(l)
ij to denote the weight associ-

ated with the connection between unit j in layer l, and unit i in layer l + 1. Also,

b(l)i is the bias associated with unit i in layer l + 1. Thus, we have W(1) ∈ R3×3 and

W(2) ∈ R1×3.1

Each neuron in the network contains an activation function in order to control its

output. We denote the activation of unit i in layer l by a(l)i . For the input layer L1,

a(1)i = xi, the i-th input of the whole network. For the other layers, a(l)i = f (z(l)i ).

Here, z(l)i denote the total weighted sum of inputs to unit i in layer l, including the

bias term (e.g., z(2)i = ∑n
j=1 W(1)

ij xj + b(1)i ), so that a(l)i = f (z(l)i ).

Given a fixed setting of the parameters (W, b), the neural network outputs a

real number that is defined as the hypothesis hW,b(x). Specifically, the computation

that this neural network represents is given by:

a(2)1 = f (W(1)
11 x1 + W(1)

12 x2 + W(1)
13 x3 + b(1)1 ),

a(2)2 = f (W(1)
21 x1 + W(1)

22 x2 + W(1)
23 x3 + b(1)2 ),

a(2)3 = f (W(1)
31 x1 + W(1)

32 x2 + W(1)
33 x3 + b(1)3 ),

hW,b(x) = a(3)1 = f (W(2)
11 a(2)1 + W(2)

12 a(2)2 + W(2)
13 a(2)3 + b(2)1 ).

(5.1)

For a more compact expression, we can extend the activation function f (·) to

apply to vectors in an element-wise fashion, i.e., f ([z1, z2, z3]) = [ f (z1), f (z2), f (z3)],

then we can write the equations above as:

1b(l)i can also be interpreted as the connecting weight between the bias unit in layer l who always

outputs +1 and the neuron unit i in layer l + 1. Thus, b(l)i may be replaced by W(l)
i0 . In this way,

W(1) ∈ R3×4 and W(2) ∈ R1×4.
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a(1) = x,

z(2) = W(1)a(1) + b(1),

a(2) = f (z(2)),

z(3) = W(2)a(2) + b(2),

hW,b(x) = a(3) = f (z(3)).

(5.2)

x = [x1, x2, x3]> is a vector of values from the input layer. This computational

process, from inputs to outputs, is called forward propagation. More generally, given

any layer l’s activation a(l), we can compute the activation a(l+1) of the next layer

l + 1 as:

z(l+1) = W(l)a(l) + b(l),

a(l+1) = f (z(l+1)).
(5.3)

In this dissertation, we will choose f (·) to be the sigmoid function f : R 7→

]− 1,+1[ :

f (z) =
1

1 + exp(−z)
. (5.4)

Its derivative is given by

f ′(z) = f (z)(1− f (z)). (5.5)

The advantage of putting all variables and parameters into matrices is that we

can greatly speed up the calculation speed by using matrix-vector operations.

Neural networks can also have multiple hidden layers or multiple output units.

Taking Figure 5.2 as an example, this network has two hidden layers L2 and L3 and

two output units in layer L4.

The forward propagation applies to all architectures of feedforward neural net-

works, i.e., to compute the output of the network, we can start with the input layer
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Figure 5.2 – A neural network example with two hidden layers

L1, and successively compute all the activations in layer L2, then layer L3, and so

on, up to the output layer Lnl .

5.3.1. Backpropagation Algorithm

Suppose we have a fixed training set {(x(1), y(1)), . . . , (x(m), y(m))} of m training

examples. We can train our neural network using batch gradient descent. In detail,

for a single training example (x, y), we define the cost function with respect to that

single example to be:

J(W, b; x, y) =
1
2
‖hW,b(x)− y‖2. (5.6)

This is a squared-error cost function. Given a training set of m examples, we

then define the overall cost function J(W, b) to be:

J(W, b) =

[
1
m

m

∑
i=1

J(W, b; x(i), y(i))

]
+

λ

2

nl−1

∑
l=1

sl

∑
i=1

sl+1

∑
j=1

(
W(l)

ji

)2

=

[
1
m

m

∑
i=1

(
1
2
‖hW,b(x(i))− y(i)‖2

)]
+

λ

2

nl−1

∑
l=1

sl

∑
i=1

sl+1

∑
j=1

(
W(l)

ji

)2
. (5.7)

sl denotes the number of nodes in layer l (not counting the bias unit). The

first term in the definition of J(W, b) is an average sum-of-squares error term. The

second term is a regularization term that tends to decrease the magnitude of the

weights, and helps prevent overfitting. Regularization is applied only to W but not
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to b. λ is the regularization parameter which controls the relative importance of the

two terms. Note that J(W, b; x, y) is the squared error cost with respect to a single

example; while J(W, b) is the overall cost function that includes the regularization

term.

The goal of the backpropagation is to minimize J(W, b) as a function of W and

b. To train the neural network, we first initialize each parameter W(l)
ij and each b(l)i

to a small random value near zero, and then apply an optimization algorithm such

as batch gradient descent. It is important to initialize the parameters randomly,

rather than to all 0’s. If all the parameters start off at identical values, then all

the hidden layer units will end up learning the same function of the input. More

formally, W(1)
ij will be the same for all values of i, so that a(2)1 = a(2)2 = a(2)3 = . . . for

any input x. The random initialization serves the purpose of symmetry breaking.

One iteration of gradient descent updates the parameters W, b as follows:

W(l)
ij = W(l)

ij − α
∂

∂W(l)
ij

J(W, b),

b(l)i = b(l)i − α
∂

∂b(l)i

J(W, b).
(5.8)

The parameter α is the learning rate. It determines how fast W and b move

towards their optimal values. If α is very large, they may miss the optimal and

diverge. If α is tuned too small, the convergence may need a long time.

The key step in Equation (5.8) is computing the partial derivatives terms of the

overall cost function J(W, b). Derived from Equation (5.7), we can easily obtain:

∂

∂W(l)
ij

J(W, b) =

 1
m

m

∑
i=1

∂

∂W(l)
ij

J(W, b; x(i), y(i))

+ λW(l)
ij ,

∂

∂b(l)i

J(W, b) =
1
m

m

∑
i=1

∂

∂b(l)i

J(W, b; x(i), y(i)).

(5.9)

One of the main tasks of the backpropagation algorithm is to compute the par-

tial derivatives terms ∂

∂W(l)
ij

J(W, b; x(i), y(i)) and ∂

∂b(l)i

J(W, b; x(i), y(i)) in Equation (5.9).
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The backpropagation algorithm for one training example is shown as follows:

1. Perform a forward propagation, computing the activations for layers L2, L3,

and so on up to the output layer Lnl .

2. For each output unit i in the output layer nl , set

δ
(nl)
i =

∂

∂z(nl)
i

(
1
2
‖y− hW,b(x)‖2

)
= −(yi − a(nl)

i ) · f ′(z(nl)
i ). (5.10)

3. For l = nl − 1, nl − 2, nl − 3, . . . , 2:

for each node i in layer l, set

δ
(l)
i =

(
sl+1

∑
j=1

W(l)
ji δ

(l+1)
j

)
f ′(z(l)i ). (5.11)

4. Compute the desired partial derivatives, which are given as:

∂

∂W(l)
ij

J(W, b; x, y) = a(l)j δ
(l+1)
i ,

∂

∂b(l)i

J(W, b; x, y) = δ
(l+1)
i .

(5.12)

Given a training example (x, y), we first run a forward propagation to compute

all the activations throughout the network, including the output value of the hy-

pothesis hW,b(x). Then, for each node i in layer l, we compute an error term δ
(l)
i that

measures how much that node was “responsible” for any errors in our output. For

an output node, we can directly measure the difference δ
(nl)
i between the network’s

activation and the true target value, and for hidden units, we compute δ
(l)
i based

on a weighted average of the error terms of the nodes that uses a(l)i as an input.

In practice, we use matrix-vectorial operations to reduce the computational cost.

We use “◦” to denote the element-wise product operator 2. By definition, if C =

A ◦ B, then

(C)ij = (A ◦ B)ij = (A)ij · (B)ij.

2Also called the Hadamard product.
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The algorithm for one can then be written:

1. Perform a forward propagation, computing the activations for layers L2, L3,

up to the output layer Lnl , using the equations defining the forward propaga-

tion steps.

2. For the output layer nl , set

δ(nl) = −(y− a(nl)) ◦ f ′(z(nl)). (5.13)

3. For l = nl − 1, nl − 2, nl − 3, . . . , 2, set

δ(l) =
(
(W(l))>δ(l+1)

)
◦ f ′(z(l)). (5.14)

4. Compute the desired partial derivatives:

∇W(l) J(W, b; x, y) = δ(l+1)
(

a(l)
)>

,

∇b(l) J(W, b; x, y) = δ(l+1).
(5.15)

In steps 2 and 3 above, we need to compute f ′(z(l)i ) for each value of i. As-

suming f (z) is the sigmoid activation function, we would already have a(l)i stored

away from the forward propagation throughout the whole network. Thus, using

the Equation (5.5) for f ′(z), we can compute this as f ′(z(l)i ) = a(l)i (1− a(l)i ).

After getting all the partial derivatives that we desire, we can finally implement

the gradient descent algorithm. One iteration of batch gradient descent is processed

as follows:

1. Set ∆W(l) := 0, ∆b(l) := 0 (matrix/vector of zeros) for all l.

2. For i = 1 to m,

(a) Use backpropagation to compute ∇W(l) J(W, b; x, y) and ∇b(l) J(W, b; x, y).

(b) Set ∆W(l) := ∆W(l) +∇W(l) J(W, b; x, y).

(c) Set ∆b(l) := ∆b(l) +∇b(l) J(W, b; x, y).
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3. Update the parameters:

W(l) = W(l) − α

[(
1
m

∆W(l)
)
+ λW(l)

]
,

b(l) = b(l) − α

[(
1
m

∆b(l)
)]

.
(5.16)

∆W(l) is a matrix of the same dimension as W(l), and ∆b(l) is a vector of the

same dimension as b(l).

To train the neural network, we can repeatedly take steps of gradient descent to

reduce our cost function J(W, b).

5.4. Model-Free Reinforcement Learning Method

In our work, We study reinforcement learning approach for longitudinal control

problems of intelligent vehicles. The leading vehicle is taking random decisions

and sequentially the following vehicles choose actions over a sequence of time

steps, in order to maximize a cumulative reward. We model the problem as a

Markov Decision Process: a state space S , an action space A, a transition dynamics

distribution P(st+1 | st, at) satisfying the Markov property P(st+1 | s1, a1, ..., st, at) =

P(st+1 | st, at), for any trajectory s1, a1, s2, a2, ..., sT, aT in state-action space, and a

reward function r : S × A −→ R. A stochastic policy π(st, at) = P(at | st) is

used to select actions and produce a trajectory of states, actions and rewards

s1, a1, r1, s2, a2, r2, ..., sT, aT, rT over S ×A×R.

An on-policy method learns the value of the policy that is used to make deci-

sions. The value functions are updated using results from executing actions deter-

mined by some policy. An off-policy methods can learn the value of the optimal

policy independently of the agent’s actions. It updates the estimated value func-

tions using hypothetical actions, those which have not actually been tried.

We focus on model-free RL methods that the vehicle drives an optimal policy

without explicitly learning the model of the environment. Q-learning [172] algo-

rithm is one of the major model-free reinforcement learning algorithms.

Q-Learning algorithm is an important off-policy model-free reinforcement

learning algorithm for temporal difference learning. It can be proven that given
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sufficient training under any ε-soft policy, the algorithm converges with probabil-

ity 1 to a close approximation of the action-value function for an arbitrary target

policy. Q-Learning learns the optimal policy even when actions are selected ac-

cording to a more exploratory or even random policy.

The update of state-action values in Q-learning is defined by

Q(st, at) := Q(st, at) + α
[
rt+1 + γ max

a
Q(st+1, a)−Q(st, at)

]
. (5.17)

The parameters used in the Q-value update process are:

α - the learning rate, set between 0 and 1. Setting it to 0 means that the Q-

values are never updated, hence nothing is learned. Setting a high value such

as 0.9 means that learning can occur quickly.

γ - discount factor, also set between 0 and 1. This models the fact that future

rewards are worth less than immediate rewards. Mathematically, the discount

factor needs to be set less than 0 for the algorithm to converge.

In this case, the learned action-value function, Q, directly approximates Q∗,

the optimal action-value function, independent of the policy being followed. This

dramatically simplifies the analysis of the algorithm and enabled early convergence

proofs. The policy still has an effect in that it determines which state-action pairs

are visited and updated. However, all that is required for correct convergence is

that all pairs continue to be updated. Under this assumption and a variant of the

usual stochastic approximation conditions on the sequence of step-size parameters,

Qt has been shown to converge with probability 1 to Q∗. The Q-learning algorithm

is shown below.

5.5. CACC based on Q-Learning

One of the strengths of Q-learning is that it is able to compare the expected utility

of the available actions without requiring a model of the environment. Q-learning

can handle problems with stochastic transitions and rewards.
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Algorithm 3: One-step Q-learning algorithm [172]
1: Initialize Q(s,a) arbitrarily;
2: repeat
3: Initialize s;
4: repeat
5: Choose a from s using policy derived from Q;
6: Take action a, observe r, s′;
7: Q(s, a)← Q(s, a) + α [r + γ maxa′ Q(s′, a′)−Q(s, a)];
8: s← s′;
9: until s is terminal

10: until all episodes end.

This section explains the design of an autonomous CACC system that inte-

grates both sensors and inter-vehicle communication in its control loop to keep a

secure longitudinal vehicle-following behavior. To this end, we will use the policy-

gradient method that we described in the previous section to learn a vehicle control

by direct interaction with a complex simulated driving environment. In this sec-

tion, we will present the driving scenario simulated, show the learning simulations

in detail, and evaluates the performance of the resulting policies.

The learning task concerned in this chapter is the same as previous chapters,

corresponding to a Stop-and-Go scenario. This type of scenario is the most in-

teresting, because it usually occurs on urban roads. It has been used by many

researchers for the development of autonomous controllers and the evaluation of

their efficiency and effects on the traffic flow. In this case, the learning vehicle’s

objective is to learn to follow the leading vehicle while keeping a specific defined

range of 2 s.

5.5.1. State and Action Spaces

Since reinforcement learning algorithms can be modeled as an MDP, we need first

to define the state space S and action space A.

For the definition of the states, the following three state variables are consid-

ered:

• headway time Hω: Headway time (also called the "range") is defined as the
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distance in time from the front vehicle and is calculated as follows:

Hω =
SLeader − SFollower

VFollower
(5.18)

where SLeader and SFollower are the position of leading vehicle and following

vehicle respectively, VFollower is the velocity of the following vehicle. This mea-

surement is widely adopted for inter-vehicle spacing that has the advantage

of being dependent on the current velocity of the following vehcile. This state

representation is also interesting, because it is independent of the velocity of

its front vehicle which is good for a heterogeneous platoon. Thus, a behav-

ior learned using these states will generalize to all the possible front vehicle

velocities.

• headway time derivative ∆Hω: Headway time derivative (also called the "range

rate") contains valuable information about the relative velocity between the

two vehicles and is expressed by

∆Hω = Hωt − Hωt−1 (5.19)

It shows whether the following vehicle is moving closer to or farther from the

front vehicle since the previous update of the value. Both the headway and

the headway can be derived by using a simulated laser sensor. Although con-

tinuous values are considered, we limit the range of the state space by bound-

ing the value of these variables to specific intervals that is valuable experience

to learn vehicle following behavior. Thus, the possible values of headway is

bounded from 0 to 10s, whereas the headway derivative is bounded from

−0.1s to 0.1s.

• Front-vehicle’s acceleration ai−1: The acceleration of the front vehicle, which

can be obtained through wireless V2V communication, is another important

state variable of our system. The same as two previous state variables, the

acceleration values are bounded to a particular interval, ranging from−3m/s2

to 5m/s2.
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Finally, the action space is composed of the following three actions: 1) a braking

action (B); 2) a gas action (G); and 3) a non-operation action (NO−OP). The state

and action space of our framework can formally be described as follows:

S = {Hω, ∆Hω, ai−1} (5.20)

A = {B, G, NO−OP} (5.21)

5.5.2. Reward Function

The progress of the learning phase depends on the reward function used by the

agent, because this function is mostly used by the learning algorithm to direct the

agent in areas of the state space where it will gather the maximum expected reward.

It is used to evaluate how good or how bad the selected action is. Obviously, the

reward function must be designed to be positive reward values to actions that get

the agent toward the safe inter-vehicle distance to the preceding vehicle (see Figure

5.3).

Figure 5.3 – Reward of CACC system in RL approach

As the secure inter-vehicle distance should be around the pre-defined value of
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2 s (a common value in industrialized countries’ legislation), we choose a large

positive reward given when the vehicle enters the zone that extends at ±0.1s from

the headway goal of 2 s. Moreover, we also define a even smaller zone at ±0.05s

from the safe distance, where the agent receives the most important reward. The

desired effect of such a reward function is to advise the agent to stay as close as

possible to the safe distance. On the contrary, we give negative rewards to the

vehicle when it is located very far from the safe distance or when it is too close

to the preceding vehicle. To reduce learning times, we also use a technique called

reward shaping, which directs the exploration of the agent by giving small positive

rewards to actions that make the agent progress along a desired trajectory through

the state space (i.e., by giving positive rewards when the vehicle is very far but gets

closer to its front vehicle).

5.5.3. The Stochastic Control Policy

A reinforcement learning agent learns from the consequences of its state-action

pairs rather than from being explicitly taught, and it selects its actions on basis of its

past experiences and also by new choices. If we may visit each state-action (s, a) a

sufficient large number of times, we could obtain the state values via, for example,

Monte Carlo methods. However, it is not realistic, and even worse, many state-

action pairs would not be visited once. It is important to deal with the exploration-

exploitation trade-off.

In our work, we transplant a Boltzmann distribution to express a stochastic

control policy. The learning agent tries out actions probabilistically based on their

Q-values. Given a state s, the stochastic policy outputs an action a with probability:

π(s, a) = P(a | s) = e
Q(s,a)

T

∑b∈A e
Q(s,b)

T

. (5.22)

where T is the temperature that controls the stochasticity of action selection. If

T is high, all the action Q-values tend to be equal, and the agent choose a random

action. If T is low, the action Q-values differ and the action with the highest Q-value

is preferred to be picked. Thus, P(a|s) ∝ e
Q(s,a)

T > 0 and ∑a P(a|s) = 1.
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We do not fix the temperature to a constant, since random exploration through-

out the whole self-learning process takes too long to focus on the best actions.

At the beginning, all Q(s, a) are generated inaccurately, so a high T is set to

guarantee the exploration that all actions have a roughly equal chance of being

selected. As time goes on, a large amount of random exploration have been done,

and the agent could gradually exploit its accumulating knowledge. Thus, the agent

decreases T, and the actions with the higher Q-values become more and more likely

to be picked. Finally, as we assume Q is converging to Q∗, T approaches zero (pure

exploitation) and we tend to only pick the action with the highest Q-value:

P(a|s) =

 1, if Q(s, a) = maxb∈A Q(s, b)

0, otherwise
(5.23)

In sum, the agent starts with high exploration and converts to exploitation as

time goes on, so that after a while we are only exploring (s, a)’s that have worked

out at least moderately well before.

5.5.4. State-Action Value Iteration

The Q-value function expresses the mapping policy from the perceived state of

environment to the executing action. One Q-value Q(st, at) corresponds with one

specific state and one action in this state. Like many RL researches, they have a

large-scale state and action spaces. Traditionally, all the state or action values are

store in a Q-table. However, this is not practical and computationally expensive for

large-scale problems. In our method, We propose to predict all state Q-values by

using a three-layer neural network, as shown in Figure 5.4.

The inputs are the state features that the robot perceives in the surrounding

environment, and the outputs correspond to all the action Q-values. Therefore,

according to Equation (5.20) and (5.21), the network has 3 neurons in the input

layer, and 3 in the output layer. Moreover, 8 neurons are designed in the hidden

layer.

The bias units are set to 1. The weight W(1) ∈ R8×4 is used to connect the

input layer and the hidden layer, and similarly, the weight W(2) ∈ R3×9 links the
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Figure 5.4 – A three-layer neural network architecture

hidden layer and the output layer. The sigmoid function is used for calculating the

activation in the hidden and output layers.

We denote Q(st) a vector of all action-values in the state st, and use Q(st, at) to

specify the Q-value of taking at in st. Thus,

Q(st) =


Q(st, a1)

Q(st, a2)

Q(st, a3)

 .

The action value iteration is realized by updating the neural network by the

means of its weights. In the previous chapter, the neural network was applied for

supervised learning where the label for each training state-action pair was explicitly

provided. Differently, the neural network in the reinforcement learning does not

has label outputs. Q-learning is a process of value iteration and the optimal value

after each iteration serves as the target value for neural network training. The

update rule is

Qk+1(st, at) = Qk(st, at) + α

[
rt + γ max

a∈A
Qk(st+1, a)−Qk(st, at)

]
. (5.24)

where the initial action values Q0 of al the state-action pairs are generated ran-
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domly between 0 and 1. Qk+1(st, at) is treated as the target value of the true value

Qk(st, at) in the (k + 1)th iteration.

In the vector Qk(st), only Qk(st, at) is updated to Qk+1(st, at), and the rest el-

ements stay unchanged. Sometimes, Qk+1(st, at) may exceed the range [0, 1], then

we need to rescale Qk+1(st) to make sure all its components are in [0, 1]. We de-

note Q̃k+1(st) the rescaled action value. To make it clear, the update of Q-value is

realized along the road Qk → Qk+1 → Q̃k+1.

The network error is a vector of form:

δk+1 = Q̃k+1(st)−Qk(st). (5.25)

We employ the stochastic gradient descent (SGD) to train the neural network

online. The goal is to minimize the cross-entropy cost function J defined as:

J = −
[

NA

∑
i=1

(Q̃k+1)i · log(Qk)i + (1− (Q̃k+1)i)(1− log(Qk)i)

]
. (5.26)

where NA is the number of actions used for training. In our navigation tasks,

NA = 5.

The action Q-values are nonlinear functions of weights of the network. SGD

optimizes J and updates weights by using one or a few training examples according

to:

W(i) ←W(i) − α
∂J

∂W(i)
. (5.27)

Each iteration outputs new weights W(i) and a new cost J′ is calculated. This

update repeats until it arrives at a maximum times of iteration or |J′ − J| < ε.

5.5.5. Algorithm

A longitudinal control problem via NNQL can be divided into two processes. The

first one is the training process to endow the vehicle with the self-learning ability,

and the second one is the tracking process to use the trained policy to execute an

independent tracking task.
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5.5.5.1. Training Process of NNQL

Training the vehicle is done by exposing it to a bunch of learning episodes and each

episode has a different environment. The variety helps the vehicle to encounter as

many situations as possible, which could accelerate the learning speed.

The key of training efficiency is greatly related to how to make use of the ac-

cumulated sequence of state-action pairs and their Q-values. A bunch of previous

work [124, 69, 179] used one-step Q-learning to update one Q-value at a time. When

the vehicle is at a new state, only the new Q-value will be updated and the previous

action values will be discarded. Others used batch learning [134] that updates all

the Q-values once they are all collected. This also poses some advantages. First,

without online update, we cannot guarantee that the collected Q-values have their

optimal target values. Moreover, waiting all the values being obtained is always

time-wasting. We propose to update online not only the current Q-value but also

gather the previous values to train together.

The learning algorithm is given in Algorithm 4.

Algorithm 4: Training algorithm of NNQL

1: Initialize the NN weights W(1) and W(2) randomly;
2: for all episodes do
3: Initialize the leading vehicle state;
4: Read the sensor inputs;
5: Observe current state s1;
6: t← 1;
7: for all moving steps do
8: Compute all action-values {Q(st, ai)}i in state st via NN;
9: Select one action at according to the stochastic policy π(s, a) in (5.22), and

then execute;
10: Observe new state st+1 and state property pt+1;
11: Obtain the immediate reward rt;
12: Update the Q-value function from Q(st, at) to Q̃(st, at) via (5.24);
13: Apply feature scaling for Q̃ to the range [0, 1];
14: Apply SGD to train (input, target) and to update the weights W(1) and

W(2);
15: t← t + 1;
16: end for
17: end for
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5.5.5.2. Tracking Problem Using NNQL

After training the vehicle, the resulting policy is still stochastic but closed to deter-

ministic that used by the vehicle for future tracking problems in various environ-

ments.

The tracking problem algorithm is shown in Algorithm 5.

Algorithm 5: Tracking problem using NNQL

1: Load the trained NN weights W(1) and W(2);
2: Initialize the leading vehicle state randomly;
3: Load the vehicle initial state;
4: t← 1;
5: for all moving steps do
6: Observe current state st and state property pt;
7: Compute all action Q-values {Q(st, ai)}i via neural network;
8: Pick the moving action at according to greedy policy, and then move;
9: end for

5.6. Experimental Results

Due to the stochastic property of the policy gradient algorithms, a hundred learn-

ing simulations that result in a hundred different control policies have been exe-

cuted. After the learning phase, the policy that obtained the highest reward sum is

chosen and is tested in the Stop-and-Go scenario that was used for learning. The

results are presented in the Figures. In the figures it is shown respectively, their

accelerations, the velocities of both vehicles, the headway time and the inter-vehicle

distance in the simulation.

The headway response of the follow vehicle, as shown in Figure. 5.6b, indicates

that, when the front vehicle is braking, the follower is able to keep a safe distance by

using the learned policy. During this period, the headway of the follower oscillates

close to the desired value of 2s (approximately from 1.95s to 2.05s). Note that

this oscillatory problem is due to the small number of discrete time steps that we

defined in this simulation. From time steps 200 to 400, however, we can see that

CACC operates the vehicle away from the desired headway that it gets closer to its

front vehicle. This behavior can be resulted due to the fact that, at this time step,



5.6. Experimental Results 123

(a) Acceleration response

(b) Velocity response

Figure 5.5 – Acceleration and velocity response of tracking problem using RL
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(a) Inter-vehicle distance

(b) Headway time

Figure 5.6 – Inter-vehicle distance and headway time of tracking problem using RL
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the front vehicle has stopped accelerating. Thus, to select actions of the following

vehicle, its controller observes a constant velocity (acceleration of 0) of the front

vehicle and accordingly selects actions. In reality, at this time, the following vehicle

is still rolling a faster than the front vehicle (as shown in the velocity profile in Fig.

5.5b). As consequence, the following vehicle has a tendency to get closer to the

front vehicle, because it uses "no-op" actions, although it should still be braking for

a small amount of time. The RL approach for CACC obtained is also interesting

when looking at the acceleration response of the following vehicle. Obviously, in

Fig. 5.5a it is shown that CACC does not need to use as much braking as the leader

(around -4 m/s2), i.e. string stability is obtained. This is because of the defined

actions, where only a deceleration of −5m/s2 is considered.

Macroscopically, the performance is desirable, because it has shown that there

is no amplification of velocity, which would result, within a vehicle platoon, in a

complete halt of the traffic flow further down the stream. Thus, the string stability

is kept and the presence of the acceleration signal of the leader enables the learning

of a better control policy.

5.7. Conclusion

In this chapiter, we have proposed a novel design approach to obtain an au-

tonomous longitudinal vehicle controller. To achieve this objective, a vehicle ar-

chitecture with its CACC subsystem has been designed. With this architecture,

we have also described the specific definitions for an efficient autonomous vehicle

control policy through RL and the simulator in which the learning engine is em-

bedded. The policy-gradient algorithm estimation is used to optimizer the policy

and has used a back propagation neural network for achieving the longitudinal

control. Then, experimental results, through Stop-and-Go scenario, have shown

that this proposed RL approach results in efficient behavior for CACC.
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Conclusions

In this thesis, we addressed the issue of CACC performance.

In chapter 1 a generally introduction to intelligent road transportation systems

was presented. Firstly, the current traffic problems and situation were introduced.

Then several historical researches worldwide were presented. In order to reduce

the accidents caused by human errors, autonomous vehicles are being developed

by research organizations and companies all over the world. Researches in au-

tonomous vehicle development was introduced in this chapter as well. Secondly,

ITS, AHS and intelligent vehicle were introduced, which are considered as the most

promising solutions to the traffic problems. Thirdly, CACC as an extension of ACC

systems by enabling the communication among the vehicles in a platoon, was then

presented. CACC systems prevent the driver from repetitive jobs like adjusting

speed and distance to the preceding vehicle. Fourthly, V2X communication, an

important technology in developing ITS, was introduced. The VANETs are formed

enabling communications among these agents, so that autonomous vehicles can be

upgraded into cooperative systems, in which a vehicle’s range of awareness can be

extended. Finally, the technology of machine learning was introduced, which can

be applied on intelligent vehicles.

Chapter 2 has presented the most important criterion to evaluate the perfor-

mance of intelligent vehicle platoon, the string stability. Then the Markov decision

processes were described in detail, which are the underlying structure of reinforce-

ment learning. Several classical algorithms for solving MDPs were also briefly

introduced. The fundamental concepts of the reinforcement learning was then

brought.

Chapter3 concentrated on the vehicle longitudinal control system design. The

spacing policy and its associated control law were designed with the constrains of

string stability. The CTH spacing policy was adopted to determine the desired spac-

ing from the preceding vehicle. It was shown that the proposed TVACACC system

127
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could ensure both the stability of individual vehicle and the string stability. In addi-

tion, through the comparisons between the TVACACC and the conventional CACC

and ACC systems, we could find the obvious advantages of the proposed system

in improving traffic capacity especially in the high-density traffic conditions. The

above proposed longitudinal control system was validated to be effective through

a series of simulations in stop-and-go scenario.

In chapter4, a degradation approach for TVACACC was presented, used as an

alternative fallback strategy to ACC. The concept of the proposed approach is to

remain the minimum loss of functionality of TVACACC when the wireless com-

munication is failed or when the preceding vehicle is not intelligent, which is not

equipped with wireless communication units. The proposed degraded system,

which is referred to as DTVACACC, uses the Kalman Filter to estimate the preced-

ing vehicle’s current acceleration to replace the desired acceleration, which is nor-

mally be communicated over a wireless V2V communication for the conventional

CACC system. What’s more, a switch criterion from TVACACC to DTVACACC

was presented, in the case that wireless communication is not (yet) lost completely,

but is suffering from increased transmission delay. Theoretical results have shown

that the performance, in terms of string stability of DTVACACC, can be kept at

a much higher level compared with an ACC fallback strategy. Both theoretical as

well as experimental results have shown that the DTVACACC system outperforms

the ACC fallback scenario by reducing the minimum string-stable time gap to less

than half the required value in case of ACC.

Finally in chapter 5, we have proposed a novel approach to obtain an au-

tonomous longitudinal vehicle cACC controller. To achieve this ovjective, a vehicle

architecture with its CACC subsystem has been presented. Using this architecture,

the specific requirements for an efficient autonomous vehicle control policy through

RL and the simulator in which the learning engine is embedded are described. The

policy-gradient algorithm estimation has been applied and we have used a back

propagation neural network for achieving the longitudinal control. Then, through

experimental results, through Stop-and-Go Scenario simulation, it is shown that

this design approach can result in efficient behavior for CACC.
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Future work

Much work can still be achieved to improve the performance of vehicle longitudinal

controller proposed in this thesis.

• Further experimental validation of the proposed framework, TVACACC on

real platoon is part of future research. Moreover, a various headway time

and communication delay is required due to different factors, such as road

condition and weather.

• The approach to estimate the front vehicle’s acceleration in case of losing the

V2V communication can be improved. In this thesis, we used typical filter

Kalman for estimation based on the inter-vehicle distance and relative speed.

Other technology of estimation can be applied to improve the performance of

CACC systems.

• The state and action of vehicle in RL is not precisely defined. More factors

of vehicle state and action should be taken into account. Issues of the oscilla-

tory behavior of our vehicle control policy can be solved by using continuous

actions. This approach would require further study to efficiently realize this

method, because it causes additional complexity to the learning process.

• Some elements to our simulation of RL approach can also be improved, with

the ultimate goal of having an even more realistic environment through which

we can make our learning experiments. In fact, an important aspect to con-

cern, as we did in chapter 3, would be to simulate a more accurate simulator

for sensory and communication systems, which means sensor and commu-

nication delay, data loss and noise. These factors would make the learning

process more complex, but the results would be much closer to real-life envi-

ronments.

• Our controller can also be completed by extending an autonomous lateral

control system. Again, this issue can be tackled using RL, and a potential

solution is to use a reward function in the form of a potential function over

the width of a lane, which is similar to the current force feedback given by
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the existing lane-keeping assistance system. This reward function will surely

direct the driving agent toward learning an adequate lane-change policy.



Résumé Étendu en Français

Introduction

Cette thèse est consacrée à la recherche de l’application de la théorie du contrôle in-

telligent dans les futurs systèmes de transport routier. A cause du développement

de la société humaine, la demande de transport est beaucoup plus élevé que toute

autre période de l’istoire. Plus flexibles et plus confortables, les voitures privées

sont préférées par beaucoup de gens. En outre, le développement de l’industrie

automobile réduit le coût de posséder une voiture, ainsi le nombre de voitures a

augmenté rapidement dans le monde entier, surtout dans les métropoles. Toutefois,

l’augmentation du nombre de voitures rend notre société à souffrir de la conges-

tion du trafic, pollution des gaz et accidents. Ces effets négatifs nous exigent de

trouver des solutions. Dans ce contexte, la notion de Systèmes de Transport In-

telligents (ITS) est proposée. Les scientifiques et les ingénieurs travaillent depuis

des décennies pour appliquer des technologies multidisciplinaires aux transports,

afin d’avoir des systèmes plus stables, plus efficaces, plus d’économie d’effort, et

environnemental amicale.

Une pensée est le système (semi-)autonome. L’idée principale est d’utiliser des

applications pour aider ou remplacer l’opération humaine et la décision. Les sys-

tèmes d’Assistance Avancés au Conducteur (ADAS) sont conçus pour aider les

conducteurs en les alertant lorsque le danger s’est produit (changement de la voie,

avertissement de collision directe), fournissant de plus d’informations pour la prise

de décision (plan d’itinéraire, évitement de la congestion) et libérant des manœu-

vres répétitives (régulateur de vitesse adaptatif, parking). Dans les systèmes semi-

automatiques, le processus de conduite nécessite le conducteur humain: le conduc-

teur doit définir certains paramètres dans le système, et il peut décider de suivre

l’assistance consultative ou pas. Récemment, avec l’amélioration des technologies

de détection et d’intelligence artificielle, les entreprises et les instituts se sont en-

gagés dans la recherche et le développement de la conduite autonome. Dans cer-

taines scénarios, par exemple des autoroutes et des routes principales, à l’aide de
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capteurs et la carte très précis, les mains-off et pieds-off expériences de conduite

seraient réalisées. L’élimination de l’erreur humaine rendra le transport routier

beaucoup plus sécurisé et l’optimisation de l’espace entre véhicules améliorera

l’utilisation de la capacité routière. Toutefois, les voitures ont encore besoin de

l’anticipation du conducteur dans certains scénarios avec une situation de trafic

compliquée ou des informations limitées. La structure intérieure des véhicules au-

tonomes ne serait pas différente que celle des voitures actuelles, parce que le volant

et les pédales sont toujours nécessaires. L’étape suivante de la conduite autonome

est la conduite sans conducteur, c’est-à-dire la voiture est totalement conduit par

lui-même. Le siège dédié au conducteur disparaîtrait et les gens à bord se concen-

treraient sur leur propre personnel. L’économie de l’auto-partage des voitures sans

conducteur seraient énormes: à l’avenir, les gens préféreraient une voiture sans

conducteur lorsqu’ils ont besoin d’une voiture privée. Ainsi, les congestions et les

pollutions pourraient être soulagées.

Une autre penseé est le système coopératif. De toute évidence, pour le transport

routier actuel les notifications sont conçu pour les conducteurs humains, tels que

les feux de circulation et les panneaux latéraux. Les véhicules autonomes actuels

sont équipés avec des caméras dédiées à la détection de ces signes. Toutefois,

les notifications humaines n’est pas assez efficace pour les véhicules autonomes,

car l’utilisation de la caméra est limitée par la portée et la visibilité, et des algo-

rithmes doivent être conçus pour reconnaître ces signes. Si l’interaction entre les

véhicules et l’environnement est activée, les notifications peuvent être transmises

via les communications Vehicule-to-X (V2X). Ainsi les véhicules peuvent être re-

marqués dans la plus grande distance même au-delà de la vue, et les informations

transmises sont plus précises que celles détectées par les capteurs. Quand le taux

de communication des voitures sans conducteur est assez élevé, il ne serait plus

nécessaire d’avoir des feux de circulation physiques et des panneaux. Le panneau

de trafic personnel virtuel peut être communiquées aux véhicules individuels par

le gestionnaire du trafic. Dans les systèmes coopératifs, un individu n’a pas besoin

d’acquérir l’nformation tout par ses propres capteurs, mais avec l’aide des autres
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par la communication. Par conséquent, l’intelligence autonome peut être étendue

à l’intelligence coopérative.

La recherche présentée dans cette thèse concentre sur le développement

d’applications pour améliorer la sécurité et l’efficacité des systèmes de transport

intelligents dans le contexte des véhicules autonomes et des communications V2X.

Ainsi, cette recherche cible des systèmes coopératifs. Stratégies de contrôle sont

conçues pour définir la méthode dont les véhicules interagissent les uns avec les

autres.

Contributions Principales

Un nouveau système décentralisé de Régulateur de Vitesse Coopératif Adaptif à

deux véhicules (TVACACC) est proposé dans ce document thèse. Il est montré que

le contrôleur proposé avec deux entrées d’accéleration souaitée permet de réduire

la distance entre véhicules, en utilisant une politique d’espacement dépendante de

la vitesse. De plus, une approche de la stabilité dan le domaine fréquenciel est

théoriquement analysée. En utilisant la communication multiple sans fil entre les

véhicules, comparée au système conventionnel, une meilleure stabilité de chaîne

est démontrée, qui entraîne une perturbation plus faible. La caravane des véhicules

dans le scénario Stop-and-Go est simulé avec la communication de V2V dégradée.

Il est montré que le système proposé donne un comportement stable de chaîne.

Une technique de dégradation gracieuse est proposé pour CACC, qui constitue

un scénario alternatif de ACC. L’idée de l’approche proposée est d’obtenir la perte

minimale de fonctionnalité de CACC lorsque la communication sans fil échoue

ou le véhicule précédent n’est pas équipé de module de communication sans fil.

La stratégie proposée, appelée TVACACC Dégradée (DTVACACC), utilise une

estimation de l’accélération actuelle du véhicule précédent en remplacement de

l’accélération souhaitée, qui est normalement communiquée par la communication

sans fil.

Une nouvelle approche de conception pour obtenir un contrôleur de véhicule

longitudinal autonome est proposé. Pour atteindre cet objectif, une architecture

de véhicule CACC a été présenté. Avec cette architecture, nous avons décrit
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les exigences spécifiques pour un contrôle autonome efficace des véhicules par

l’Apprentissage de Renforcement (RL) et le simulateur dans lequel le moteur

d’apprentissage est intégré. Une estimation d’algorithme de gradient de politique

a été introduit et a utilisé un réseau neuronal de rétro-propagation pour le contrôle

longitudinal.

Conlusions et Perspectives

Dans cette thèse, nous avons abordé le recherche de la performance du CACC.

Au chapitre 1, une introduction aux systèmes intelligents de transport routier a

été présenté. Tout d’abord, les problèmes de circulation et la situation actuelle

ont été introduits. Ensuite, plusieurs recherches historiques ont été présentées

dans le monde entier. Pour but de réduire les accidents causés par les erreurs

humaines, les véhicules autonomes sont en cours de développement par des or-

ganismes de recherche et des entreprises partout dans le monde. Le développe-

ment des véhicules a également été introduit dans ce chapitre. Deuxiémement,

ITS, AHS et le véhicule intelligent ont été introduits, qui sont considérés comme

des solutions prometteuses aux problèmes de trafic. Troisièmement, le CACC en

tant que prolongement du ACC systèmes en permettant la communication entre

les véhicules d’une caravane, était alors présenté. Les systèmes CACC empêchent

le conducteur de faire des tâches répétitives, en maintenant la vitesse et la distance

inter-véhicules plus optimisées par rapport au ACC et CC systèmes. Quatrième-

ment, la communication V2X, une technologie importante dans le développement

des ITS, a été introduite. Les VANET sont formés permettant la communication

entre les agents, de sorte que les véhicules autonomes mise au point en systèmes

coopératifs, dans lesquels la gamme de sensibilisation d’un véhicule est prolongée.

Enfin, la technologie de l’apprentissage a été introduite, qui peut être appliqué sur

les véhicules intelligents.

Le chapitre 2 a présenté le critère le plus important pour évaluer la perfor-

mance d’une caravane de véhicules intelligents, la stabilité de chaîne. Puis la Dé-

cision du Markov Processus (MDP) a été décrite en détail, qui est la structure de

l’Apprentissage de Renforcement (RI). Plusieurs algorithmes classiques pour ré-
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soudre les MDP ont également été brièvement Introduits. Les concepts fondamen-

taux du RI ont été apportés.

Le chapitre 3 se concentre sur la conception du système de contrôle longitu-

dinale du véhicule. La politique d’espacement et sa loi de contrôle associée ont

été conçues avec les contraintes de stabilité de chaîne. La politique d’espacement

CTH a été adoptée pour déterminer l’espacement souhaité du véhicule précédent.

Il a été démontré que le système proposé TVACACC pourrait assurer à la fois la

stabilité du véhicule individuelle et la stabilité de chaîne. En outre, à travers les

comparaisons entre TVACACC, CACC conventionnel et ACC, nous avons prouvé

les avantages évidents du système proposé dans l’amélioration de la capacité de

trafic, en particulier dans les conditions de trafic à forte densité. Le système de

contrôle longitudinal proposé a été validé par une série de simulations dans le

scénario stop-and-go.

Au chapitre 4, une technique gracieuse de dégradation du CACC a été présen-

tée, comme un scénario alternatif de rechange à ACC. L’idée de l’approche pro-

posée est d’obtenir la perte minimale de fonctionnalité de CACC lorsque la liaison

sans fil échoue ou lorsque le véhicule précédent n’est pas équipé d’une communi-

cation sans fil. La stratégie proposée, appelée DTVACACC, utilise le filtre Kalman

pour estimer l’accélération actuelle du véhicule précédent en remplacement de

l’accélération souaitée, qui est normalement communiquée par un lien sans fil pour

ce type de CACC. En outre, un critère pour passer de TVACACC à DTVACACC a

été présentée, dans le cas où la communication sans fil n’est pas (encore) perdue,

mais montre un délai accru. Il a été démontré que la performance, en termes de la

stabilité de chaîne de DTVACACC, peut être maintenu à un niveau beaucoup plus

élevé qu’un système ACC. Les résultats théoriques et expérimentaux ont montré

que le système DTVACACC surpasse ACC avec des caractéristiques de stabilité de

chaîne en réduisant l’intervalle de temps minimum une moitié de la valeur requise

dans le cas de ACC.

Enfin, dans le chapitre 5, nous avons proposé une nouvelle approche

d’pprentissage pour obtenir un régulateur longitudinal de vitesse de véhicule.

Pour parvenir à cette condition, une architecture de véhicule dans CACC a été
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présentée. Avec cette architecture, nous avons également décrit les exigences spé-

cifiques d’un véhicule autonom, la politique de contrôle par RL et le simulateur

dans lequel le moteur d’apprentissage est intégré. Une méthode d’estimation

d’algorithme, le gradient de politique, a été introduite et utilisé dans un réseau

neuronal de rétro-propagation pour réaliser le contrôle longitudinal. Alors, les

résultats expérimentaux, grâce à la simulation, ont montré que cette approche de

conception peut entraîner un comportement efficace pour les CCAC.

Beaucoup de travail peut encore être fait pour améliorer le contrôleur de

véhicule proposé dans cette thèse.

Validation expérimentale supplémentaire du cadre proposé, TVACACC sur une

caravane de véhicules réels fait partie de la recherche future. En outre, une inter-

valle de temps et le retard de communication variés peut être prises en compte en

raison de différents facteurs, par exemple la condition routière météorologique.

L’approche pour estimer l’accélération du véhicule précédent en cas de perte

de la communication V2V peut être améliorée. Dans cette thèse, nous avons utilisé

un filtre Kalman typique pour l’estimation basée sur la distance inter-véhicule et

la vitesse relative. D’autres techniques d’estimation peuvent être appliquées pour

améliorer le système CACC dégradé.

L’état et l’action du véhicule dans RL n’est pas précisément défini. Plus de

facteurs de l’état du véhicule et de l’action doit être prise en compte. Problèmes

relatives au comportement oscillatoire de notre politique de contrôle des véhicules

peut être améliorés par des actions continues. Ce cas nécessiterait une étude plus

approfondie pour cette approche, car elle apporte une complexité supplémentaire

à l’apprentissage processus.

Certains éléments de notre simulation de l’approche RL peuvent également être

améliorés, avec l’objectif ultime d’un environnement encore plus réaliste. En fait,

un aspect important à considérer, comme nous l’avons fait au chapitre 3, serait

d’intégrer un simulateur plus précis pour les systèmes sensoriels et de communi-

cation, ce qui signifie capteur et communication en retard, avec perte de données

et bruit. Cette condition rendrait le processus de l’apprentissage plus complexe,
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mais l’environnement qui en résulterait resemblerait beaucoup plus aux conditions

réelles.

Notre contrôleur peut également être complété par un système de contrôle

latéral autonome. Encore une fois, cette approche peut être faite en utilisant RL.

Une solution possible est d’utiliser une fonction de récompense sous la forme d’une

fonction potentielle sur la voie, semblable à la rétroaction de la force actuelle don-

née par la voie existante de système d’assistance. Cette fonction de récompense

dirigera sûrement l’agent de conduite vers une politique de changement de voie

adéquate.
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Analyse de Performance de Réegulateur de Vitesse Adaptatif Coopératif

Résumé: Cette thèse est consacrée à l’analyse de performance du Régulateur de Vitesse Adap-
tatif Coopératif (CACC) pour un train de véhicules intelligents pour les objectifs principaux de la
réduction de congestion du trafic et l’amélioration de la sécurité routière. Ensuite, une approche de
domaine fréquenciel de la stabilité de chaîne est présentée, qui est généralement définie comme la
perturbation du premier véhicule n’amplifie pas pour les véhicules suivants.

Premièrement, la politique d’espacement , Intervalle Constante de Temps (CTH) pour un train
de véhicule est introduite. Basé sur cette politique d’espacement, un nouveau système décentralisé
de Deux-Véhicules-Devant CACC (TVACACC) est proposé, dans lequel l’accélération souhaitée de
deux véhicules précédents est prise en compte. Ensuite, la stabilité de chaîne du système proposé est
théoriquement analysé. Il est démontré que grâce à l’aide de la communication multiple sans fil parmi
les véhicules, une meilleure stabilité la chaîne est obtenue par rapport au système conventionnel. Un
train de véhicules dans Stop-and-Go scénario est simulé avec la communication normale et dégradée,
y compris le délai de transmission élevé et la perte de données. Le système proposé donne un
comportement stable de chaîne, correspondant Ã l’analyse théorique.

Deuxièmement, une technique de dégradation gracieuse pour CACC a été présenté, comme
une stratégie alternative lorsque la communication sans fil est perdu ou mal dégradé. La stratégie
proposée, qui est appelée DTVACACC, utilise le filtre de Kalman pour estimer l’accélération actuelle
du véhicule précédent remplaçant l’accélération souhaitée. Il est démontré que la performance, en
termes de stabilité de chaîne de DTVACACC, peut être maintenue à un niveau beaucoup plus élevé.

Enfin, une approche d’Apprentissage par Renforcement (RL) pour système CACC est proposé.
L’algorithme politique-gradient est introduit pour réaliser le contrôle longitudinal. Ensuite, la simu-
lation a montré que cette nouvelle approche de RL est efficace pour CACC.

Mots-clés: Systèmes de Transport Intelligents, Véhicules Autonomes, Régulateur de Vitesse
Adaptatif Coopératif, Analyse de Performance, Contrôle Longitudinal, Degradation de Transmission,
Apprentissage par Renforcement.

Cooperative Adaptive Cruise Control Performance Analysis

Abstract: This PhD thesis is dedicated to the performance analysis of Cooperative Adaptive
Cruise Control (CACC) system for intelligent vehicle platoon with the main aims of alleviating traf-
fic congestion and improving traffic safety. Then a frequency-domain approach of string stability is
presented, which is generally defined as the disturbance of leading vehicle not amplifying through
upstream of the platoon. At first, the Constant Time Headway (CTH) spacing policy for vehicle pla-
toon is introduced. Based on this spacing policy, a novel decentralized Two-Vehicle-Ahead CACC
(TVACACC) system is proposed, in which the desired acceleration of two front vehicles is taken into
account. Then the string stability of the proposed system is theoretically analyzed. It is shown that by
using the multiple wireless communication among vehicles, a better string stability is obtained com-
pared to the conventional system. Vehicle platoon in Stop-and-Go scenario is simulated with both
normal and degraded communication, including high transmission delay and data loss. The pro-
posed system yields a string stable behavior, in accordance with the theoretical analysis. Secondly,
a graceful degradation technique for CACC was presented, as an alternative fallback strategy when
wireless communication is lost or badly degraded. The proposed strategy, which is referred to DTVA-
CACC, uses Kalman filter to estimate the preceding vehicle’s current acceleration as a replacement of
the desired acceleration. It is shown that the performance, in terms of string stability of DTVACACC,
can be maintained at a much higher level. Finally, a Reinforcement Learning (RL) approach of CACC
system is proposed. The policy-gradient algorithm is introduced to achieve the longitudinal control.
Then simulation has shown that this new RL approach results in efficient performance for CACC.

Keywords: Intelligent Transportation Systems, Autonomous Vehicles, Cooperative Adaptive
Cruise Control, Performance Analysis, Longitudinal Control, Transmission Degradation, Reinforce-
ment Learning.




	List of Figures
	Introduction to ITS
	General traffic situation
	Intelligent Transportation Systems
	Definition of ITS
	ITS applications
	ITS benefits
	Previous researches

	Intelligent vehicle
	Adaptive Cruise Control
	Evolution: from autonomous to cooperative
	Development of ACC
	Related work in CACC

	Vehicle Ad hoc networks
	Machine Learning
	Conclusion

	String stability and Markov decision process
	String stability
	Introduction
	Previous research

	Markov Decision Processes
	Policies and Value Functions
	Dynamic Programming: Model-Based Algorithms
	Policy Iteration
	Value Iteration

	Reinforcement Learning: Model-Free Algorithms
	Objectives of Reinforcement Learning
	Monte Carlo Methods
	Temporal Difference Methods

	Conclusion

	CACC system design
	Introduction
	Problem formulation
	Architecture of longitudinal control
	Design objectives

	CACC controller design
	Constant Time Headway spacing policy
	Multiple V2V CACC system
	System Response Model
	TVACACC diagram

	String stability analysis
	String stability of TVACACC
	Comparison of ACC, CACC AND TVACACC

	Simulation tests
	Comparison of ACC CACC and TVACACC
	Increased transmission delay

	Conclusion

	Degraded CACC system design
	Introduction
	Transmission degradation
	Degradation of CACC
	Estimation of acceleration
	DTVACACC
	String stability analysis
	Model switch strategy

	Simulation
	Conclusion

	Reinforcement Learning approach for CACC
	Introduction
	Related Work
	Neural Network Model
	Backpropagation Algorithm

	Model-Free Reinforcement Learning Method
	CACC based on Q-Learning
	State and Action Spaces
	Reward Function
	The Stochastic Control Policy
	State-Action Value Iteration
	Algorithm

	Experimental Results
	Conclusion

	Bibliography

