Thèse soutenue

Comment la gravité est intégrée lors de la planification motrice : approches comportementale et par imagerie cérébrale
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Célia Rousseau
Direction : Thierry PozzoOlivier White
Type : Thèse de doctorat
Discipline(s) : Staps
Date : Soutenance le 12/12/2016
Etablissement(s) : Dijon
Ecole(s) doctorale(s) : Environnements - Santé (ES)
Partenaire(s) de recherche : Laboratoire : Cognition, Action, et Plasticité Sensorimotrice (CAPS) (Dijon)
Jury : Président / Présidente : Charalambos Papaxanthis
Examinateurs / Examinatrices : Frédéric Crevecoeur
Rapporteurs / Rapporteuses : Nicole Wenderoth, Nandu Goswami

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

La gravité est omniprésente et affecte la dynamique de tous les mouvements que nous réalisons au quotidien. Variant de moins de 1% sur la surface terrestre, la force d’attraction gravitationnelle (9.81 m/s2) est actrice de l’évolution de toute espèce vivante. Grâce à un système sensoriel performant, les conséquences des effets de la gravité sur nos mouvements sont mémorisées sous la forme de représentations internes. Pour éviter d’être tributaires des délais temporels contraignants des signaux afférents du système sensoriel (trop longs si le mouvement doit être réalisé en urgence), l’individu agit de façon proactive en utilisant des modèles internes adaptés qu’il a notamment élaborés au cours de son expérience passée. Ces modèles sont utilisés essentiellement au cours d’une phase de planification motrice durant laquelle une commande motrice est définie pour initier l’action. La connaissance antérieure de notre système biomécanique et de notre environnement détermine donc l’ensemble des modèles internes de chaque individu. Cependant, à l’état initial, les retours sensoriels peuvent aussi être utilisés pour élaborer une stratégie motrice optimale. Pour anticiper au mieux les effets de la gravité, le rôle de ces informations initiales issues de feedback sensoriel reste encore à approfondir. C’est au cours de ces travaux de thèse que nous avons mis en évidence l’importance de ces informations avant l’exécution du mouvement. Une fois disponible (~100ms après le début du mouvement), les retours sensoriels disponibles sont alors intégrés aux modèles internes pour permettre un monitoring de la tâche motrice et éventuellement ajuster la stratégie au cours du mouvement. Ils sont d’autant plus utiles lorsque l’individu fait face à un nouveau contexte dynamique. En effet, l’individu va se fier davantage aux informations issues du système sensorimoteur, étant donné qu’il ne dispose d’aucun modèle interne adapté. C’est au cours d’une phase d’apprentissage que de nouveaux modèles internes vont être établis. Les facteurs qui permettent un apprentissage sont multivariés et dépendent du système sensoriel de chaque individu. Nous avons montré que lorsque tous les systèmes sensoriels subissent les effets d’un nouvel environnement gravito-inertiel, l’apprentissage était facilité. Ce résultat contraste avec le manque d’adaptation – voire les interférences – parfois observés lors d’apprentissages de tâches beaucoup plus simples. Tous ces mécanismes observables au niveau comportemental sont traités dans le cortex cérébral, et la prise en compte puis l’encodage des effets de la gravité sont effectués dans des aires cérébrales spécifiques. Si elles forment le réseau visuel vestibulaire lorsqu’il s’agit de prédire les effets de la gravité appliqués à des objets extérieurs, nous avons voulu savoir si le même réseau fonctionnel était responsable du traitement de la gravité lorsqu’il s’agissait de la production d’un mouvement. Nous avons mis en évidence que le cortex insulaire est le siège de ce réseau vestibulaire. Ainsi, grâce à une étude d’imagerie mentale qui n’induit pas de mouvement, nous avons également pu observer des différences de circuiterie au sein même de l’insula lorsque des informations gravitaires utiles fournies par les capteurs sensoriels, en particulier proprioceptifs, sont transmises (phase d’exécution), ou non (phase de planification du mouvement) au cerveau.