
UNIVERSITE DE BOURGOGNE

UFR Sciences Humaines

THÈSE

Pour obtenir le grade de

Docteur de l’Université de Bourgogne

Discipline : Informatique

par

Olivier Boisard

le 25 octobre 2016

Optimization and implementation

of bio-inspired feature extraction frameworks

for visual object recognition

Directeur de thèse

Michel Paindavoine

Jury

Philippe Coussy, Professeur des universités, Rapporteur

Christophe Garcia, Professeur des universités, Rapporteur

Andres Perez-Uribe, Professeur des universités, Examinateur

Robert M. French, Directeur de recherches au CNRS, Examinateur

Michel Doussot, Maître de conférences, Examinateur

Olivier Brousse, Ingénieur de Recherche, Examinateur

©

“Airplanes don’t flap their wings and don’t have feathers.”

Yann LeCun

Abstract

Industry has growing needs for so-called “intelligent systems”, capable of not only ac-

quire data, but also to analyse it and to make decisions accordingly. Such systems are

particularly useful for video-surveillance, in which case alarms must be raised in case of

an intrusion. For cost saving and power consumption reasons, it is better to perform that

process as close to the sensor as possible. To address that issue, a promising approach is

to use bio-inspired frameworks, which consist in applying computational biology models

to industrial applications. The work carried out during that thesis consisted in select-

ing bio-inspired feature extraction frameworks, and to optimize them with the aim to

implement them on a dedicated hardware platform, for computer vision applications.

First, we propose a generic algorithm, which may be used in several use case scenarios,

having an acceptable complexity and a low memory print. Then, we proposed opti-

mizations for a more global framework, based on precision degradation in computations,

hence easing up its implementation on embedded systems. Results suggest that while

the framework we developed may not be as accurate as the state of the art, it is more

generic. Furthermore, the optimizations we proposed for the more complex framework

are fully compatible with other optimizations from the literature, and provide encourag-

ing perspective for future developments. Finally, both contributions have a scope that

goes beyond the sole frameworks that we studied, and may be used in other, more widely

used frameworks as well.

Résumé

L’industrie a des besoins croissants en systmes dits intelligents, capable d’analyser les

signaux acquis par des capteurs et prendre une dcision en consquence. Ces systmes sont

particulirement utiles pour des applications de vido-surveillance ou de contrle de qualit.

Pour des questions de cot et de consommation d’nergie, il est souhaitable que la prise de

dcision ait lieu au plus prs du capteur. Pour rpondre cette problmatique, une approche

prometteuse est d’utiliser des mthodes dites bio-inspires, qui consistent en l’application

de modles computationels issus de la biologie ou des sciences cognitives des problmes

industriels. Les travaux mens au cours de ce doctorat ont consist choisir des mthodes

d’extraction de caractristiques bio-inspires, et les optimiser dans le but de les implanter

sur des plateformes matrielles ddies pour des applications en vision par ordinateur. Tout

d’abord, nous proposons un algorithme gnrique pouvant tre utiliss dans diffrents cas

d’utilisation, ayant une complexit acceptable et une faible empreinte mmoire. Ensuite,

nous proposons des optimisations pour une mthode plus gnrale, bases essentiellement

sur une simplification du codage des donnes, ainsi qu’une implantation matrielle bases

sur ces optimisations. Ces deux contributions peuvent par ailleurs s’appliquer bien

d’autres mthodes que celles tudies dans ce document.

Acknowledgements

So here I am, after three years spent playing around with artificial neurons. That went

fast, and I guess I would have needed twice as long to get everything done. That was a

great experience, which allowed me to meet extraordinary people without whom those

years wouldn’t have been the same.

First of all, I wish to thank my mentor Michel Paindavoine for letting me be his student,

along with my co-mentors Olivier Brousse and Michel Doussot. All three showed real

implication in my work, and your advices and the long discussions we had was of great

help. I would also like to thank Xavier Bruneau, for allowing me to realize that thesis

in his company – too often we hear about PhD students in companies who had no time

for academic works, and I’m glad I wasn’t one of them. I also wish to thank Bob French

and Lionel Lacassagne for accepting to be part of the follow-up committee, as well as

Thomas Serre and all the staff at Serre Lab for welcoming me. Then I would like to thank

Philippe Coussy and Christophe Garcia, for being the first readers of this document and

accepting to review it. Finally, I would like to thank the ANRT, i.e the French National

Research and Technology Agency, for giving me the opportunity to realize that PhD

with the CIFRE program.

But all of those years wouldn’t have been the same without my colleagues and fellow PhD

students, at GlobalSensing Technologies and at the LEAD. So I thank you all, whether

you were there for a few months only or several years, for your support, advices, and

the laughs that we shared: Mathieu, Lolita, Laura, Luc, Jonathan, Sabrina, Vivien,

Rémi (he ain’t here!), Pierre, Julie, Margaux, Stéphane, Alessandro, Danilo, Philippe,

Corinne, Sandrine, Léa, Lydia, Christophe, Radka, Yannick, Alex, Axel, Guillaume,

Guillaume, Éric, David, Christophe. . . And I sure hope I haven’t forgotten anybody!

Finally, although working was my primary hobby during those years, I wouldn’t have

gone through that adventure without my relatives, friends and family. So I would like

to thank my family, and particularly my parents Jean-Louis and Françoise, my adoptive

parents Phi and Sun, my brother and sister Vincent and Marianne and their respective

wife and husband Anastasia and Matthieu, and my adoptive brother Jérémy for their

outstanding support despite the distance. I also want to thank my friends – some

of them shared a bit of my life, in their own ways. So thank you to Benôıt, Kiki,

Drak, Émilie, Rémi “Goodfinger”, Manjo, Élisa, Clémence, Romain, Roswitha, Hélène,

Margot, Alena, Chloé, Jimmy, Mélissa, Valentin, David, Claire, Jordan, Alexis, Franck,

Thomas “Vougny-Pensez-Pas”, Manon, Jack, Annabelle, Matthieu, Yankel, Paméla,

Céline, and Antoine.

Thank you all!

v

Contents

Abstract iii

Résumé iv

Acknowledgements v

List of Figures xii

List of Tables xiv

1 General introduction 1

1.1 The need for intelligent systems . 1

1.2 Machine Learning . 2

1.3 Embedded systems . 3

1.4 NeuroDSP: a neuro-inspired integrated circuit 4

1.5 Document overview . 5

2 Related works and problem statement 7

2.1 Theoretical background . 7

2.1.1 Classification frameworks . 7

2.1.1.1 Neural Networks . 8

Perceptron . 9

Multilayer Perceptron . 10

RBF . 11

Spiking Neural Network . 12

2.1.1.2 SVM . 13

2.1.1.3 Ensemble learning . 13

2.1.2 Feature extraction frameworks . 14

2.1.2.1 Signal processing approach 14

Classical approaches . 14

Wavelets . 16

2.1.2.2 A biological approach: HMAX 17

2.1.2.3 ConvNet . 19

2.2 Frameworks implementations . 20

vii

Contents viii

2.2.1 Software implementations . 20

2.2.1.1 Workstations . 21

2.2.1.2 Embedded systems . 21

2.2.2 Hardware implementations . 21

2.2.2.1 Neural networks . 22

HMAX . 22

ConvNet . 24

Spiking Neural Networks . 26

2.2.2.2 Other frameworks implementations 27

2.3 Discussion . 29

2.3.1 Descriptors and classifiers comparison 29

2.3.1.1 Descriptors . 29

2.3.1.2 Classifiers . 31

2.3.2 Implementations comparison . 32

2.3.3 Problem statement . 33

2.4 Conclusion . 33

3 Feature selection 35

3.1 Feature selection for face detection . 35

3.1.1 Detecting faces . 35

3.1.1.1 Cascade of Haar-like features 36

Framework description . 36

Complexity analysis . 37

Memory print . 40

3.1.1.2 CFF . 41

Framework description . 41

Complexity analysis . 41

Memory print . 44

3.1.1.3 HMIN . 45

Framework description . 45

Complexity analysis . 45

Memory print . 46

3.1.2 HMIN optimizations for face detection 46

3.1.2.1 C1 output . 46

3.1.2.2 Proposed optimizations 47

HMINθ=π/2 . 47

HMINR
θ=π/2 . 48

3.1.3 Experiments . 49

3.1.3.1 Test on LFWCrop grey 49

3.1.3.2 Test on CMU . 50

3.1.3.3 Test on Olivier dataset 54

3.2 Feature selection for pedestrian detection 55

3.2.1 Detecting pedestrians . 55

3.2.1.1 HOG . 56

Gradients computation . 56

Binning . 57

Local normalization . 58

Contents ix

Complexity analysis . 59

Memory print . 60

3.2.1.2 ConvNet . 61

Presentation . 61

Complexity analysis . 62

Memory print . 65

3.2.2 HMAX optimizations for pedestrian detection 66

3.2.3 Experiments . 66

3.3 Discussion . 66

3.4 Conclusion . 69

4 Hardware implementation 71

4.1 AAM for HMAX . 71

4.1.1 Description . 72

4.1.1.1 S1 . 72

4.1.1.2 C1 . 73

4.1.1.3 S2 . 73

4.1.1.4 C2 . 74

4.1.2 Results . 74

4.2 Proposed simplification . 74

4.2.1 Input data . 76

4.2.2 S1 filters coefficients . 77

4.2.3 S1 output encoding . 78

4.2.4 Filter reduction in S2 . 81

4.2.5 Manhattan distance in S2 . 82

4.3 FGPA implementation . 82

4.3.1 Overview . 82

4.3.2 s1c1 . 84

4.3.2.1 s1 . 84

pixel manager . 85

pix to stripe . 85

pixmat . 86

coeffs manager . 86

conv filter bank . 86

conv crop . 87

4.3.2.2 conv . 88

convrow . 88

sum acc . 88

s1degrader . 89

4.3.2.3 shift registers . 90

4.3.2.4 c1 . 90

c1 max 2by2 . 91

c1 pix to stripe . 91

c1 reorg stripes . 92

c1 orientations demux 92

c1 orientation . 92

c1unit . 92

Contents x

maxfilt . 93

c1unit ctrl . 94

4.3.2.5 c1 to s2 . 94

c1 handler . 95

4.3.3 s2c2 . 97

4.3.3.1 s2 . 97

4.3.3.2 s2 input manager . 98

s2 input handler . 99

s2 pix to stripe . 101

4.3.3.3 s2 coeffs manager . 101

4.3.3.4 s2processors . 101

4.3.3.5 corner cropper . 102

4.3.3.6 s2bank . 102

4.3.3.7 s2unit . 103

cum diff . 104

4.3.4 c2 . 104

4.3.4.1 c2 to out . 105

4.4 Implementation results . 105

4.4.1 Resource utilization . 105

4.4.2 Timing . 106

4.5 Discussion . 107

4.6 Conclusion . 109

5 Conclusion 111

A RBF networks training 116

A.1 Overview . 116

A.2 Clustering . 117

A.3 Output layer training . 118

B Résumé en français 119

B.1 Introduction générale . 119

B.2 État de l’art . 121

B.2.1 Fondements théoriques . 121

B.2.1.1 Méthodes de classification 121

B.2.1.2 Méthodes d’extraction de caractéristiques 122

B.2.2 Implantations matérielles . 125

B.2.3 Discussion . 126

B.3 Sélection de caractéristiques . 127

B.3.1 Détection de visages . 127

B.3.1.1 Viola-Jones . 127

B.3.1.2 CFF . 128

B.3.1.3 HMIN et optimisations 129

B.3.1.4 Expérimentations . 129

B.3.2 Détection de piétons . 131

B.3.2.1 HOG . 132

Contents xi

B.3.2.2 ConvNet . 132

B.3.2.3 Expérimentations . 133

B.3.3 Conclusion . 133

B.4 Implantation matérielle . 134

B.4.1 Optimisations . 135

B.4.1.1 Données en entrée . 135

B.4.1.2 Filtres de Gabor . 135

B.4.1.3 Autres optimisations . 136

B.4.2 Résultats d’implantation . 137

B.4.3 Conclusion . 138

B.5 Conclusion . 139

Publications 140

Bibliography 141

List of Figures

1.1 Application examples . 2

1.2 Perceptron applied to PR . 3

1.3 NeuroDSP architecture. 5

2.1 A feedforward architecture . 9

2.2 Perceptron. 11

2.3 Multi-layer perceptron . 11

2.4 MLP activation functions. 12

2.5 RBF neural network. 13

2.6 Support vectors determination . 14

2.7 Invariant scattering convolution network. 16

2.8 HMAX. 20

2.9 Convolutional neural network. 20

3.1 Example of Haar-like features used in Viola-Jones. 37

3.2 Integral image representation. 38

3.3 Complexity repartition of Viola and Jones’ algorithm. 40

3.4 CFF. 42

3.5 Complexity repartition of the CFF algorithms 44

3.6 C1 feature maps for a face . 47

3.7 S1 convolution kernel sum . 48

3.8 Feature map obtained with the unique kernel in S1 48

3.9 ROC curves of the HMIN classifiers. 51

3.10 Samples from the CMU Face Images dataset 52

3.11 ROC curve obtained with HMINR
θ=π/2 on CMU dataset. 53

3.12 Example of frame from the “Olivier” dataset. 54

3.13 ROC curves obtained with HMINR
θ=π/2 on “Olivier” dataset. 55

3.14 HOG descriptor computation. 57

3.15 Binning of the half-circle of unsigned angles 58

3.16 Complexity repartition of HOG features extraction. 60

3.17 ConvNet for pedestrian detection. 62

3.18 ROC curves of the HMIN classifiers on the INRIA pedestrian dataset . . 67

4.1 Caltech101 samples . 75

4.2 Precision degradation in input image. 76

4.3 Recognition rates of HMAX w.r.t input image bit width. 77

4.4 Recognition rates w.r.t S1 filters precision 79

4.5 HMAX VHDL module . 84

xii

List of Figures xiii

4.6 Dataflow in s1. 85

4.7 coeffs manager module. 87

4.8 7× 7 convolution module. 89

4.9 shift registers . 90

4.10 c1 module . 91

4.11 c1unit . 93

4.12 c1 to s2 module . 96

4.13 Dataflow in s2c2. The data arriving to the module is handled by s2 input manager,
which make it manageable for the s2processors. The latter also gets
the pre-learnt filter needed for the pattern-matching operations from
s2 coeffs manager in parallel, and perform the computations. Once it
is over, the data is sent in parallel to the dout output port, which feed
the next processing module. 98

4.14 Data management in s2 handler. 100

4.15 Data flow in s2processors. 103

B.1 Exemples d’applications . 120

B.2 NeuroDSP architecture. 120

B.3 Architecture feedforward . 122

B.4 Invariant scattering convolution network. 123

B.5 HMAX. 124

B.6 Réseaux de neurones à convolutions. 125

B.7 Examples de caractéristiques utilisés dans Viola-Jones. 127

B.8 Représentation en image intégrale. 128

B.9 CFF. 128

B.10 Sorties des C1 pour un visage . 130

B.11 Somme des noyaux de convolutions dans S1. 130

B.12 Réponse du filtre unique dans S1 sur un visage. 130

B.13 Courbes ROC obtenues avec différentes versions de HMIN sur LFW Crop. 131

B.14 Courbe ROC obtenue avec HMINR
θ=π/2 sur la base CMU. 131

B.15 HOG . 132

B.16 ConvNet pour la détection de piétons. 133

B.17 Courbes ROC obtenues avec les descripteurs HMIN sur la base INRIA. . . 133

B.18 Effet de la dégradation de précision sur l’image d’entrée. 135

B.19 Taux de reconnaissances avec HMAX en fonction de la précision des pixels
en entrée. 136

B.20 Précisions en fonction du nombres de bits dans les filtres de Gabor de S1,
avec 2 bits pour l’image d’entrée. 137

B.21 Aperçu du module VHDL HMAX. 137

List of Tables

2.1 Paramaters for HMAX S1 and C1 layers 19

2.2 Comparison of descriptors. 30

3.1 Accuracies of the different version of HMIN on the LFW crop dataset. . . 50

3.2 Complexity and accuracy of face detection frameworks. 53

3.3 Complexity and accuracy of human detection frameworks. 67

4.1 Hardware resources utilized by Orchard’s implementation 74

4.2 Accuracies of Orchard’s implementations on Caltech101. 75

4.3 Code books and partitions for C1 . 81

4.4 Accuracies of HMAX with several optimizations. 83

4.5 Address offsets in c1 to s2 . 96

4.6 Mapping between N and dout scale. 99

4.7 Resource utilization of HMAX implementation on XC7A200TFBG484-1. . 106

4.8 Hardware resources comparison between the Virtex-6 FPGA used in [99],
and the Artix-7 200T we chose. 109

B.1 Paramètres des couches S1 et C1 de HMAX 125

B.2 Comparaison des principaux extracteurs de caractéristiques. 126

B.3 Précision des différentes versions de HMIN sur la base de données LFW crop.129

B.4 Complexité et précision de différentes méthodes de détections de visages . 132

B.5 Complexité et précisions de différentes méthode de détections de personnes.134

B.6 Précision de HMAX en utilisant différentes optimisations. 136

B.7 Utilisation des ressources matérielles de HMAX sur un Artix7-200T. . . . 138

xiv

To Ryan and Théo.

xv

Chapter 1

General introduction

1.1 The need for intelligent systems

Automating tedious or dangerous tasks has been an ongoing challenge for centuries.

Many tools have been designed to that end. Among them lies computing machines,

allowing to assist human beings in calculations or even performing them. Such machines

are everywhere nowadays, in devices that fit into our pockets. However, despite the fact

that they are very efficient for mathematical operations that are complicated for our

brains, they usually perform poorly at tasks that are easy for us, such as recognizing a

landmark on a picture or analysing and understanding a scene.

There are many applications for systems that are able to analyze their environments

and to make a decision accordingly. In fact, Alan Turing, one of the founder of modern

computing, estimated one of the ultimate goal of computing is to build machines that

could be said intelligent [1]. Perhaps one of the most well known applications of such

technology would be for autonomous vehicules, e.g cars that would be able to drive

themselves, with little to no help from humans. In order to drive safely, those machines

obviously need to retrieve information from different channels, e.g audio of video. Such

systems may also be useful for access control for areas that need to be secured, or for

quality control on production chains, e.g as was proposed for textile products in [2].

One could think of two ways to achieve a machine of that kind: either engineer how it

should process the information, or use methods allowing it to learn it and determine it

automatically. Those techniques form a research fields that have been active for decades

called Machine Learning, which is part of the broader science of Artificial Intelligence

(AI).

1By Michael Shick - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?

curid=44405988.

1

https://commons.wikimedia.org/w/index.php?curid=44405988
https://commons.wikimedia.org/w/index.php?curid=44405988

List of Tables 2

(a) Google’s self driving car1. (b) Production control.

(c) Security. (d) Home automation.

Figure 1.1: Application examples.

1.2 Machine Learning

In 1957, the psychologist Frank Rosenblatt proposed the Perceptron, one of the first

system capable of learning automatically without being explicitly programmed. He

proposed a mathematical model, and also built a machine implementing that learning

behavior; he tested it with success on a simple letter recognition application. Its principle

is very simple: the input image is captured by a retina, producing a small black and

white image of the letter – black corresponds to 1, and white to 0. A weighted sum of

those pixels is performed, and the sign function is applied to the result – for instance, one

could state that the system must return 1 when the letter to recognize is an A, and -1 if

its a B. If the system returns the wrong value, then the weights are corrected so that the

output is correct. A more formal, mathematical description of the Perceptron is provided

latter, in Section 2.1.1.1 on page 9. The system is also illustrated in Figure 1.2. Since

the Perceptron, many trainable frameworks have been proposed, most of them following

a neuro-inspired approached like the Perceptron or a statistical approach. They are

described in Section 2.1.

Recently, Machine Learning – and AI in general – gained renown from the spectacular re-

search breakthrough and applications initiated by companies such as Facebook, Google,

Microsoft, Twitter, etc. For instance, Google DeepMind recently developed AlphaGo,

List of Tables 3

(a) Mark I Perceptron2.
0 0 0

1

1

1

0

+1

−1

(b) Principle.

Figure 1.2: Perceptron applied to pattern recognition. Figure 1.2a shows an hardware
implementation, and Figure 1.2b presents the principle: each cell of the retina captures
a binary pixel and returns 0 when white, 1 when black. Those pixels are connected
to so called input units, and are used to compute a weighted sum. If that sum is
positive, then the net returns 1, otherwise it returns -1. Training a Perceptron consists
in adjusting its weights. For a more formal and rigorous presentation, see page 9.

a software capable of beating the world champion of Go [3]. Facebook is also using

AI to automatically detect, localize and identify faces in pictures [4]. However those

applications are meant to be performed on machines with high computational power,

and it is beyond question to run such programs on constraint architectures, like those

one expect to find on autonomous systems. Indeed, such devices fall into the field of

Embedded Systems which shall be presented now.

1.3 Embedded systems

Some devices are part of larger systems, in which they perform one task in particular –

e.g control the amount of gas that should be injected in the motor of a vehicle. Those so-

called embedded systems must usually meet high constraints in terms of volume, power

consumption, cost, timing and robustness. Indeed, they are often used in autonoumous

systems carrying batteries with limited power. In the case of mass produced devices such

as phones or cars, it is crucial that their cost is as low as possible. Furthermore, they

2By Arvin Calspan Advanced Technology Center; Hecht-Nielsen, R. Neurocomputing (Reading,
Mass.: Addison-Wesley, 1990).

List of Tables 4

are often used in critical systems, where they must process information and deliver the

result on time without error – any malfunction of those systems may lead to disastrous

consequences, especially in the case of autonomous vehicles or military equipments. All

those constraints also mean that embedded systems have very limited computational

power.

Many research teams have proposed implementations of embedded intelligent systems,

as shown in Section 2.2.2. The work proposed in this thesis falls into that research field.

However, as we shall see many of those implementations require high-end hardware, thus

leading to potentially high cost devices. The NeuroDSP project3, in the frame of which

this PhD thesis was carried out, aims to provide a device at a lower cost with a low

power consumption.

1.4 NeuroDSP: a neuro-inspired integrated circuit

The goal of the research project of which this PhD is part of is to design a chip capable of

performing the computation required by the “intelligent” algorithms presented earlier.

As suggested in its name, NeuroDSP primarily focuses on the execution of algorithms

based on the neural networks theory, among which lie the earlier mentioned Perceptron.

As shown in Section 2.1, the main operators needed to support such computations are

linear signal processing operators such as convolution, pooling operators and non-linear

functions. Most Digital Signal Processing (DSP) operators, such as convolution, actually

need similar features – hence that device shall also be able to perform DSP operation, for

signal preprocessing for instance. As we shall see, all those operations may be, most of

the time, performed in parallel, thus leading to a single-instruction-multiple-data (SIMD)

architecture, in which the same operations is applied in parallel to a large amount of

data. The main advantage of this paradigm is obviously to carry those operations faster,

potentially at a lower clock frequency. As the power consumption of a device is largely

related to its clock frequency, SIMD may also allow a lower power consumption.

NeuroDSP is composed of 32 so called P-Neuro blocks, each basically consisting of a

cluster of 32 Processing Elements (PE), thus totalling 1024 PE. A PE may be seen

as an artificial neuron performing a simple operation on some data. All PEs in a

single P-Neuro perform the same operation, along the lines of the aforementioned SIMD

paradigm. A NeuroDSP device may then carry out signal processing and decision making

operations. Since 1024 neurons may not be enough, they may be multiplexed to emulate

larger systems – of course at a cost in terms of computation time. When timing is so

3http://goo.gl/Ax6CoF

http://goo.gl/Ax6CoF

List of Tables 5

Cluster

32 PE

Cluster

32 PE

Cluster

32 PE

Data In

(audio, image. . .)
Decision

From previous

NeuroDSP

To next

NeuroDSP

Figure 1.3: NeuroDSP architecture [5]. A NeuroDSP device is composed of 32 clus-
ters, called P-Neuro, each constituted of 32 artificial neurons called PE, thus represent-
ing a total of 1024 neurons. The PEs may be multiplexed, so that they can perform
several instruction sequentially and thus emulate bigger neural networks. When timing
is critical, one may instead cascade several NeuroDSP processors and use them as if it
was a single device.

critical that multiplexing is not a satisfying option, it is possible to use several NeuroDSP

devices in cascade. The device’s architecture is illustrated in Figure 1.3.

1.5 Document overview

While NeuroDSP was designed specifically to run signal processing and decision making

routines, such algorithms are most of the time too resource consuming to be performed

efficiently on that type of device. It is therefore mandatory to optimize them, which is

the main goal of the research work presented here.

In Chapter 2, a comprehensive tour of the works related to our research is proposed.

After presenting machine learning theoretical background and also algorithms inspired

by biological data, the main contribution concerning their implementations are shown. A

discussion shall also be proposed, from which arises the problematic that is aimed to be

addressed in this document, namely: how may a preprocessing algorithm be optimized

given particular face and pedestrian detection applications, and how the data may be

efficiently encoded so that few hardware resources may be used?

The first part of that problem is addressed in Chapter 3. While focusing on a prepro-

cessing algorithm called HMAX, the main works in the literature concerning feature

selection are recalled. Our contribution to that question is then proposed.

Chapter 4 presents our contribution of the second part of the raised problems, concerning

data encoding. After reminding the main research addressing that issue, we show how

a preprocessing algorithm may be optimized so that it may process data coded on a few

bits only, with few to none performance drop. An implementation on a reconfigurable

hardware shall then be proposed.

Related works 6

Finally, Chapter 5 draws final thoughts and conclusions about the work proposed here.

The main problems and results are reminded, as well as the limitations. Considered

future research are also proposed.

Chapter 2

Related works and problem

statement

This chapter proposes an overview of the frameworks used in the pattern recognition

field. Both its theoretical backbone and the main implementation techniques shall be

presented. It is shown here that one of the key problems of many PR frameworks is their

computational cost. Those approaches mainly consists in either using machines with

high parallel processing capabilities and high computational power, or on the contrary

in optimizing the algorithms so they can be run with less resources. The problematics

underlying the work proposed in this thesis, which follows the second paradigm, shall

also be stated.

2.1 Theoretical background

In this section, the major theoretical contributions to PR are presented. The principle

classification frameworks are first presented to the reader. Then, a description of several

descriptors which aim to capture the useful information from the processed images and

to get rid of the noise, is proposed.

2.1.1 Classification frameworks

The classification of an unknown data, also called vector or feature vector, consists in

predicting the category it belongs to. Perhaps the simplest classification framework there

is is Nearest Neighbor. It consists in storing examples of feature vectors in memory, each

associated with the category it belongs to. To classify a unknown feature vector, one

7

Related works 8

simply uses a distance (e.g Euclidean or Manhattan) to determine the closest example.

The classifier then returns the category associated to that selected vector. While really

simple, that framework however has many issues. The most obvious is its memory

print and its computational cost: the more examples we have, the more expansive that

framework is. From a theoretical point of view, that framework is also very sensitive to

outliers; any peculiar feature vector, for instance in the case of labelling error, may lead

to disastrous classification performance. A way to improve this framework is to take not

only the closest feature vector, but the K closest, and to make them vote for the category.

The retained category is then the one having the most votes [6]. That framework is called

K-Nearest Neighbour (KNN). While this technique may provide better generalization

and reduce the effects due to outliers, it still requires lots of computational resources.

There exist many more other pattern classification frameworks. The most used of those

frameworks shall now be described. Neural networks are presented first. A presentation

of the Support Vector Machines framework shall follow. Finally, Ensemble Learning

methods are presented. This document focuses on feedforward architecture only – non-

feedforward architectures, such as Boltzmann Machines [7, 8], Restricted Boltzmann

Machines [9, 10] and Hopfield networks [11] shall not be described here. We also focus

on supervised learning frameworks, as opposed to unsupervised learning, such as self-

organizing maps [12]. In suppervised learning, each example is manually associated to a

category, while in unsupervised learning the model “decides” by itself which vector goes

to which category.

2.1.1.1 Neural Networks

Artifical Neural Networks (NN) are machine learning frameworks inspired by biolocical

neural systems, used both for classification and regression tasks. Neural networks are

formed of units called neurons, interconnected to each others by synapses. Each synapse

has a synaptic weight, which represents a parameter of the model that shall be tuned

during training. During prediction, each neuron performs a sum of its inputs, weighted

by the synaptic weights. A non linear function called activation function is then applied

to the result, thus giving the neuron’s activation which feeds the neurons connected

to the outputs of the considered one. In this thesis, only feedforward network shall be

considered. In those systems, neurons are organized in successive layers, where each

unit in a layer gets inputs from units in the previous layer and feeds its activation to

units in the next layer. The layer getting the input data is called input layer, while the

layer from which the network’s prediction is read is the output layer. Such a framework

is represented in Figure 2.1. For a complete overview of the existing neural networks, a

good review is given in [13].

Related works 9

Figure 2.1: A feedforward architecture. In each layer, units get their inputs from
neurons in the previous layer and feed their outputs to units in the next layer.

Perceptron The perceptron is one of the most fundamental contribution to the

Neural Network field, and was introduced by Rosenblatt in 1962 in [14]. It is represented

in Figure 2.2. It has only two layers: the input layer and the output layer. A “dummy”

unit is added to the input layer, the activation of which is always 1 – the weight w0

associated to that unit is called bias. Those layers are fully connected, meaning each

output unit is connected to all input units. Thus, the total input value z of a neuron

with N inputs and a bias w0 is given by:

z = w0 +

N∑
i=1

wixi (2.1)

Or, in an equivalent, more compact matrix notation:

z = WTx (2.2)

with x = (1, x1, x2, . . . , xn)T and W = (w0, w1, w2, . . . , wN)T. W is called weight vector.

In the case where there is more than one output unit, then W becomes a matrix where

the i-th column is the weight vector for the i-th output unit. By denoting M the number

of output units, zi the input value of the i-th output unit and z = (z1, z2, . . . , zM), one

may write:

z = WTx (2.3)

The output unit’s activation function f is as follows:

∀x ∈ R, f (x) =


+1 x > θ

0 x ∈ [−θ, θ]
−1 x < θ

(2.4)

Where θ represents a threshold (θ ≥ 0)1.

To train a Perceptron, it is fed with each feature vector x in the training set along

with the corresponding target category t. Let’s consider for now that we only have two

different categories: +1 and −1. The idea is that, if the network predicts the wrong

1In the literature the definition of the activation function may be slightly different, with “≥” signs
instead of “>” in Equation 2.4 and with θ > 0.

Related works 10

x1

x2

x3

xN

1

w1

w2

w3

wN

w0

y

Input layer Output layer

Figure 2.2: Perceptron.

category, the difference between the target and the prediction, weighted by a learning

rate and the input value, is added to the weights and bias. If the prediction is correct,

then no modifications is made. The training algorithm is shown in more details for a

Perceptron having a single output unit in Algorithm 1. It is easily extensible to systems

with several output units; the only major difference is that t is replaced by a target

vector t, the components of which may be +1 or −1.

n← number of input units;
η ← learning rate;
Initialize all weights and bias to 0;
while Stopping condition is false do

forall (x = (x1, x2, . . . , xn) , t) in training set do
y ← f (w0 + w1x1 + w2x2 + · · ·+ wnxn);
for i← 1 to n do

wi ← wi + ηxi (t− y);
end
w0 ← w0 + η (t− y);

end

end
Algorithm 1: Learning rule for a perceptron with one output unit.

If there exists a hyperplan separating the two categories, then the problem is said linearly

separable. In that case, the perceptron convergence theorem [13, 15–17] states that such

a hyperplan shall be found in a finite number of iterations – even if one cannot now

that number a priori. However, that condition is required, meaning the perceptron is

not able to solve non-linearly separable problems. Therefore, it is not possible to train

a perceptron to perform the XOR operation. This is often referred to as the “XOR

problem” in the literature, and was one of the main reasons why neural network had

not known great popularity in industrial applications in the past. A way to address this

class of problems is to use several layers instead of a single one.

Related works 11

x1

x2

x3

xN

1 1

y1

y2

yM

Input layer Hidden layer Output layer

Figure 2.3: Multi-layer perceptron with one hidden layer.

Multilayer Perceptron In terms of architecture, the Multilayer Perceptron (MLP) is

very similar to the single-layer perceptron, except that it has one or several hidden layers

between its input and output layers, as shown in Figure 2.3. That architecture allows it

to address non linearly separable problems, contrary to the single-layer Perceptron. As

required by its training algorithm, its neurons’ activation function must be defined and

derivable on R, and staked in [−1,+1]. Therefore, f may be the hyperbolic tangent:

∀x ∈ R f (x) = tanh (x) (2.5)

or the very similar bipolar sigmoid:

∀x ∈ R f (x) =
2

1 + e−x
− 1 (2.6)

Those functions’ curves are represented in Figure 2.4. Its training algorithm is somewhat

more complicated, and follows the Stochastic Gradient Descent approach. Let E be

the cost function measuring the error between the expected result and the network’s

prediction. The goal is to minimize E, the shape of which is unknown. The principle of

the algorithm achieving that is called back-propagation of error [18, 19].

RBF Radial Basis Function networks were proposed initially by Broomhead and

Lowe [20, 21] and fall in the kernel methods family. They consist in three layers: an

input layer similar to the Perceptron’s, a hidden layer containing kernels and an output

layer. Here, a kernel i is a radial basis function fi (hence the name of the network) that

measures the proximity of the input pattern x with a learnt pattern pi called center,

according to a radius βi. It typically has the following form:

fi (x) = exp

(
−||x− pi| |

βi

)
(2.7)

Related works 12

−3 −2 −1 1 2 3

−1

−0.5

0.5

1

tanh(x)
2

1+exp(−x) − 1

Figure 2.4: MLP activation functions.

x1

x2

x3

xN

y1

y2

yM

Input layer Hidden layer Output layer

Figure 2.5: RBF neural network.

The output layer is similar to a Perceptron: the hidden and output units are fully

connected by synapses having synaptic weights, which are determine during the training

stage. The network is illustrated in Figure 2.5.

To determine the kernels parameters, one may adopt different strategies. Centers may

be directly drawn from the training set, and radius may be arbitrarily chosen – however

such empirical solution leads to poor results. A more efficient way is to use a clustering

algorithm that gathers the centers into clusters, the center of which shall represent an

example center while the corresponding radius is evaluated w.r.t the proximity with

other kernels. Such an algorithm is presented in Appendix A. The computational power

and the memory required by this network grows linearly with the number of kernels.

While the training method presented in Appendix A tend to reduce the number of

kernels, it still may be quite important. There exists sparse kernel machines, that work

in a similar way than RBF networks but are designed to use as few kernels as possible,

like the Support Vector Machines described in Section 2.1.1.2.

Related works 13

Spiking Neural Network All the models presented above treat the information

at the level of the neurons activation. Spiking neural networks intend to describe the

behaviour of the neurons at a lower level. That model was first introduced by Hodgkin

et al [22], who proposed a description of the propagation of the action potentials be-

tween biological neurons. There exists different variations of the spiking models, but the

most used nowadays is probably the “integrate and fire”, where the neurons’ inputs are

accumulated over time. When the total reaches a threshold, the neuron is committed.

Thus, the information sent by a neuron is not carried by a numerical value, but rather

by the spikes order and the duration between two spikes. It is still an active research

subject, with many applications in computer vision – Masquelier and Thorpe proposed

the “spike timing dependent plasticity” (STDP) algorithm, which allows unsupervised

learning of visual features [23].

2.1.1.2 Support Vector Machine

Support Vector Machines (SVM) are linear classifiers. Much like any other such model,

they aim to find the parameters of the hyperplan separating best a category with the

others. It may be used in conjunction with kernel functions, in the same way as presented

in the description of RBF neural networks in Section 2.1.1.1, page 11. SVM training’s

algorithm aims to determine the vectors that are the nearest to those of the other

categories [24]. The selected vectors are called support vectors. After selecting them,

the decision boundary’s parameters are optimized so that it is as far as possible to all

support vectors. Typically, a quasi-Newton optimization process could be choosen to

that end; however its description lies beyond the scope of this document. Figure 2.6

shows an example of their determination as well as the resulting decision boundary.

2.1.1.3 Ensemble learning

The rational behind Ensemble Learning frameworks is that instead of having one clas-

sifier, it may be more efficient to use several ones [25–28]. Those classifiers are called

weak classifiers, and the final decision results from their predictions. Their exists several

paradigms, among which Boosting [29] in particular.

Boosting algorithm are known for their computational efficiency during prediction. A

good example is their use in Viola and Jone’s famous face detection algorithm [30]. The

speed of the algorithm comes partly from the fact that the classifier is composed of a

cascade of weak classifiers, in which all regions of the image that are clearly not faces

are discarded by the top-level classifier. If the data goes through it, then it is “probably

a face”, and is processed by the second classifier, which either discard of accept it, and

Related works 14

Figure 2.6: Support vectors determination. Green dots belong to a class, and red
ones to the others. Dots marked with a × sign represent the selected support vectors.
The unmarked dots have no influence over the determination of the decision boundary’s
parameters. The black dashed line represents the determined decision boundary, and
the orange lines possible decision boundaries that would not be optimal.

so on. This allows to rapidly eliminate irrelevant data and the noise. Boosting is also

known to be slightly more efficient than SVM for multiclass classification tasks with

HMAX [31], which is described in Section 2.1.2.2.

2.1.2 Feature extraction frameworks

2.1.2.1 Signal processing approach

Classical approaches More than ten years ago, Lowe proposed a major contribution

in computer vision with his Scale Invariant Feature Transform (SIFT) descriptor [32],

which became quickly very popular due to its efficiency. Its primary aim was to provide,

as suggested by its name, features that are invariant to the scale and to some extent

to the orientation and small changes in viewpoint. It consists in matching features

from the unknown image to a set of learnt features at different locations and scales,

followed by a Hough transform that gathers the matched points in the image into clusters,

which represent detected objects. The matching is operated by a fast nearest-neighbour

algorithm, that indicates for a given feature the closest learnt feature. However, doing

so at every locations and scale would be very inefficient, as most of the image probably

does not contain much information. In order to find locations which are the most

likely to hold information, a Difference of Gaussian (DoG) filter bank is applied to the

image. Each DoG filter behaves as a band-pass filter, selecting edges at a specific spatial

frequency and allowing to find features at a specific scale. Extrema are then evaluated

across all those scales in the whole image, and constitute a set of keypoints at which

the aforementioned matching operations are performed. As for rotation invariance, it

Related works 15

is brought by the computation of gradients that are local to each keypoint. Before

performing the actual matching, the data at a given keypoint is transformed according

to those gradients so that any variability caused by the orientation is removed.

Bay et al. proposed in [33] a descriptor aiming to reproduce the result of the state of

the art algorithm, but much faster to compute. They called their contribution SURF,

for Speeded-Up Robust Features. It provides properties similar to SIFT (scale and

rotation invariance), with a speed-up of 2.93X on a feature extraction task, where both

frameworks were tuned to extract the same number of keypoints. Like SIFT, SURF

consists in a detector that takes care of finding keypoints in the image, cascaded with

a descriptor that computes features at those keypoints. The keypoints are evaluated

using a simple approximation of the Hessian matrix, which can be efficiently computed

thanks to the integral image representation, i.e an image where each pixels contains the

sum of all the original image’s pixels located left and up to it [30]. Descriptors are then

computed locally using Haar wavelet, which can also be computed with the integral

image [30]. [34, 35]

Another popular framework for feature extraction is Histograms of Oriented Gradients

(HOG) [36]. It may be used in many object detection applications, though it was pri-

marly designed for the detection of human beings. It consists in computing the gradients

at each pixel, and make each of those gradients vote for a particular bin of a local ori-

entation histogram. The weight with which each gradient votes is a linear function of

its norm and of the difference between its orientation and the orientation of the closest

bins’ centers. Those gradients are then normalized over overlapping spatial blocks, and

the result forms the feature vector. The classifier used here is typically a linear SVM,

presented in Section 2.1.1.

Like many feature extraction frameworks, there exists some variations of the HOG fea-

ture descriptor. Dalal and Triggs present two of them in [36]: R-HOG and C-HOG,

respectively standing for “Rectangular HOG” and “Circular HOG”. The difference with

the HOG lies in the shape of the overlapping spatial blocks used for the gradient normal-

ization. R-HOG is somewhat close to presented earlier SIFT, except that computations

are performed at all locations, thus providing a dense feature vector. C-HOG is some-

what trickier to implement due to the particular shape it induces, and shall not be

presented here. All three frameworks provide similar recognition performances, which

were the state of the art at that time.

There are many other descriptors for images, like FAST [34, 35], and we shall not describe

them in detail here as it lies beyond the scope of this document. However it is worth

detailing another type of frameworks based on so-called wavelets, which allow to retreive

Related works 16

••••

•

••••

•

••••

•

••••

•

•

••••

•

••••

•

••••

•

••••

•

•

••••

•

••••

•

••••

•

••••

•

•

••••

•

••••

•

••••

•

••••

•

•

•x Input image

1st layer

2nd layer

3rd layer

Uλ1 (x)

Uλ1,λ2 (x)

S0 (x)

Sλ1 (x)

Sλ1,λ2 (x)

Figure 2.7: Invariant scattering convolution network [38]. Each layer applies a wavelet
decomposition Uλ to its inputs, and feed the next layer with the filtered images Uλ(x).
At each layer, a low-pass filter is applied to the filtered images and the results are
sub-sampled. The resulting so-called “scattering coefficients” Sλ(x) are kept to form
the feature vector.

frequency information while keeping local information – which is not possible with the

classical Fourier transform.

Wavelets Wavelets have known a great success in many signal processing applica-

tions, such as signal compression or pattern recognition, including for images. They are

linear operators decomposing locally a signal on a frequency basis. A wavelet decompo-

sition consists in applying a “basis” linear filter, called mother wavelet, on the signal. It

is then dilated in order to extract features of different sizes and, in the case of images,

rotated so that it responds to different orientations. An excellent and comprehensive

guide to the theory and practice of wavelets is given in [37].

Wavelets are used as the core operators of the Scattering Transform frameworks. Among

them lie the Invariant Scattering Convolution Networks (ISCN), introduced by Bruna

and Mallat [38]. They follow a feedforward, multistage structure, along the lines of

ConvNet described in Section 2.1.2.3, though contrary to ConvNet its parameters are

fixed, not learnt. They alternate wavelet decompositions with low-pass filters and sub-

sampling – the function of which is to provide invariance in order to raise classification

performances. Each stage computes a wavelet decomposition of the images produced

Related works 17

at the previous stage, and feed the resulting filtered images to the next stage. At each

stage the network also outputs a low-pass filtered and sub-sampled version of those de-

compositions – the final feature vector is the concatenation of those output features.

Figure 2.7 sums up the data flow of this framework. It should be noted that in practice,

not all wavelet are applied at each stage to all images: indeed it is shown in [38] that

some of those wavelet cascades do not carry information, and thus their computation

may be avoided, which allows to reduce the algorithmic complexity. Variations of the

ISCN with invariance to rotation are also presented in [39, 40], which may be used for

texture [39] or objects [40] classification.

2.1.2.2 A biological approach: HMAX

Some frameworks are said to be biologically plausible. In such case, their main aim is

not so much to provide a framework as efficient as possible in terms of recognition rates

or computation speed, but rather to propose a model of a biological system. One of

the most famous of such frameworks is HMAX, which also happens to provide decent

recognition performances. The biological background was proposed by Riesenhuber and

Poggio in [41], on the base of the groundbreaking work of Hubel and Wiesel [42]. Its

usability for actual object recognition scenarios was stated by Serre et al. 8 years later

in [31]. It is a model of the ventral visual system in the cortex of the primates, accounting

for the first 100 to 200 ms of processing of visual stimuli. As its name suggests – HMAX

stands for “Hierarchical Max” – that model is built in a hierarchical manner. Four

successive stages, namely S1, C1, S2 and C2 process the visual data in a feedforward

way. The S1 and S2 layers are constituted of simple cells, performing linear operations

or proximity evaluations, while the C1 and C2 contain complex cells that provide some

degrees of invariance. Figure 2.8 sums up the structure of this processing chain. Let’s

now describe each stage in detail.

The S1 stage consists in a Gabor filter bank. Gabor filters – which are here two di-

mensional, as we process images – are linear filters responding to patterns of a given

spatial frequency and orientation. They are a particular form of the wavelets described

in Section 2.1.2.1. A Gabor filter is described as follows:

G (x, y) = exp

(
−x

2
0 + γ2y20

2σ2

)
× cos

(
2π

λ
x0

)
(2.8)

x0 = x cos θ + y sin θ and y0 = −x sin θ + y cos θ (2.9)

where γ is the filter’s aspect ratio, θ its orientation, σ the Gaussian effective width

and λ the cosine wavelength. The filter bank has several filters, each having a specific

wavelength, effective width, size and orientation. The wavelength, effective width and

Related works 18

size define the filter’s scale. There are 16 different scales and four different orientations,

thus totaling 64 filters. During the S1 stage, each filter is applied independently on the

input image and the filtered images are fed to the next layer.

The C1 stage gives a first level of location invariance of the features extracted in S1. It

does so with maximum pooling operators: each C1 unit pools over several neighboring

S1 units with a 50% overlap and feed the S2 layer with the maximum value. The

number of S1 units a C1 unit pools over depends on the scale of the considered S1 units.

Furthermore, each C1 unit pools across two consecutive scales, with no overlap. This

leads to a number of images divided by two, thus only 32 images are fed to the following

layer. The parameters of the S1 and C1 layers are presented in Table 2.8.

The S2 stage aims to compare the input features to a dictionary of learnt features.

There are different ways to build up that dictionary. In [31] it is proposed to simply

crop patches of different sizes in images in C1 space at random position and scales.

During feedforward, patches are cropped from images in C1 space at all locations and

scales, and are compared to each learnt feature. The comparison operator is a radial

basis function, defined as follows:

∀i ∈ {1, 2, . . . , N} ri (X) = exp(−β ‖X−Pi‖) (2.10)

where X is the input patch from the previous layer, Pi the i-th learnt patch in the

dictionary and β > 0 is a tuning parameter. Therefore, the closer the input patch is to

the S2 unit learnt patch, the stronger the S2 unit fires.

Finally, a complete invariance to locations and scales of the features in C1 space is

reached in the C2 stage. Each C2 unit pools over all S2 unit sharing the same learnt

pattern, and simply keeps the maximum value. Those values are then serialized in order

to form the feature vector. The descriptor HMAX provides is well suited to detect the

presence of an object in cluttered images, though the complete invariance to location

and scales brought by C2 removes information related to its location. This issue is

addressed in [43] – however that model lies beyond the scope of this thesis and shall not

be discussed here. Different variations of this model have been proposed; among them,

of particular interest are the sparse version proposed by Mutch and Lowe [44, 45] and

Yu and Slotine’s wavelet-based, speeded-up version [46].

2.1.2.3 Convolutional Neural Network

Convolutional Neural Networks, also known as ConvNet or CNN, were principally intro-

duced by Yann LeCun [47, 48, 48, 49]. It is a hierarchical architecture largelly inspired,

like HMAX (see Section 2.1.2.2), by the structure of the visual cortex in mamals. It

consists in a succession of convolution and subsampling layers that respectively behave

Related works 19

C1 layer S1 Layer

Scale Spatial pooling Overlap filter Gabor Gabor
band grid (Nk ×Nk) ∆k size k σ λ

Band 1 8× 8 4
7× 7 2.8 3.5
9× 9 3.6 4.6

Band 2 10× 10 5
11× 11 4.5 5.6
13× 13 5.4 6.8

Band 3 12× 12 6
15× 15 6.3 7.9
17× 17 7.3 9.1

Band 4 14× 14 7
19× 19 8.2 10.3
21× 21 9.2 11.5

Band 5 16× 16 8
23× 23 10.2 12.7
25× 25 11.3 14.1

Band 6 18× 18 9
27× 27 12.3 15.4
29× 29 13.4 16.8

Band 7 20× 20 10
31× 31 14.6 18.2
33× 33 15.8 19.7

Band 8 22× 22 11
35× 35 17.0 21.2
37× 37 18.2 22.8

Table 2.1: Paramaters for HMAX S1 and C1 layers [31]. Concerning the Gabor filters
in S1, σ represents the spread of their Gaussian envelopes and λ the wavelength of their
underlying cosine functions.

Input
image S1

M

M

M

M

C1

P

P

P

P

P

S2

M

M

M

M

M

C2

Figure 2.8: HMAX [31]. Its feedforward architecture is composed of 4 layers: S1,
C1, S2 and C2. S1 applies a Gabor filter bank to the input image, each filter having a
preferred scale and orientation. The different colors represent the different orientations,
and each set of 4 image represents a scale. There are 16 scales and 4 orientations – only
8 scales are represented here for readability reasons. The C1 layer units pool across
neighboring S1 units of successive scales and keep the maximum response. The S2 layer
matches patches produces by C1 with prelearnt patches, and the C2 layer keeps, for
each prelearnt patch in S2, its maximum response.

Related works 20

Convolution Subsampling Convolution Subsampling Full connection Output

Figure 2.9: Convolutional neural network [48].

like the S1 and C1 layers of HMAX, followed by a fully connected layer similar to a

MLP. However, the parameters of the convolution kernels are not predefined, but rather

learnt at the same time as the weights in the final classifier. Thus, the feature extrac-

tion and classification models are both tuned simultaneously, using an extension of the

back-propagation algorithm.. An example of this model is presented in Figure 2.9. That

framework became very popular since the industry demonstrated its efficiency, and is

today actively used by big companies such as Facebook, Google, Twitter, Amazon and

Microsoft. A particular implementation of that framework, tuned to perform best at

face recognition tasks, was proposed by Garcia et al [50]. However, the large amount of

parameters to be optimized by the training algorithm requires a huge amount of data in

order to avoid overfitting, lots of computational power and lots of time – still, pretrained

models are provided by the community, making that problem avoidable.

2.2 Frameworks implementations

2.2.1 Software implementations

There exists many implementation of the descriptors and classifier described in Sec-

tion 2.1. Some of them are available in general purpose software packages, like the

widespread Scikit-learn python package [51]. SVM also have a high performance ded-

icated library with LIBSVM [52]. Other frameworks, more dedicated to neural net-

works – and particularly deep learning – are accelerated on GPUs, like Theano [53, 54],

Caffe [55], Torch [56], cuDNN [57] and the recently released TensorFlow [58]. There also

exist frameworks more oriented towards neuroscience, such as PyNN [59] and NEST [60].

The Parallel Neural Circuit Simulator (PCSIM) allows to handle large-scale models com-

posed of several networks that may use different neural models, and is able to handle

several millions of neurons and synapses [61]. As for spiking neural networks, the BRIAN

framework [62, 63] provides an easy to use simulation environment.

Related works 21

2.2.1.1 Workstations

Mutch et al. proposed in 2010 the Cortical Network Simulator framework [64], aiming to

automatically compile algorithms following a cortical architecture, such as HMAX. The

latter also has an optimized GPU implementation presented in [65], achieving real time

image classification on a NVIDIA Geforce 9400M GPU. A new neural network model

similar to ConvNet, called Locally-connected Neural Pyramid (LNCP) was proposed by

Uetz and Behnke along with its implementation on GPU [66], using the CUDA framwork.

This framework was especially designed for large-scale object recognition. The authors

claim a very low testing error rate of 0.76 % on MNIST, a popular hand-written digit

dataset initially provided by Burges et al [67], and 2.87 % on the general purpose NORB

dataset [68].

2.2.1.2 Embedded systems

Optimizations for software implementations, both on CPU and GPU, for the SIFT and

SURF frameworks have also been proposed [69]. It has also been shown that wavelets

are very efficient to compute, even on low hardware resources [70], which make them a

reasonable choice for feature extraction on embedded systems. Furthermore, an embed-

ded version of the SpiNNaker board described in Section 2.2.2 for autonomous robots,

programmable using with the C language or languages designed for neural networks

programing is presented in [71].

2.2.2 Hardware implementations

As shown in Section 2.2.1, GPUs are very efficient platforms for the implementation

of classification and feature extraction frameworks, particularly for neuromorphic al-

gorithms, due to their highly parallel architecture. Field Programmable Gate Arrays

(FPGA) are another family of massively parallel platforms, and as such are also good

candidates for efficient implementations. They are reconfigurable hardware devices, in

which the user implement algorithms at a hardware level. Therefore, they provide a

much finer control than the GPU: one implements indeed the communication protocols,

the data coding, how computations are performed, etc. – though they utilization is also

more complicated. FPGAs are configured using hardware description languages, like

VHDL or Verilog.

Going further down in the abstraction levels, there also exists fully analogical neural

network implementations that use a component called memristor [72–81]. The resistance

of such components can be controlled by the electric charge that goes through it. That

Related works 22

resistance value is analogous to a synaptic weight. As it is still at the fundamental

research level, analogical neural network shall not be studied here.

2.2.2.1 Neural networks

The literature concerning hardware implementations of neural networks is substantial.

A very interesting and complete survey was published in 2010 by Misra et al [82]. Feed-

forward neural network are particularly well suited for hardware implementations, since

the layers are, by definition, computed sequentially. It implies that the data goes through

each layers successively, and that while the layer i processes the image k, the image k+1

is processed by the layer i − 1. Another strategy is, on the contrary, to implement a

single layer on the device, and to use layer multiplexing to sequentially load and ap-

ply each layer to the data, thus saving lots of hardware resources to the expense of a

higher processing time [83]. However, it has been demonstrated that neural network

that are not feedforward may also be successfuly implemented on hardware [84, 85].

There also exist hardware implementations of general purpose bio-inspired frameworks,

such as Perplexus, which proposes among other the capability for hardware devices to

self-evolve, featuring dynamic routing and automatic reconfiguration [86], particularly

suited for large-scale biological system emulation. Architecture of adaptive size have

also been proposed, that allow to dynamically scale itself when needed [87].

While the mentioned works intend to be general purpose frameworks with no partic-

ular applications in mind, some contributions also propose implementations for very

specific purposes, such as the widespread face detection and identification task [88], or

more peculiar application such as gas sensing [89] or classification of data acquired from

magnetic probes [90].

Some frameworks received special considerations from the community in those attempts.

After presenting the works related to HMAX, the next paragraphs shall present the

numerous – and promising – approaches for ConvNet implementations. The many con-

tributions that concern the Spiking Neural Networks are presented afterwards.

HMAX Many contributions about hardware architectures for HMAX have been pro-

posed by Al Maashri and his colleagues [91–96]. Considering that in HMAX, the most

resource consuming stage is, by far, the S2 layer [92], a particular effort was made in [92]

to propose a suitable hardware accelerator for that part. In that paper, Al Maashri et

al. proposed a stream-based correlation, where input data is streamed to several pat-

tern matching engines performing the required correlation operations in parallel. The

whole model, including the other layers, was implemented on a single-FPGA and a

multi-FPGA platforms that respectively provide 23× and 89× speedup, compared with

Related works 23

a CPU implementation running on a system having a quad-core 3.2 GHz Xeon pro-

cessor and 24 GB memory. The single-FPGA platform uses a Virtex-6 FX-130T, and

the multi-FPGA one embeds four Virtex-5 SX-240T, all of which are high-end devices.

Those systems did not have any drop in accuracy compared to the CPU implementation.

A complete framework allowing to map neuromorphic algorithms to multi-FPGA sys-

tems is presented by Parket al. in [91]. The chosen hardware platform is called Vor-

tex [97], which was designed to implement and map hardware accelerators for stream-

based applications. One of the biggest challenge for such systems is the inter-device

communication, which is addressed in that work with the design of specific network

interfaces. It also proposes tools allowing to achieve the mapping in a standardized

way, with the help of a specially-designed tool called Cerebrum. As a proof of concept,

a complete image processing pipeline was implemented, that cascades a preprocessing

stage, a visual saliency 2 determination and an object recognition module using HMAX.

That pipeline was also implemented on CPU in C/C++ and on GPU with CUDA for

comparison. The gain provided by the system is a speedup of 7.2× compared to the

CPU implementation and 1.1× compared to the GPU implementation. As for the power

efficiency, the gain is 12.1× compared to the CPU implementation and 2.3× compared

to the GPU implementation.

Kestur et al proposed with their CoVER system [98] a multi-FPGA based implemen-

tation of visual attention and classification algorithms – the latter being operated by

HMAX – that aims to process high resolution images nearly in real time. It has a

pre-processing stage, followed by either an image classification or a saliency detection

algorithm, or both, depending on the chosen configuration. Each process uses a hard-

ware accelerator running on an FPGA device. The architecture was implemented on a

DNV6F6-PCIe prototyping board, which embeds six high-end Virtex6-SX475T FPGAs:

one of them is used for image preprocessing and routing data, another one to compute

HMAX’s S1 and C1 feature maps, two perform the computations of HMAX’s S2 and C2

features, and the remaining two are used both as repeaters and to compute the saliency

maps.

To our knowledge, the most recent hardware architecture for HMAX was proposed in

2013 by Orchard et al [99]. It was successfuly implemented on a Virtex 6 ML605 board,

which carries a XC6VLX240T FPGA. The implementation is almost identical to the

original HMAX described in [31], and is able to process 190 images per second with

less than 1% loss in recognition rate compared with standard software implementations,

for both binary and multiclass objet recognition tasks. One of the major innovation of

2A saliency is a region that is likely to contain information in an image. Saliencies are typically
determined with edge detection and the frequency of occurrences of a pattern in the image – the less
frequent, the more unusual and thus the more salient that pattern shall be.

Related works 24

this contribution is the use of separable filters for the S1 layer: it was indeed shown

that all filters used in HMAX, at least the original version presented in [31], may be

expressed as separable filters or as a linear combinations of separable filters – this allows

to considerably reduce the utilization of FPGA resources.

ConvNet In 2009, Farrugia et al proposed an implementation of a particular ver-

sion of ConvNet, called “Convolutional Face Finder” (CFF) which is described in Sec-

tion 3.1.1.2, on FPGA [100]. The architecture is based on an interconnection of pro-

cessing elements and a FIFO module, following a ring topology. Each PE performs the

CFF algorithm on a small chunk of the image, and the ring topology allows to overlap

between several regions of the image. The authors tested two implementations: one

with 4 PEs on a Virtex 4 SX 35 FPGA that processes 29 grayscale QVGA images3, and

the other one with 25 PEs on a Virtex 5 LX 330 FPGA that processes 127 grayscale

QVGA images or 35 grayscale VGA images. All implementations have a clock frequency

of 80 MHz. The main advantage of this model is that it is easily scalable: to process

bigger images while maintaining the same frame rate, or to raise the frame rate while

processing images of the same size, one would just need to add PEs to the network.

In a similar work, Farabet et al showed that ConvNets could be implemented on low end

FPGAs [101, 102]. They implemented a network constituted of three convolution layers

and two pooling layers, processing 42× 42 input images, on a board carrying a low-end

Spartan-3A DSP 3400 FPGA coupled to a DDR-SDRAM module – though the model

could not run at full speed due to bandwidth problem with the communication from

and to the memory modules. They also proposed the same implementation on a board

carrying a high-end Virtex-4 SX35 FPGA coupled to two QDR-SRAM modules with

a higher bandwidth, allowing the system to work at full speed. Both implementations

were tested on a face detection application. As the training stage of ConvNets needs a

large computational power (see Section 2.1.2.3), it was performed on a usual machine

using 30,000 images. At runtime, the high-end system was able to process 10 grayscale

VGA images per second while consuming 15 W in peak.

The contribution of Farabet et al mentionned above led to a framework called neu-

Flow [103], released in 2011. It was designed to be a generic detection, classification

and localization system for computer vision applications. It may be configured thanks

to a compiler specifically created called luaFlow, allowing to translate a network’s high-

level graph representation into byte code readable by neuFlow. The framework relies on

a dataflow architecture described earlier in [104]; it composed of a matrix of so-called

Processing Tiles (PT) – each having a bank of operators and a MUX for communication

3With a resolution of 320 × 240

Related works 25

with other PTs – and a Directory Memory Access (DMA) module for shared memory

management. As an example, a street-scene analysis system, able to perform segmen-

tation of street-scene images and assign each pixel a label depending on the nature of

the object it belongs to, was implemented with neuFlow on a Virtex 6 ML605 FPGA.

The implementation had a 200 MHz clock frequency and consumed 10 W, and was able

to fully process 12 images per second. It should be noted that a System on Chip (SoC)

version of neuFlow was released in 2012 [105]. It can perform up to 160 GOPS4 with a

power consumption of 512mW.

A low power coprocessor designed for ConvNets was also proposed by Gokhale et al

in [106], and is called nn-X which stands for Neural Network Next. It was developped

by a company called TeraDeep, founded by Yann LeCun among others. It has three

main components: a host processor composed of two ARM Cortex-A9 CPUs, the co-

processor itself that carries out the computations needed by the neural network, and an

external memory. The coprocessor consists in an array of PEs (called collections in the

paper), a memory router for communication and a bus for configuration. A collection is

itself composed of convolution modules, a pooling module, a router for communication

with the shared memory and other collections, and a programmable non-linear function

module. The system was run on a ZC706 prototyping board, allowing the instancia-

tion of eight collections. On that board it runs at a clock frequency of 142 MHz, and

measured power consumption for the processors, FPGA and memory is 4W.

Convolution are the most resource consuming operations in ConvNets, and as such many

of the above work propose optimizations for them. A particular effort towards that goal

was provided by Conti et al with their HWCE (Hardware Convolution Engine) system.

That engine is composed of three submodules: a wrapper that takes care of commu-

nications with other modules, a weight loader that manages the convolution kernel’s

coefficients and the convolution engine itself, that performs the actual computation. In

order to perform the convolution operations in streams, the convolution kernel stores a

stripe of the image and perform convolutions as soon there are enough data, so that for

a K × K convolution kernel the system needs to store K − 1 lines. Thus, the system

can output one pixel per clock cycle. That engine reached the to date state-of-the-art

in terms of energy efficiency, wih 2.76 GOPS/mW.

To our knowledge, the most recent effort concerning the implementation of ConvNets

on hardware lies in the Origami project [107]. The contributors claim that their in-

tegrated circuit is low-power enough to be embeddable, while handling network that

only workstation with GPU could handle before. To achieve this, the pixel stream is

first, if necessary, cropped to a Region Of Interest (ROI) with a dedicated module. A

4Giga Operations Per Seconds

Related works 26

filter bank is then run on that ROI. Each filter consists in the combination of chanels,

each performing multiplication-accumulation5 (MAC) operations on the data they get.

Each channel then sums the final results individually, and output the pixel values in

the stream. That system achieves a high throughput of 203 GOPS when running at

700 MHz, and consumes 744 mW.

Spiking Neural Networks Due to the potentially low computational resources they

need, SNN also have their share of hardware implementation attempts. Perhaps the most

well-known is the Spiking Neural Network architecture (SpiNNaker) Project [108]. It

may be described as a massively parallel machine, capable of simulating neuromorphic

systems in real time – i.e it respects biologically plausible timings. It it basically a

matrix of interconnected processors (up to 2500 in the largest implementation), splitted

in several nodes of 18 processors. Each processor simulates 1000 neurons. The main

advantage in using spikes is that the information is carried by the firing timing, as

explained in Section 2.1.1.1, page 12 – thus each neuron needs to send only small packets

to the other neurons. However, the huge amount of those packets and of potential

destination makes it challenging to route them efficiently. In order to guarantee that each

emitted packet arrives on time at the right destination, the packet itself only contains the

identifier of the emitting neuron. Then, the router sends it to the appropriate processors

according to that identifier, which would depend on the network’s topology and more

precisely to which neurons the emitting neuron is connected to.

IBM and the EPFL (École Polytechnique Fédérale de Lausanne) collaborated to start a

large and (very) ambitious research program: the Blue Brain project, which aims to use

an IBM Blue Gene supercomputer to simulate mammalian brains, first of little animals

like rodents, and eventually the human brain [109]. However it is highly criticized by

the scientific community, mostly for its cost, the lack of realism in the choice of its

goals and the contributions it led to [110]. While still ongoing, that project led to

the creation of SyNAPSE, meaning System of Neuromporphic Adaptive Plastic Scalable

Electronics. Since the Blue Brain project needed a supercomputer, the aim of SyNAPSE

is to design a somewhate more constrained system. In the frame of that project, the

TrueNorth chip [111] was released in 2014. It consists in 4,096 parallel interconnected

cores implementing one million spiking neurons. IBM claim that that chip consumes

65 mW for a multi object detection and classification task at 30 FPS, taking as inputs

240× 400 images with 3 color channels [112].

Finally, Krichmar et al. proposed several case studies for large scale spiking neural

networks [113], run in a simulation environment. The authors backed the propositions

5A multiplication between an input data and a coefficients, the result of which being added to a data
computed before by another MAC operation.

Related works 27

that neural networks may be useful for both engineering and modeling purposes, and

supported the fact that the spiking neural networks are particularly well suited with

the use of Addressable Event Representation communication scheme, which consists in

transmitting only the information about particular events instead of the full informa-

tion, which is particularly useful to reduce the required bandwidth and computations.

However, that strategy lies beyond the scope of this document.

2.2.2.2 Other frameworks implementations

There exists many academic works that are yet to be mentioned, for both classifiers and

descriptors. As for classifiers, Kim et al proposed a bio-inspired processor for real time

object detection, achieving high throughput (201.4 GOPS) while consuming 496 mW.

Other frameworks for pattern recognition systems that are not biologically inspired have

been proposed. For instance, Hussain et al proposed an efficient implementation of the

simple KNN algorithm [114], and an implementation of the almost-equally-simple Naive

Bayes6 framework is proposed in [115]. Anguita et al proposed a framework allowing

to generate user-defined FPGA cores for SVMs [116]. An implementation for Gaussian

Mixture Models, which from a computational point of view are somewhat close to RBF

nets and as such may require lots of memory and hardware resources, have also been

presented [117]. Concerning feature extraction, the popular SIFT descriptor have been

implemented on FPGA devices with success [118, 119], as well as SURF [120].

Some companies also proposed their own neural netwok implementations, long before

the arrival of ConvNet, HMAX and other hierarchical networks. Intel proposed an

analogical neural processor called ETANN in 1989 [121]. While harder to implement

and not as flexible as their digital counterparts, analogical devices are much faster.

That processors embeds 64 PEs that act as as many neurons and 10, 240 connections.

The device was parameterizable by the user using a software called BrainMaker. A

digital neural architecture was presented by Phillips for the first time in 1992, and was

called L-neuro [122, 123]. It was designed with modularity as a primarly concern in

mind, and thus is easily interconnected with other modules which makes it scalable. In

its latter version, that system was composed of 12 DSP processors, achieving 2 GOP/s

with a 1.5 GB/s bandwidth, and was successfuly used for PR applications.

IBM also proposed the Zero Instruction Set Computer (ZISC) [124], their own neural

processor. It was composed of a matrix of processing elements that act like a kernel

function of an RBF network: as detailed in Section 2.1.1.1, the output value depends on

the distance between the input vector and a prelearnt center. Considering the simplicity

6Naive Bayes are a class of classification frameworks, the principle of which is to assume each com-
ponent of the feature vector is indenpendent from the others – hence the word naive.

Related works 28

and the parallelism of that architecture, it is easily scalable: for instance the ZISC 36

had a matrix of 36 PEs, while the ZISC 78 contained 78 PEs. Another processor called

CM1K, largely inspired by the ZISC, was commercialized by CogniMem Technologies

Inc [125]. While the overall principle is similar to the ZISC, it has higher capabilities.

Indeed, it embeds 1024 neurons, and is able to take whole images directly as inputs.

Nowadays, several companies are also actively developing embedded solutions based

on neural networks. Qualcomm will soon release their next generation of embedded

processors, which shall embed a neural coprocessor named Zeroth. That coprocessor is

spike-based, and it potentially allows very low power consumption as explained above

in Section 2.2.2.1, page 26. It aims to be embedded on mobile platforms, such as mobile

phones for instance. Another company, Synopsys, released two processors as Intellectual

Property cores (IP cores)7 optimized for embedded video processing. They are called

EV52 and EV54. The IP cores are configurable, and thus the architecture may vary

depending on the application. However, its top modules are always the same: a processor

with four or two CPUs depending on the model (EV52 or EV54) that performs image

processing routines, some memory modules and an object recognition engine, which is

basically a matrix of PEs that take care of the computations needed for classification, for

instance with a ConvNet. Synopsys claims an energy efficiency 5× better than GPUs,

with 1 TOPS/W.

The European Union founded for 10 years a project similar to the Blue Brain project

presented earlier, though more oriented towards the simulation of the human brain itself:

the Human Brain Project [126]. The project team hopes to gain a better understanding

of the human brain, with a twofold benefit: gain the ability to simulate neurodegenera-

tive diseases such as Alzheimer’s for medical purpose, and deepen our comprehension of

cortical mechanisms to improve neuro-inspired intelligent systems, which encompass the

present work. Although the project gave birth to numerous contribution, it is subject

to controversies similar to that of the Blue Brain project: scientists found it to cost too

much money, and that its goals are unrealistic [127].

2.3 Discussion

In the previous sections of this chapter, the theoretical background of pattern recognition

was presented as well as different implementations of pattern recognition framework on

different platforms. This Section is dedicated to the comparison of those frameworks.

Descriptors and then classifiers shall be discussed in terms of robustness and complexity,

7Hardware modules that may be used as black boxes on FPGAs.

Related works 29

with an emphasis on how well they may be embedded. Afterwards the problematics

underlying the research work presented here shall be stated.

2.3.1 Descriptors and classifiers comparison

2.3.1.1 Descriptors

Mikolajczyk et al proposed in 2005 [128] a thorough and comprehensive evaluation of

the main descriptors used at that time. While now somehow outdated, as HMAX

and ConvNet were not as developed as they are nowadays, that article is still a useful

document as it sets the basis for the evaluation of latter descriptors and their comparison

with earlier ones. That article compares notably SIFT, described in Section 2.1.2.1, with

methods that are not presented here. They also presented the Gradient Location and

Orientation Histogram (GLOH) descriptor they created, built upon SIFT. It is shown

that GLOH perform best at many image classification task, closely followed by SIFT –

as the two descriptors are fundamentally of the same nature, this shows the superiority

of SIFT compared to other frameworks of that time. As for the SURF descriptors, its

authors claimed in [33] that it was both more accurate and faster than SIFT.

The accuracy brought by HMAX for computer vision was groundbreaking [31]. It showed

better performances than SIFT in many object recognition tasks, mainly on the Cal-

tech101 dataset. Those results were corroborated by the work of Moreno et al, who

compared the performances of HMAX and SIFT on object detection and face localiza-

tion tasks, and found out that HMAX performed indeed better than SIFT [129]. It is

also worth mentionning the very interesting work of Jarett et al [130], in which they

evaluated the contribution of several properties of different computer vision frameworks

applied to object recognition. That paper confirms and generalizes the aforementioned

work of Moreno et al: it states that multi-stage architectures in general, which includes

HMAX and ConvNets, perform better than single-stage ones, such as SIFT.

ConvNet achieves outstandingly good performances on large datasets, such as MNIST [48]

or ImageNet [131, 132]. In comparison, HMAX’s performances are lower. However, its

number of parameters to optimize is very large, therefore a ConvNet needs a huge amount

of data to be trained properly – indeed, models with lots of parameters are known to

be more subject to overfitting [24]. If the data is sparse, it is worth considering us-

ing a framework with less parameters, such as HMAX; as explained in Section 2.1.2.2,

its training stage simply consists in cropping images at random locations and scales.

Despite the fact that that randomness is clearly suboptimal and has been subject to

optimization works in the past [46], it presents the advantage of being very simple.

Related works 30

Table 2.2: Comparison of descriptors.

Framework Accuracy Training Complexity

ISCN High None High

HMAX High
Yes,

High
requires few data points

HOG Reasonnable None Low

SIFT Reasonnable None Low

SURF Reasonnable None very low

ConvNet
Very high Yes,

High
on large datasets requires a large dataset

Furthermore, while it has been stated that HMAX’s accuracy is related to the amount

of features in the S2 dictionnary, the performance do not evolve so much after 1,000

patches. Assuming only 1 patch per image is cropped during training, then one would

require 1,000 which is much lower than the tens of thousands usually gathered to train

ConvNet [48, 50]. That state of things led to the thought that while working in many

situations, ConvNet may not be the most adapted tool for all applications – particu-

larly in the case where the training set is small. Another possibility would be to use an

Invariant Scattering Convolution Network as the first layers of a ConvNet, as suggested

in [38], instead of optimizing the weights of the convolution kernels during the training

stage.

Due to their performances, those three multistage architectures – ConvNet, ISCN and

HMAX – seem like the most promising options for most computer vision applications.

However, another important aspect that must be taken into account is that of their

respective complexities: they have different requirements in terms of computational

resources and memory that shall be decisive when choosing one of them, especially in

the case of embedded systems. To that respect legacy descriptors such as HOG, SIFT

and SURF in particular are interesting alternatives.

In order to set boundaries to the present work, a few descriptors must be chosen so that

most of the effort can focus on them. To that end, Table 2.2 sums up the main features

of the presented descriptors. As the aim is to achieve state of the art accuracy, the

work presented in this thesis shall mostly relate to the three aforementioned multistage

architectures: ConvNet, ISCN and HMAX.

2.3.1.2 Classifiers

For a given application, after selecting the (believed) most appropriate descriptor one

must choose a classifiers. Like descriptors, they have different features in terms of

robustness, complexity and memory print, both for training and prediction. Most of the

Related works 31

time, the classification stage itself is not the most demanding in a processing chain, and

thus may not need to be accelerated. In the case where one need such acceleration, the

literature on the subject is already substantial – see Section 2.1.1. For those reasons, the

present document shall not address hardware acceleration for classification. However,

as the choice of the classifier plays a decisive role in the robustness of the system, the

useful criteria for classifier selection shall be presented.

Let’s first consider the training stage. As it shall be in any case performed on a worksta-

tion and not on an embedded system, constraints in terms of complexity and memory

print are not so high. However, a clear difference must be made between the iterative

training algorithms and the others. An iterative algorithm processes the training sam-

ples one by one, or by batch – they do not need to load all the data in once, and are

therefore well suited for training with lots of samples. On the other hand, non-iterative

data such as SVM or RBF need the whole dataset in memory to be trained, which is

not a problem for reasonably small datasets but may become one when there are many

datapoints – obviously the limit depends on the hardware configuration used to train

the machine, though in any case efficient training requires strong hardware.

The classifier must also be efficient during predictions – here, “efficiency” is meant as

speed, as the robustness depends largely on training. Feedforward frameworks, as most

of those presented here, present the advantage of being fast compared to more complex

frameworks. In linear classifiers such as Perceptrons or linear SVMs, the classification

often simply consists in a matrix multiplication, which is now well optimized even on non

massively parallel architectures like CPUs, thanks to libraries such as LAPACK [133] or

BLAS [134].

The speed of kernel machines, e.g RBF or certain types of SVM, is often directly related

to the number of used kernel functions. For instance, the more training examples, the

more kernels an RBF net may have (see Appendix A). Particular care must therefore

be taken during the training stage of such nets, so that the number of kernels stays to a

manageable amount. Finally, ensemble learning frameworks such as Boosting algorithms

are often used when speed is critical in an applications, and have been demonstrated to

be very efficient in the case of face detection for instance [30].

Those considerations put aside, according to the literature HMAX is best used with ei-

ther AdaBoost or SVM classifiers respectively for one-class and multi-class classification

tasks [31]. Concerning ISCN, it is suggested to use a SVM for prediction [38]. Concern-

ing ConvNet, it embeds its own classification stage which typically takes the form of an

MLP [48, 49].

Related works 32

Now that the advantages and drawbacks of both the classification and feature extraction

frameworks have been stated, the next section proposes a comparison between different

implementation techniques.

2.3.2 Implementations comparison

In order to implement those frameworks a naive approach would be to implement them

on a CPU, as it is probably the most widespread computing machine. However that

would be particularly inefficient, as those frameworks are highly parallel and that such

devices are by nature sequential: a program consists in a list of successive instructions

that are run one after the other. Their main advantage, however, is that they are fairly

easy to program. For that reason, CPU implementations still remain a quasi-mandatory

step when testing a framework.

GPUs are also fairly widespread devices, even in mainstream machines. The advent of

video games demanding more and more resources dedicated to graphics processing led

to a massive production of those devices, which provoked a dramatic drop in costs. For

those reasons they are a choice target platforms for many neuromorphic applications.

While somewhat more complicated to program that CPUs, the coming of higher level

languages such as CUDA made the configuration of GPU reasonably easy to reach. The

amount of frameworks using that kind of platforms, and moreover their success show

that it is a very popular piece of hardware for that purpose [53, 56–58, 135]. However,

their main disadvantage is their volume and power consumption, the latter being in the

order of magnitude of 10 W. For embeddable systems the power consumption should not

go beyond 1 W, which is where reconfigurable hardware devices are worth considering.

FPGAs present two major drawbacks: they are not as massively produced as GPUs

and CPUs, which raises their cost. Their other downside actually goes alongside with

their highest quality: they are entirely reconfigurable, from the way the computations

are organized to the data coding scheme and such flexibility comes to the price of a

higher development time (and thus cost) than CPUs and GPUs. However their power

consumption is most of the time below 1 W, and can be optimized with appropriate

coding principles. They are also much smaller than GPUs, and the low power con-

sumption leads to colder circuits, which allows to save the energy and space that would

normally be required to keep the device at a reasonnable temperature. Furthermore,

they are reconfigurable to a much finer grain than GPU, and thus provide even more par-

allelization as the latters. All these criteria make FPGAs good candidates for embedded

implementations of computer vision algorithms.

Related works 33

2.3.3 Problem statement

The NeuroDSP project presented in Section 1.4 aims to propose an integrated circuit

for embedded neuromorphic computations, with high constraints in terms of power con-

sumption, volume and cost. The ideal solution would be to produce the device as an

Application Specific Integrated Circuit (ASIC) – however its high cost makes it a realistic

choice only in the case where the chip is guaranteed to be sold in high quantities, which

may be a bit optimistic for a first model. For that reason, we chose to implement that

integrated circuit on an FPGA. As one of the aim of NeuroDSP is to be cost-efficient, we

aim to propose those neuromorphic algorithms on mid-range hardware. Towards that

end, one must optimize them w.r.t two aspects: complexity and hardware resource con-

sumption. The first aspect may be optimized by identifying what part of the algorithm

is the most important, and what part can be discarded. A way to address the second

aspect of the problem is to optimize data encoding, so that computations on them re-

quires less logic. Those considerations lead to to the following problematics, which shall

form the matter of the present document:

• How may neuromorphic descriptors be chosen appropriately and how

may their complexity be reduced?

• How the data handled by those algorithms may be efficiently coded so

as to reduce hardware resources?

2.4 Conclusion

In this chapter we presented the works related to the present document. The problem-

atics that we aimed to address were also stated. The aim of the contributions presented

here is to implement efficient computer vision algorithms on embedded devices, with

high constraints in terms of power consumption, volume, cost and robustness. The

primary use case scenario concerns image classification tasks.

There exist many theoretical frameworks allowing to classify data, be it images, one

dimensional signals or other. Naive algorithms such as Nearest Neighbor have the ad-

vantage of being really simple to implement; however they may achieve poor classification

performances, and cost too much memory and computational power when used on large

datasets. More sophisticated frameworks, such as neural networks, SVMs or ensemble

learning algorithms can achieve better results.

In order to help the classifier, it is also advisable to use a descriptor, the aim of which is

to extract data from the sample to be processed. Among such descriptors figures HMAX,

Feature selection 34

which is inspired by neurophysiological data acquired on mamals. Such frameworks are

said to be neuro-inspired, or bio-inspired. Another popular framework is ISCN, which

decomposes the input image with particular filters called wavelets.

One of the most popular frameworks nowadays is ConvNet, which is a basically a clas-

sifier with several preprocessing layers that act as a descriptor. While impressively

efficient, it needs to be trained with a huge amount of training data, which is a problem

for applications where data is sparse. In such case it may seem more reasonable to use

other descriptors, such as HMAX or ISCN, in combination with a classifier.

The algorithms mentioned above are most of the time particularly well suited for parallel

processing. While it is easier to implement them on CPU using languages such as C, the

efficiency gained when running them on massively parallel architecture makes it worth

the effort. There exist several frameworks using GPU acceleration, however GPUs are

ill-suited for most embedded applications where power consumption is critical. FPGAs

are better candidates in those cases, and contributions about implementations on such

devices have been proposed.

The aim of the work presented in this document is to implement those demanding algo-

rithms on mid-range reconfigurable hardware platforms. To achieve that, it is necessary

to adapt them to the architecture. Such study is called “Algorithm-Architecture Match-

ing” (AAM). That need raises two issues: how those frameworks may be reduced, and

how the data handled for computation may be efficiently optimised, so as to use as few

hardware resources as possible? The present document proposes solutions addressing

those two questions.

Chapter 3

Feature selection

This chapter addresses the first question stated in Chapter 2, concerning the optimiza-

tions of a descriptor for specific applications. The first contribution presented here is

related to a face detection task, while the second one proposes optimizations adapted

to a pedestrian detection task. In both cases, the optimization scheme and rational are

presented, along with a study of the complexity of major frameworks addressing the

considered task. Accuracies obtained with the proposed descriptors are compared to

those obtained with the original framework and the described systems of the literature.

Those changes in accuracies are then put in perspectives with the computational gain.

General conclusions are presented at the end of this Chapter.

3.1 Feature selection for face detection

This Section focuses on a handcrafted feature extractor for a face detection application.

We start from a descriptor derived from HMAX, and we propose a detailed complexity

analysis; we also determine where lies the most crucial information for that specific

application, and we propose optimizations allowing to reduce the algorithm complexity.

After reminding the reader of the major techniques used in face detection, we present

our contribution, which consists in finding and keeping the most important information

extracted by a framework derived from HMAX. Performance comparison with state of

the art frameworks are also presented.

3.1.1 Detecting faces

For many applications, being either mainstream or professional, face detection is a crucial

issue. Its more obvious use case is to address security problems, e.g identifying a person

35

Feature selection 36

may help in deciding whether access should be granted or denied. It may also be useful

in human-machine interactions, for instance if a device should answer in some way in

case a human user shows particular states, such as distress, pain or unconsciousness –

and to do that, the first step is to detect and locate the person’s face. In that second

scenario we fall into embedded systems, which explains our interest in optimizing face

detection frameworks. Among the most used face detection techniques lie Haar-like

feature extraction, and as usual ConvNet. We shall now describe the use of those two

paradigms in those particular problems, as well as a framework called HMIN which is

the basis of our work.

3.1.1.1 Cascade of Haar-like features

Before the spreading of ConvNets, one of the most popular framework for face detection

was the Viola-Jones algorithm [30, 136] – it is still very popular, as it is readily imple-

mented in numerous widely used image processing tools, such as OpenCV [137]. As we

shall see, the main advantage of this framework is its speed, and its decent performances.

Framework description Viola’s and Jones’ framework is built along two main

ideas [136]: using easy and fast to compute low-level features – the so-called Haar-

like features – in combination with a Boosting classifier that selects and classifies the

most relevant features. Classifiers are cascaded so that the most obviously not-face re-

gions of the image are discarded first, allowing to spend more computational time on

most promising regions. A naive implementation of the Haar-like features may use con-

volution kernels, consisting of 1 and −1 coefficients, as illustrated on Figure 3.1. Such

features may be computed efficiently using an image representation proposed in [30, 136]

called Integral Image. In such representation, the pixel located at (x, y) takes as value

the sum of the original image’s pixels located in the rectangle defined by the (0, 0) and

the (x, y) point, as shown in Figure 3.2. To compute such an image F one may use the

following recurrent equation [30]:

F (x, y) = F (x− 1, y) + s (x, y) , (3.1)

with

s (x, y) = s (x, y − 1) + f (x, y) (3.2)

where f (x, y) is the original image’s pixel located at (x, y). Using this representation, the

computation of a Haar-like feature may be performed with few addition and subtraction

operations. Moreover the number of operations does not depend on the scale of the

considered feature. Let’s consider first the feature on the left of Figure 3.1, and let’s

Feature selection 37

(x1, y1)

(x2, y2)

(
x2, yg

)
+

+

+

(x1, y1)

(x2, y2)(
xg, y2

)
(xw, y2)

+

++ +

Figure 3.1: Example of Haar-like features used in Viola-Jones for face detection.
They can be seen as convolution kernels where the grey parts correspond to +1 coeffi-
cients, and the white ones −1. Such features can be computed efficiently using integral
images [30, 136]. Point coordinates are presented here for latter use in the equations
characterizing feature computations.

assume its top-left corner location is (x1, y1) and that of its bottom-right corner’s is

(x2, y2). Given the integral image II, its response rl (x1, y1, x2, y2) is given by

rl (x1, y1, x2, y2) = F (x1, yg, x2, y2)− F (x1, y1, x2, yg) (3.3)

with F (x1, y1, x2, y2) the integral of the values in the rectangle delimited by (x1, y1) and

(x2, y2), expressed as

F (x1, y1, x2, y2) = II (x2, y2) + II (x1, y1)− II (x1, y2)− II (x2, y1) (3.4)

where II (x, y) is the value of the integral images at location (x, y). As for the response

rr (x1, y1, x2, y2) of the feature on the right, we have:

rr (x1, y1, x2, y2) = F (xw, y2, xg, y1)− F (x1, y1, xg, y2)− F (xw, y1, x2, y2) (3.5)

The locations of the points are shown in Figure 3.1. Once features are computed, they

are classified using a standard classifier such as a perceptron for instance. If the classifier

does not reject the features as “not-face”, complementary features are computed and

classified, and so on until either all features are computed and classified as “face”, or

the image is rejected. This cascade of classifiers allows to reject most non-faces images

early in the process, which is one of the main reasons for its low complexity.

Now that we described the so-called Viola-Jones framework, we shall study its compu-

tational complexity.

Complexity analysis Let’s now evaluate the complexity involved by that algorithm

when classifying images. The first step of the computation of those Haar-like features

on an image is then to compute its integral image. According to Equation 3.1 and

Equation 3.2, it takes only 2 additions per pixels. Then, the complexity CVJII of this

Feature selection 38

II (X,Y) =
∑X
x=1

∑Y
y=0 f (x, y)

+

X

Y

Figure 3.2: Integral image representation. II (X,Y) is its value of the point coordi-
nated (X,Y), and f (x, y) the value of the original image at location (x, y) [30].

process for a w × h image is given by

CVJII = 2wh. (3.6)

That serves as the basis of the computation of the Haar-like features, as we saw earlier.

The complexity highly depends on the number of computed features, and for this study

we shall stick to the implementation proposed in the original paper [136]. In that work,

the authors have a total a 6060 features to compute – however, they also claimed that,

given the cascade of classifiers they used, only Nf = 8 features are computed in average.

From [136], we now that each feature needs from 6 to 9 operations to compute – we

shall consider here that, on average, they need Nop = 7.5 operations. We note that,

thanks to the computation based on the integral image, the number of operations does

not depend on the size of the computed feature. After that, the features are classified

– however we focus our analysis on the feature extraction only, so we do not take that

aspect into account here. Thus, denoting CVJF the complexity involved a this stage, we

have

CVJF = NopNf . (3.7)

In additions, images must be normalized before being processed. Viola et al. proposed

in [136] to normalize the contrast of the image by using its standard deviation σ given

by

σ = m2 − 1

N

N∑
i=0

xi
2, (3.8)

Feature selection 39

where m is the mean of the pixels of the image, N = wh is the number of pixels and xi

is the value of the i-th pixel. Those values may be computed simply as

m =
II (W,H)

wh
(3.9)

1

N

N∑
i=0

xi
2 =

II2 (W,H)

wh
(3.10)

where II2 denotes is the integral image representation of the original image with all its

pixels squared. The computation of that integral image needs thus one power operations

per pixel, to which we must add the computations required by the integral images,

which leads to a total of 3WH operations. Computing m requires a single operation,

as computing 1
N

∑N
i=0 xi

2. As the feature computation is entirely linear and since the

normalization simply consists in multiplying the feature by the standard deviation, that

normalization may simply be applied after the feature computation, involving a single

operation per feature. Thus, the complexity CVJN involved by image normalization is

given by

CVJN = 3wh+Nf (3.11)

From Equations 3.6, 3.7 and 3.11, the framework’s global complexity is given by

CVJ = CVJII + CVJF + CVJN

= 5wh+
(
Nop + 1

)
Nf , (3.12)

which considering the implementation proposed in [136], i.e with w = h = 24 and

Nf = 7.5, leads to a total of 2948 operations. Although strikingly low, it must be

emphasized here that that value is an average; when a face is actually detected, all

6060 features must be computed and classified, which then leads to 54,390 operations.

However, for fair comparison we shall stick to the average value latter in the document.

Now that we evaluated the complexity of the processing of a single w × h image, let’s

evaluate it in the case where we scan a scene in order to find and locate faces. Normally,

one would typically use several sizes of descriptors in order to find faces of different

sizes [50, 136] – however, in order to simplify the study we shall stick here to a single

scale. Let W and H respectively be the width and height of the frame to process, and

let Nw be the number of windows processed in the image. If we classify subwindows at

each location of the image, we have

Nw = (W − w + 1) (H − h+ 1) (3.13)

Feature selection 40

Additions(98.34%)

Multiplications(1.66%)

Figure 3.3: Complexity repartition of Viola and Jones’ algorithm when processing
a 640 × 480 with a 24 × 24 sliding window. From Equations 3.7 to 3.13, we see that
the integral image computation requires 2WH additions, the feature extraction needs
NopNfNw additions, and CVJN

needs WH multiplications and 2WH. Thus, we need
a total of 4WH +NopNfNw.

The integral images are first computed on the whole 640×480 image; after that, features

must be computed, normalized and classified for each window. From Equations 3.6, 3.7,

3.11 and 3.13 we know that we need

CVJ = 2WH +NopNfNw +NfNw (3.14)

= 2WH +NfNw

(
Nop + 1

)
(3.15)

= 5WH +Nf (W − w + 1) (H − h+ 1)
(
Nop + 1

)
. (3.16)

In the case of a 640× 480 image, with w = 24, h = 24, Nf = 8 and Nop = 7.5 as before,

we get CVJ = 20.7 MOP. Figure 3.3 shows the repartition of the complexity into several

types of computations, considering that we derive from the above analysis that we need

4WH +NopNf additions and WH multiplications.

Memory print Let’s now evaluat the memory required by that framework when

processing a 640×480 image. Assuming the pixels of the integral image are coded on 32

bits integers, the integral image would require 1.2 MB to be stored entirely. Assuming

ROIs are evaluated sequentially on the input image, 6060 features are computed at most

and each feature is coded as 32-bits integers, we would require 24.24 ko to stores the

features. Thus, the total memory print required by that framework would be, in that

case, 1.48 MB. That framework also has the great advantage that a single integral image

may be used to compute features of various scales, without the need of computing, storing

and managing an image pyramid, as required by other frameworks – more information

about image pyramids are available in Section 3.1.3.2.

We presented the use of Haar-like features in combination with the AdaBoost classifier

for face detection task, proposed by Viola and Jones [30, 136]. We shall now present

and analyse an other major tool for this task, which is called CFF.

Feature selection 41

3.1.1.2 Convolutional Face Finder

Framework description Since they show impressive performance in many domains,

it is only natural that implementations of ConvNet were proposed for face detection

applications [50]. One of the main implementations is the Convolutional Face Finder

(CFF). It is composed of 6 layers: C1, S1, C2, S2, N1 and N2. CX denotes a convolution

layer, SX a subsampling layer and N a partially connected layer. It takes 32×36 images

as inputs. The C1 layer consists in 4 convolutions with 5 × 5 kernels, thus producing

28 × 32 patches which are downsampled to 14 × 16 patches in S1. At that stage, the

downsampling strategy for each unit in S1 consists in computing the average of 2 × 2

features from a single C1 feature map, to multiply it by a coefficient, then to add a bias

to the result and to apply a non-linearity. Two neighboring units in S1 have contiguous,

non-overlapping receptive fields. The resulting S1 feature map feed then C2, where

they are filtered again using convolutions: each of the four feature maps produced in S1

feeds two convolution kernels, and 6 pairs of those same S1 feature maps feed another

convolution kernel each, which leads to a total of 14 feature maps of size 12 × 14. All

those convolution kernel are 3×3. The produced 14 feature maps are then downsampled

in S2 to produce 6 × 7 feature maps, using the same strategy as in S1 but this times

with 3× 3 receptive fields.

N2 has 14 units, one per S2 feature maps, where each unit is fully connected to the units

of a single S2 feature map. Thus, each N1 unit is connected to 168 S2 units. Finally, in

N2 all N1 units are connected to a single output unit, that gives the classification result.

The framework is shown in Figure 3.4.

During the prediction stage, it should be noted that the network can in fact process the

whole image at once, instead of running the full computation windows by windows [48,

138]. This technique allows to save lots of computations, and is readily implemented if

one considers the N1 layer as a convolution filter bank with kernel of size 6× 7, and the

N2 layer like another filter bank with 1× 1 convolution kernels [139].

Complexity analysis Let’s now evaluate the complexity involved by the CFF algo-

rithm. Denoting CCFFXX the complexity brought by the layer XX, and neglecting the

classification as done in Section 3.1.1.1, we have

CCFF = CCFFC1
+ CCFFS1 + CCFFT1

+ CCFFC2
+ CCFFS2 + CCFFT2

, (3.17)

where TX represents a non-linearity layer, where an hyperbolic tangeant is applied to

each feature of the input feature map. Let’s first evaluate CCFFC1
. It consists in 4

convolutions, which consists mainly in Multiplication-Accumulation (MAC), which we

Feature selection 42

Input

C1

S1

C2

S2

•

•
•
•
•
•
•
•
•
•
•
•
•
•
•

N1

N2

Output

Figure 3.4: Convolutional Face Finder [50]. This classifier is a particular topology
of a ConNet, consisting in a first convolution layer C1 having four trained convolution
kernels, a first sub-sampling layer S1, a second convolution layer C2 partially connected
to the previous layer’s units, a second sub-sampling layer S2, a partially-connected layer
N1 and a fully-connected layer N2 with one output unit.

assume corresponds to a single operation as it may be done on dedicated hardware.

Thus we have

CCFFC1
= 4× 5× 5 (W − 4) (H − 4) (3.18)

= 100WH − 400 (W +H) + 1600. (3.19)

Since the S2 layer consists in the computation of means of features in contiguous non-

overlapping receptive fields, this means that each feature is involved once an only once in

the computation of a mean, which also requires a MAC operation per pixel. Considering

that at this point, we have 4 (W − 4)× (H − 4) feature maps, and so

CCFFS1
= 4 (W − 4) (H − 4) (3.20)

= 4WH − 16 (W +H) + 64. (3.21)

Now, the non-linearity layer must be applied: an hyperbolic tangeant function is used

to each feature of the 4 WS2 ×HS2 feature maps, with

WS2 =
W − 4

2
(3.22)

HS2 =
H − 4

2
, (3.23)

Feature selection 43

and thus, considering the best case where an hyperbolic tangent may be computed in a

single operation,

CCFFT1
= 4

(
W − 4

2

)(
H − 4

2

)
(3.24)

= WH − 2 (W +H) + 16 (3.25)

The C2 layers consists in 20 convolution, the complexity of which may be derived

from 3.18. Then, there are 6 element-wise sums of feature maps, which after the convo-

lutions are of dimensions (
W − 4

2
− 2

)
×
(
H − 4

2
− 2

)
, (3.26)

and thus we have

CCFFC2
= (20× 3× 3 + 6× 3× 3)

(
W − 4

2
− 2

)(
H − 4

2
− 2

)
(3.27)

= 9× 26

(
W

2
− 4

)(
H

2
− 4

)
(3.28)

= 234

(
WH

4
− 5

2
(W +H) + 16

)
(3.29)

= 58.5WH − 585 (W +H) + 3744. (3.30)

The complexity in S2 layer may be derived from Equations 3.20 and 3.26, giving

CCFFS2
= 3.5WH − 28 (W +H) + 224. (3.31)

And finally, the complexity of the last non-linearity may be expressed as

CCFFT2
= 14WS2HS2 (3.32)

with

WS2 =
1

2

(
W − 4

2
− 2

)
(3.33)

HS2 =
1

2

(
H − 4

2
− 2

)
, (3.34)

which gives

CCFFT2
= 1.75WH + 7 (W +H) + 16. (3.35)

Using those results in Equation 3.17, we finally get

CCFF = 168.75WH − 1038 (W +H) + 5664. (3.36)

Feature selection 44

MAC (97.8%)

Sums (1.32%)

Tanh (0.88%)

Figure 3.5: Complexity repartition of the CFF algorithms, separated in three types
of computations: MAC, hyperbolic tangents (“Tanh”) and sums. We see here that the
large majority of operations are MAC, toward which most effort should then be put for
fine optimizations or hardware implementation.

Now that we have this general formula, let’s compute the complexity involved in the

classification of a typical 36 × 32 patch. We get 129.5 kOP. Let’s now assume that we

must find and locate faces in a VGA 640×480 image. From [48] and [50] and as recalled

earlier, we know that the features may be efficiently extracted at once in the whole

image, by applying all the convolutions and subsampling directly to it. Thus, we may

compute that complexity directly by reusing Equation 3.36, and we get 50.7 MOP.

Figure 3.5 shows the repartition of the complexity of that frameworks.

Memory print Let’s now evaluate the memory required by the CFF framework.

As in Section 3.1.1.1, we shall consider here the case where we process a 640 × 480

image, without image pyramid. The first stage produces 4 636 × 476 feature maps –

assuming the values are coded using single precision floating point scheme, hence using

32 bits, that stage requires a total of 4.84 MB. As the non-linearity and subsampling

stages may be performed in-place, they do not bring any further need in memory. The

second convolution stage, however, produces 20 316 × 236 feature maps. Using the

same encoding scheme as before, we need 59.7 MB. We should also take into account

the memory needed by the weights of the convolution and subsampling layers, but it is

negligible compared to the values obtained previously. Hence, the total memory print is

64.54 MB. It should by noted that that amount would be much higher in the case where

we process an image pyramid, as usually done. However, we stick to an evaluation on a

single scale here for consistency with the complexity study.

This Section was dedicated to the description and study of the CFF framework. Let’s

now do the same study on another framework to which we refer as HMIN.

Feature selection 45

3.1.1.3 HMIN

Framework description In order to detect and locate faces on images, one may use

HMAX, which was described in Section 2.1.2.2. However using that framework to locate

an object requires to process separately different ROI of the image. In such case, the

S2 and C2 layers of HMAX provide little gain in performance, as it is mostly useful for

object detection in clutter [31]. Considering the huge gain in computation complexity

when not using the two last layers, we propose here to use only the first two layers for

our application. In the rest of the document, the framework constituted by the S1 and

C1 layers of HMAX shall be referred to as HMIN.

We presented the so-called framework HMIN, on which we base our further investiga-

tions. We shall now study its complexity, along the lines of what we have proposed

earlier for Viola-Jones and the CFF.

Complexity analysis The overall complexity CHMIN involved by the two stages S1

and C1 of HMIN is simply

CHMIN = CHMINS1
+ CHMINC1

(3.37)

Where CHMINS1
and CHMINC1

are respectively the complexity of the S1 and C1 layers.

The S1 layer consists in a total of 64 convolutions on the W ×H input image. Different

kernel sizes are involved, but it is important that all feature maps fed in the C1 layer

are of the same size. Thus, the convolution must be computed at all positions, even

those where the center of the convolution kernel is on the edge of the image. Missing

pixel may take any value: either simply 0 or the value of the nearest pixel for instance.

Denoting ki the size of the convolution kernel at scale i presented in the filter column of

Table 2.1, we may write

CHMINS1
= 4

16∑
i=1

WHki
2 = 36146WH. (3.38)

As for the C1 layer, it may be applied as follows: first, the element-wise maximum

operations accross pairs of feature maps are computed, which take 8WH operations;

then we apply the windowed max pooling. Since there is a 50% overlap between the

receptive fields of two contiguous C1 units, neglecting the border effects each feature of

each S1 feature map is involved in 4 computations of maximums. Since those operations

are computed on 32 feature maps, and adding the complexity of the first computation,

we get

CHMINC1
= 8WH + 8× 4WH = 40WH. (3.39)

Feature selection 46

From Equations 3.37 to 3.39, we get

CHMIN = 36456WH. (3.40)

If we aim to extract feature from a typical 128×128 image for classification as suggested

in [31], it needs 597 MOP operation. When scanning a 640×480 image as done with the

CFF in Section 3.1.1.2, we get a total of 11.2 GOP. From Equations 3.38 and 3.39, we

also see that the convolutions operations take 99.89 % of the computation – thus, they

represent clearly the basis of our optimizations.

Memory print Using the same method as for Viola-Jones’ in Section 3.1.1.1 and

the CFF in Section 3.1.1.2, let’s evaluate the memory print of HMIN. Since the C1

layer may be processed in-place, the memory print of HMIN is the same as its S1 layer,

which produces 16 640×480 feature maps, coded on 32-bit single precision floating point

numbers. Hence, its memory print is 19.66 MB.

This Section was dedicated to the presentation of several algorithms suited for face

detection, include HMIN which shall serve as the basis of our work. Next Section is

dedicated to our contributions in the effort of optimizing out HMIN.

3.1.2 HMIN optimizations for face detection

In this Section we propose optimizations for HMIN, specific to face detection applica-

tions. We begin by analysing the output of the C1 layer, and we then propose our

simplifications accordingly. Experimental results are then shown. This work is based on

the one presented in [140], which we pushed further as described below.

3.1.2.1 C1 output

As HMIN intends to be a general purpose descriptor, it aims to grasp features of as

various types. Figure 3.6 shows an examples of the C1 feature maps for a face. The

eyes, nose and mouth are the most prominent object of the face, and as such one can

expect HMIN to be particularly sensible to them as it is based on the mammal’s vision

system, which can indeed easily be seen in Figure 3.6. One can also see that the eyes

and mouths are more salient when θ = π/2, and that the nose is more salient when

θ = 0. Furthermore, one can also see that the extracted features are redundant from C1

maps of neighboring scales and same orientations.

Feature selection 47

θ = 0 θ = π/4 θ = π/2 θ = 3π/4

Scale 1

Scale 2

Scale 3

Scale 4

Scale 5

Scale 6

Scale 7

Scale 8

Figure 3.6: C1 feature maps for a face. One can see here that most of the features
corresponding to an actual feature of a face, e.g the eyes or the mouth, is given by the
filters with orientation θ = π/2.

3.1.2.2 Proposed optimizations

HMINθ=π/2 From the shown results, we propose to keep only the filters with θ = π/2.

Due to the redundancy, we also propose to sum the output of the S1 layer – which is

equivalent to sum the remaining kernels of the filter bank to produce one, unique 37×37

convolution kernel. The smaller kernels are padded with zeros so that they are all 37×37

and may be sum across coefficients. This operation is sum-up in Figure 3.7. Figure 3.8

also show the output of that unique kernel applied to the image of a face.

Since we now only have one feature map, we must adapt the C1 layer. As all C1 units now

Feature selection 48

+ + +. . . + =

Figure 3.7: S1 convolution kernel sum. Kernels smaller that 37× 37 are padded with
0’s so that they all are 37 × 37. Kernels are then sum element-wise so as to produce
the kernel on the right. It is worth mentioning the proximity of that kernel with one
of the feature selected by the Adaboost algorithm in the Viola-Jones framework [30],
shown in Figure 3.1.

Figure 3.8: Feature map obtained with the unique kernel in S1 presented in Figure 3.7.
One can see that the eyes mouth and even nostrils are particularly salient.

pool over the only remaining scale, we propose to take the median value Nm among the

Ns showed in Table 2.1, namely 16, as the width of the pooling window. Following the

lines of the original model, the overlap between the receptive fields of two neighbouring

C1 unit shall be ∆m = 8. We shall refer to this descriptor as HMINθ=π/2 later on.

Let’s now evaluate the complexity involved in this model. We have a single K × K

convolution kernel, with K = 37. Applying it to a W × H image thus requires an

amount of MAC operations given by

CS1 = (W −K − 1) (H −K − 1) . (3.41)

As for the C1 layer, it needs

CC1 = (W −K − 1) (H −K − 1) (3.42)

maximum operations.

As for the memory print, since we produce a single (W −K − 1)× (H −K − 1) feature

map of single precision floating point numbers, that optimized version of HMIN needs

4 (W −K − 1)× (H −K − 1) bytes.

HMINR
θ=π/2 Following what has been done in earlier, we propose to reduce even

further the algorithmic complexity. Indeed, we process somewhat “large” 128 × 128

face images with a large 37 × 37 convolution kernel. Perhaps we do not need such a

fine resolution – in fact, the CFF takes very small 32 × 36 images as inputs. Thus, we

propose to divide the complexity of the convolution layer by 16 by simply resizing the

Feature selection 49

convolution kernel to 9× 9 using a bicubic interpolation, thanks to Matlab’s imresize

function, with the default parameters. Finally, the maximum pooling layer is adapted

by divided its parameters also by 4: the receptive fields are 4 × 4, with 2 × 2 overlaps

between two receptive fields. Hence, our new descriptor, which we shall refer to as

HMINR
θ=π/2 later on, expects 32×32 images as inputs, thus providing vector of the exact

same dimensionality than HMINθ=π/2. The complexity involved by that framework is

expressed as

CHMIN = CHMINS1
+ CHMINC1

, (3.43)

with

CHMINS1
= 9× 9×W ×H = 81WH (3.44)

CHMINC1
= 4WH, (3.45)

which leads to

CHMIN = 85WH. (3.46)

As we typically expect 32 × 32 images as inputs, the classification of a single image

would take 82.9 kOP. For extracting features of a 640 × 480 as done previously, that

would require 26.1 MOP, and the memory print would be the same as for HMINθ=π/2

assuming we can neglected the memory needed to store the coefficients of the 9 × 9

kernel, hence we need here 1.22 MB.

3.1.3 Experiments

3.1.3.1 Test on LFWCrop grey

In this Section, we evaluate the different versions of HMIN presented in the previous Sec-

tion. To perform the required tests, face images were provided by the Cropped Labelled

Face in the Wild (LFW crop) dataset [141], which shall be used as positive examples.

Negative examples were obtained by cropping patches from the “background” class –

which shall be refered to as “Caltech101-background” – of the Caltech101 dataset [142]

at random positions. All feature vectors v = (v1, v2, . . . , vN) are normalized so that

the lower value is set to 0, and the maximum value is set to 1 to produce a vector

v = (v1, v2, . . ., vn)

∀i ∈ {1, . . . , N} vi =
v̇i

maxk∈{1,...,N} v̇k
(3.47)

∀i ∈ {1, . . . , N} v̇i = vi − min
k∈{1,...,N}

vk (3.48)

Feature selection 50

Descriptor HMIN HMINθ=π/2 HMINR
θ=π/2

Accuracy (%) 95.78± 0.97 90.81± 1.10 90.05± 0.98

Table 3.1: Accuracies of the different version of HMIN on the LFW crop dataset.

For each version of HMIN, we needed to train a classifier. We selected 500 images at

random from LFW crop and another 500 from Caltech101-background. We chose to

use an RBF classifier. The images were also transformed accordingly to the descriptor,

i.e resized to 128 × 128 for both HMIN and HMINθ=π/2 and resized to 32 × 32 images

for HMINR
θ=π/2. The kerneling parameter of the RBF network was set to µ = 2 – see

Appendix A for more information about the RBF learning procedure that we used.

After training, 500 positive and 500 negative images were selected at random among the

images that were not used for training to build the testing set. All images were, again,

transformed w.r.t the tested descriptor, the feature vectors were normalized and classi-

fication was performed. Table 3.1 shows the global accuracies for each descriptor, using

a naive classification scheme with no threshold in the classification function. Figure 3.9

shows the Receiver Operating Characteristic curves obtained for all those classifiers on

that dataset. In order to build those curves, we apply the classification process to all

testing images, and for each classification we compare its confidence to a threshold.

That confidence is the actual output of the RBF classifier, and indicates how certain the

classifier is that its prediction is correct. If the confidence is higher than the threshold,

then the classification is kept; otherwise it is rejected. By modifying that threshold, we

make the process more or less tolerant. If the network is highly tolerant, then it shall

tend to produce higher false and true positive rates; if it is not tolerant, then on the

contrary it shall tend to produce lower true and false positive rates. The ROC curves

show how the true positive rate evolve w.r.t the false positive rate.

3.1.3.2 Test on CMU

The CMU Frontal Face Images [143] dataset consists in grayscale images showing scenes

with one or several persons (or characters) facing the camera or sometimes looking

slightly away. Sample images are presented in Figure 3.10. It is useful to study the

behaviour of a face detection algorithm on whole images, rather than simple classification

of whole images in “Face” and “Not Face” categories. In particular, it has been used in

the literature to evaluate the precision of the CFF [50] and Viola-Jones [30].

We carried out our experiment as follows. We selected 500 images from the LFW crop

dataset [144] and 500 images from the Caltech101-background [142] dataset at random

to build the training set, as in Section 3.1.3.1. Once again, we used it to train the

Feature selection 51

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

0 1

1

False positive rate

R
ec

og
n

it
io

n
ra

te

— HMIN
— HMIN|θ=π/2
— HMIN|Rθ=π/2

Figure 3.9: ROC curves of the HMIN classifiers on LFW crop dataset. They show
the recognition rate w.r.t the false positive rate: ideally, that curve would represent the
function ∀x ∈ (0, 1] f : x→ 0 when x = 0, 1 otherwise. One can see a significant drop of
performance when using HMINθ=π/2 compared to HMIN – however using HMINR

θ=π/2

does not significantly alter the accuracy. The drop of performance is to be put in
perspective with the saving in terms of computational complexity.

RBF using the kerneling parameter µ = 2. The images were all resized to 32 × 32,

their histograms were equalized and we extracted features using HMINR
θ=π/2; hence the

feature vectors have 225 components.

After training, all images of the dataset were processed as follows. A pyramid is created

from each images, meaning we built a set of the same image but with different sizes.

Starting with the original size, the next image’s width and height are 1.2 times smaller,

which is 1.2 times bigger than the next, and so on until it is not possible to have an image

bigger than 32× 32. Then, 32× 32 patches were cropped at all positions of all images of

all sizes. Patches’ histograms were equalized, and we extracted their HMINR
θ=π/2 feature

vectors which fed the RBF classifier.

We tested the accuracy of the classifications with several tolerance values, and accuracy

were compared to the provided ground truth [143]. We use a definition of a correctly

detected face close to what Garcia et al. proposed in [50]: we consider that a detection

is valid if it contains both eyes and mouths of the face and the ROI’s area is not bigger

than 1.2 times the area of the square just wrapping the rectangle delimited by the eyes

and mouths, i.e those square and rectangles share the same centroid and the width of

the square is as long as the bigger dimension of the rectangle. For each face in the

ground truth, we check that it was correctly detected using the aforementioned criterion

– success counts as a “true positive”, while failure counts as a “false negative”. Then, for

each region of the image that does not correspond to a correctly detected face, we check

Feature selection 52

Figure 3.10: Samples from the CMU Face Images dataset.

if the system classified it as a “not-face” – in which case it counts as a “true negative”

– or a face – in which case it counts as a “false positive”. Some faces in CMU are too

small to be detected by the system, and thus are not taken into account. The bigger

image was removed because of its too high resolution. The resulting ROC curves are

shown in Figure 3.11. Comparisons with CFF and VJ are sum-up in Table 3.2.

1We consider the case where the initial scale is 1 and ∆ = 1 – see [136] for more information.

Feature selection 53

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

0 1

1

False positive rate

R
ec

og
n

it
io

n
ra

te

Figure 3.11: ROC curves obtained with HMINR
θ=π/2 on CMU dataset. The chosen

classifier is an RBF, and was trained with the features extracted from 500 faces from
LFW crop [141] dataset and 500 non-faces images cropped from images of the “back-
ground” class of the Caltech101 dataset [142]. For each image, a pyramid was produced
in order to detect faces of various scales, were the dimensions of the images are succes-
sively reduced by a factor 1.2. A face was considered correctly detected if at least one
ROI encompassing its eyes, nose and mouth was classified as “face”, and if that ROI is
not 20% bigger than the face according to the ground truth. Each non-face ROI that
was classified as “Face” was counted as a false positive.

Framework False positive rates (%)
Complexity (OP)

Memory print Input size
Scanning Classification

VJ 5.32× 10−5 [136]1 20.7 M 2.95 k 1.48 MB 24× 24

CFF 5× 10−5 [50] 50.7 M 129.5 k 64.54 MB 36× 32

HMINR
θ=π/2 4.5 26.1 M 82.9 k 1.2MB 32× 32

Table 3.2: Complexity and accuracy of face detection frameworks. The false positive
of the CFF and VJ frameworkw were drawn from the ROC curves of their respective
papers [50, 136], and thus are approximate. All false positive rates are obtained with
a 90% accuracy. The “Classification” column gives the complexity involved when com-
puting a single patch of the size expected by the corresponding framework which is
indicated in the “Input size” column. The “Frame” column indicates the complexity of
the algorithm when scanning a 640× 480 image. The complexities and memory prints
shown here only take into account the feature extraction, and not the classification. It
should be noted that in the case of the processing of an image pyramid, both CFF and
HMIN would require a much higher amount of memory.

Feature selection 54

Figure 3.12: Example of frame from the “Olivier” dataset.

3.1.3.3 Test on Olivier dataset

In order to evaluate our system in more realistic scenarios, we created our own dataset

specifically for that task. We acquired a video on a fixed camera of a person moving

in front of a non-moving background, with his face looking at the camera – an example

of a frame extracted from that video are presented in Figure 3.12. The training and

evaluation procedure is the same as in Section 3.1.3.2: we trained an RBF classifier

with features extracted with HMINR
θ=π/2 from 500 images of faces from the LFW crop

dataset [141], and from 500 images cropped from images of the “background” class of the

Caltech101 dataset [142]. We labeled the location of the face for each image by hand, so

that the region takes both eyes and the mouth of the person, and nothing more, in order

to be consistent with the CMU dataset [143]. Correct detections and false positives were

evaluated using the same method as in Section 3.1.3.2: a face is considered as correctly

detected if at least one ROI encompassing its eyes and mouth is classified as “face”, and

if that ROI is not more than 20% bigger than the face according to the ground truth.

Each non-face ROI classified as a face is considered to be a false positive.

With that setting up, we obtained a 2.38% error rate for a detection rate of 79.72%

– more detailed results are shown on Figure 3.13. Furthermore, we process the video

frame by frame, without using any knowledge of the results from the previous images.

For real-life scenarios, one could for instance get the detection not only on a single image,

but on several, and validate the detection only if a point is detected on most of those

frames as a face. That way, the number of false positives could be greatly reduced, while

keeping a decent detection rate.

This Section was dedicated to our contribution in reducing the complexity of HMIN

towards an embedded face detection application. Next Sections does a similar study for

Feature selection 55

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

0 1

1

False positive rate

R
ec

og
n

it
io

n
ra

te

Figure 3.13: ROC curves obtained with HMINR
θ=π/2 on “Olivier” dataset. As in

Figure 3.11, the chosen classifier is an RBF, and was trained with the features extracted
from 500 faces from LFW crop [141] dataset and 500 non-faces images cropped from
images of the “background” class of the Caltech101 dataset [142]. For each image, a
pyramid was produced in order to detect faces of various scales, were the dimensions of
the images are successively reduced by a factor 1.2. An image was considered correctly
detected if at least one ROI encompassing its eyes, nose and mouth was classified as
“face”, and if that ROI is not 20% bigger than the face according to the ground truth.
Each non-face ROI that was classified as “Face” was counted as a false positive.

a pedestrian detection application.

3.2 Feature selection for pedestrian detection

In this Section, we aim to propose a descriptor for pedestrian detection applications.

The proposed descriptor is based on the same rational than in Section 3.1. Comparison

in terms of computational requirements and accuracy shall be established between two

of the most popular pedestrian detection algorithms.

3.2.1 Detecting pedestrians

With the arrival of autonomous vehicles, pedestrian detection rises as a very important

issue nowadays. It is also vital in many security applications, for instance to detect

intrusions in a forbidden zone. For this last scenario, one could think that a simple

infrared camera could be sufficient – however such a device cannot determine by itself

whether a hot object is really a human or an animal, which may be a problem in video-

surveillance applications. It is then crucial to provide a method allowing to make that

decision.

Feature selection 56

In this Section, we propose to use an algorithm similar to the one presented in Sec-

tion 3.1.1, although this time it has been specifically optimized for the detection of

pedestrian. One of the state of the art systems – which depends greatly on the con-

sidered dataset – is the work proposed by Sermanet et al. [145], in which they tuned a

ConvNet for this specific task. However, as we shall see it requires lots of computational

power, and we intend to produce a system needing as few resources as possible. Thus,

we compare our system to another popular descriptor called HOG, which has proven

efficient for this task. We shall now describe those two frameworks, then we shall study

their computational requirements.

3.2.1.1 HOG

Histogram of Oriented Gradients (HOG) is a very popular descriptor, particularly well

suited to pedestrian detection [36]. As its name suggests, it consists in computing

approximations of local gradients in small neighborhoods of the image and use them

to build histograms, which indicates the major orientations across small regions of the

image. Its popularity comes from its very small algorithmic complexity and ease of

implementation.

We focus here on the implementation given in [36], assuming RGB input images as for

the face detection task presented in Section 3.1.1. The first step is to compute gradients

at each position of the image. Each gradient then contributes by voting for the global

orientation of its neighborhood. Normalization is then performed across an area of

several of those histograms, thus providing the HOG descriptor that shall be used in the

final classifier, typically SVM with linear kernels, that shall decides whether the image

is of a person.

Gradients computation Using the same terminology as in [36], we are interested in

the so called “unsigned” gradients, i.e we are not directly interested into the argument

θ of the gradient, but rather θ mod π. Keeping that in mind, in order to compute the

gradient at each location, we use an approximation implying convolution filters. All

gradients are computed separately for each R, G and B channels – for each location, the

only the gradient with the highest norm is kept.

Two feature maps H and V are produced from the input image respectively using the

kernels [−1, 0, 1] and [−1, 0, 1]T. At each location, values across the two feature maps at

the same location may be seen as components of the 2D gradients, which we can use to

compute their arguments and norms. Respectively denoting G (x, y), φ[0,π] ((x, y)) and

‖G (x, y)‖ the gradient at location (x, y), its “unsigned argument” and its norm, and

Feature selection 57

Figure 3.14: HOG descriptor computation. Gradients are computed for each location
of the R, G and B channels, and for each location only the gradient with the highest
norm is kept. The kept gradients are separated into cells, shown in green, and his-
tograms of their orientations are computed for each cell. This produces a histogram
map, which is divided in overlapping blocks a shown on the right. Normalization are
performed for each block, which produces one feature vector per block. Those feature
vectors are finally concatenated so as to produce the feature vector used for training
and classification.

H (x, y) and V (x, y) the features from H and V feature maps at location (x, y), we have

‖G (x, y)‖ =

√
H (x, y)2 + V (x, y)2 (3.49)

φ[0,π] (G (x, y)) = arctan

(
V (x, y)

H (x, y)

)
mod π (3.50)

The result of that process is shown in Figure 3.14. It is important to note here that the

convolutions are performed so that the output feature maps have the same width and

height as the input image. This may be ensured by cropping images slightly bigger than

actually needed, or by padding the image with 1 pixel at each side of its side with 0’s

or replicating its border.

Binning Now that we have the information we need about the gradients, i.e their

norms and arguments, we use them to perform the non-linearity proposed in this frame-

work. The image is divided in so-called cells, i.e non-overlapping regions of Nc × Nc

pixels, as illustrated in Figure 3.14. For each cell, we compute an histogram as follows.

The half-circle of unsigned angles is evenly divided into B bins. The center ci of the

i-th bin is given by the centroid of the bin’s boundaries, as shown in Figure 3.15. Each

gradient in the cell votes for the two bins with the centers closest to its argument. Call-

ing those bins cl and ch, the weights of its votes wl and wh depend on the difference

Feature selection 58

c1

c2

c3

c4c5
c6

c7

c8

c0c0

Figure 3.15: Binning of the half-circle of unsigned angles with Nb = 9. The regions
in gray correspond to the same bin.

between its argument and the bin center, and on its norm:

wh = |G (x, y)| φ (G (x, y))− cl
ch − cl

(3.51)

wl = |G (x, y)| φ (G (x, y))− ch
ch − cl

(3.52)

We end up having a histogram per cell. Assuming the input image is of size W ×H and

that Nc both divide W and H, we have a total of WH/Nc
2 histograms. We associate

each histogram to its corresponding cell to build a so called histogram map.

Local normalization The last step provides some invariance to luminosity among

histograms. The histogram map is divided into overlapping blocks, each having 2 × 2

histograms. The stride between two overlapping blocks is 1 so that the whole his-

togram map is covered. All the bins’ values of those histograms form a vector v (xh, yh)

having BN2
b components where (xh, yh) is the location of the top-left corner’s of the

block in the histogram map frame coordinate, and we compute its normalized vector

v (xh, yh) =
(
v1 (xh, yh) , v2 (xh, yh) , . . . , vNb2 (xh, yh)

)
using the so called L2-norm [36]

normalization:

∀i ∈
{

1, . . . , BNb
2
}

vi (xh, yh) = min

 vi (xh, yh)√
‖v (xh, yh)‖2 + ε2

, 0.2

 (3.53)

where ε is a small value avoiding divisions by 0.

Thus we obtain a set of vectors v (xh, yh), which are finally concatenated in order to

form the feature vector fed in a SVM classifier.

Feature selection 59

Complexity analysis Let’s evaluate the complexity of extracting HOG features from

an W ×H image. As we saw, the first step of the extraction is the convolutions, that

require of 6WH operations per channel, followed by the computation of their squared

norms, which requires 3WH operations per channel; thus at this point we need 3(3 +

6)WH = 27WH operations. Afterward, we need to compute the maximum values across

the three channels for each location, thus leading to 2WH more operations. Finally, we

must compute the gradients, which we assume involves one operation for the division,

one operation for the arc-tangent and one for the modulus operation; hence 3WH more

operations. Thus, the total amount of operations at this stage is given by

CHOGgrad
= 32WH (3.54)

Next, we perform the binning. We assume that finding the lower and higher bins takes

two operations: one for finding the lower bin, and another one to store the index of

the higher bin. From Equation 3.51, we see that computing wh takes one subtraction

and one division, assuming ch − cl is pre-computed, to which we add one operation for

the multiplication with |G (x, y)|, thus totaling 3 operations. The same goes for the

computation of wl. Finally, wh and wl are both accumulated to the corresponding bins,

requiring both one more operations. This done at each location of the feature maps,

thus this stage needs a total of operations of

CHOGhist
= 8WH. (3.55)

Still neglecting the complexity involved by the SVM classifier, the only remaining step is

the normalization. It consists in normalizing vectors concatenating the 2×2 histograms

of 9 bins, which represent vectors of 36 components, at all possible location of the

histogram map where we have valid data. The histogram map being Wh × Hh, we

perform that normalization at Np positions, with

Np = (Wh − 1)× (Hh − 1) (3.56)

positions, with

Wh =
W

8
, (3.57)

Hh =
H

8
. (3.58)

Each histogram having 9 bins and since they each normalization needs 4 of them, the

vectors to normalize have 36 components. From Equation 3.53, we see that we need to

compute the square of a Euclidean distance, a sum, a square root, followed by a division

Feature selection 60

MAC (49.8%)

Divisions (16.78%)

Subtractions (12.05%)
Binning (9.33%)

Square roots (4.73%)

Arctans (4.73%)

Comparisons (2.58%)

Figure 3.16: Complexity repartition of HOG features extraction.

of each component of the vector by a scalar, and finally a comparison. Since the sum

and the square root may be considered to take a single operation, which is very small

compared to the total, we chose to neglect it to make the calculation more tractable.

The Euclidean distance itself requires one subtraction followed by a MAC operation per

component. Thus, each vector normalization needs 2× 36 operations for the Euclidean

distance, 36 divisions and 36 comparison operations, which to a total of 4 × 36 = 144

operations per position. Equations 3.56 to 3.58 then give

CHOGNORM
= 4× 46

(
W

8
− 1

)(
H

8
− 1

)
(3.59)

= 144

(
WH

64
− W +H

8
+ 1

)
(3.60)

= 2.25WH − 18 (W +H) + 144. (3.61)

And thus, combining Equations 3.54 to 3.61, we get

CHOG = CHOGgrad
+ CHOGhist

+ CHOGnorm (3.62)

CHOG = 42.25WH − 8 (W +H) + 144 (3.63)

Thus, extracting features from a 64 × 128 image as suggested in [36] takes 344.7 kOP.

When scanning an image to locate pedestrians, we may use the same method as usual [48,

50]. Using Equation 3.63 on a 640 × 480 image, we get a complexity of 12.96 MOP.

Repartitions of the computational efforts are presented in Figure 3.16.

Memory print Let’s now evaluate the memory print required by the extraction of

HOG features for a 640 × 480 input image. When computing the gradients, the first

step consists in performing 2 feature maps from convolutions, of the same size of the

input image. We consider here each feature of the feature maps shall be coded as 16

Feature selection 61

bits integers, hence we need 2 × 2 × 640 × 480 = 1.23 × 106 bytes at this stage. Then,

the modulus and arguments of the gradients are computed at each feature location. We

assume here that that data shall be stored using single precision floating point scheme;

hence 32 bits per value, and then we need 2.45 MB. As for the histograms, since there

is no overlaps between cells, they may be evaluated in-place – hence, they do not bring

more memory requirement. Finally comes the memory needed by the normalization

stage; assuming we neglect the border effect, one normalized vector is computed at

each cell location, which correspond to 8 × 8 areas in the original image. Hence, 4800

normalized vectors are computed, each having 36 component, which leads to 691.2 kB.

Thus, the memory print of the HOG framework is 4.37 MB.

We presented an analysed the HOG algorithm for pedestrian detection. In the next

Section, we describe a particular architecture of a ConvNet optimized for that same

task.

3.2.1.2 ConvNet

As for many other applications, ConvNet have proven very efficient for pedestrian de-

tection. Sermanet et al. proposed in [145] a ConvNet specifically designed for that

purpose.

Presentation We now review the architecture of that system, using the same nota-

tions as in Section 3.1.1.2. First of all, we assume images use the Y’UV representation.

In this representation, the Y channel represents the luma, i.e the luminosity, while the

U and V channels represent coordinates of a color in a 2D space. The Y channel is

processed separately from the UV channels in the ConvNet.

The Y channel first goes through the CY 1 convolution stage which consists in 32 ker-

nels, all 7 × 7, followed by an absolute-value rectification – i.e we apply a point-wise

absolute value function on all output feature maps [146] – followed by a local constrast

normalization which is performed as followed [145]:

vi = mi −mi ? w (3.64)

σ =

√√√√ N∑
i=1

w ? vi2 (3.65)

yi =
vi

max (c, σ)
(3.66)

where mi is the i-th un-normalized feature map, ? denotes the convolution operator, w

is a Gaussian blur 9× 9 convolution kernel with normalized weights, N is the number of

Feature selection 62

CY 1

CUV 1

Y

SUV 0
UV

SY 1

C2

S2

Fully-connected

Figure 3.17: ConvNet for pedestrian detection [145]. Input image is assumed to
be represented in Y’UV space. The Y channel feed the CY 1 convolution layer, the
resulting feature maps of which are sub-sampled in SY 1. In parallel, the UV channels
are subsampled by the SUV 0 layer, and the results feed the CUV 1 convolution layer.
The CUV 1 and SY 1 feature maps are concatenated and feed the C2 convolution layer.
The C2 feature maps are then subsampled by S2. Finally, all output features from C2
and CUV 1 are serialized and used as inputs of a fully-connected layer for classification.

feature maps to normalize and c is a constant. Finally, a 3 × 3 average down-sampling

– meaning that each feature of the sub-sampled feature map is the result of a 3 × 3

average-pooling.

The U and V channels are subsampled by 3 using the same averaging scheme in the

SUV 0 layer. Those sub-sampled feature maps feed the CUV 1 stage which consists in 12

5 × 5 convolution kernels which output 6 feature maps, followed by an absolute-value

rectification and a local contrast normalization.

All feature maps from CY 1 and CUV 1 are then concatenated, thus providing a total of

38 feature maps which feed the C2 stage. It consists in 2040 9 × 9 convolution filters

that produce 68 feature maps. Absolute-value rectification is applied to them, and they

are subsampled by 2 × 2 in the S2 layer. All features from the CY 1, CUV 1 and C2

are concatenated to form the feature vector to be classified, which is performed with a

classical linear classifier. That architecture is sum-up in Figure 3.17.

Complexity analysis Let’s now evaluate the amount of operations needed for a

W × H Y’UV image to be processed by that ConvNet. Denoting CX the complexity

Feature selection 63

involved in layer X and along the lines of the calculus done in Section 3.1.1.2, we have

CCY 1 = 32× 7× 7× (W − 6) (H − 6) (3.67)

CSY 1 = 32× 9×
⌊
W − 6

3

⌋⌊
H − 6

3

⌋
(3.68)

CSUV 0 = 2× 9×
⌊
W

3

⌋⌊
H

3

⌋
(3.69)

CC2 = 2040× 9× 9× 2× (WSUV 0 − 8) (HSUV 0 − 8) (3.70)

CS2 = 68× 2× 2

⌊
WC2

2

⌋⌊
HC2

2

⌋
(3.71)

where WX and HX respectively denote the width and height of the X feature maps.

The CUV 1 layer has full connection between its input and output feature maps. Thus,

denoting NI and NO respectively the number of input and output feature maps, a total

of NINO convolutions are performed. Inside this layer, this produces NINO feature

maps, which are sum feature-wise so as to produce the NO output feature maps. This

leads to

CUV 1 = 2× 6× 6× (WSUV 0 − 4) (HSUV 0 − 4) . (3.72)

We shall now evaluate the complexity involved by the absolute value rectifications which

are performed on the CY 1 and C2 feature maps. It needs one operation per feature,

thus denoting C (AX) the complexity involved by those operations on feature map X

we have

CACY 1
= 32WCY 1HCY 1 (3.73)

CACUV 1
= 6WCUV 1HCUV 1 (3.74)

CAC2
= 68WC2HC2. (3.75)

Finally, we evaluate the complexity brought by the local contrast normalizations. From

Equations 3.64, 3.65 and 3.66, we see that the first step consists in a convolution by a

9×9 kernel G followed by a pixel-wise subtraction between two feature maps. Assuming

the input feature map is w×h and that the convolution is performed so that the output

feature map is the same size as the input feature map, the required amount of operations

at this step is given by

CN1 (w, h) = 2× 9× 9× wh = 162wh. (3.76)

The second step involves squaring up each feature of the wh output feature maps, which

implies wh operations. The result is again convolved with G, implying 81wh operations,

and the resulting feature are sum feature-wise across N feature maps, implying nwh

Feature selection 64

sums. Finally, we produce a “normalization map” by taking the square root of all

features, which involves wh operations assuming a square root takes only one operation.

Hence:

CN2 (w, h, n) = (83 + n)wh (3.77)

The final normalization step consists in computing, for each feature of the normaliza-

tion map, the maximum value between that feature and the constant c, which leads to

wh operations, and perform feature-wise divisions between the N maps computed in

Equation 3.64 and those maximums, which leads to nwh operations. Thus we have

CN3 (w, h, n) = (1 + n)wh, (3.78)

and the complexity brought by a local contrast normalization on n w × h feature maps

is given by

CN (w, h, n) = (246 + 2n)wh. (3.79)

The overall complexity is given by

CConvNet = CCY 1 + CSY 1 + CSUV 0

+ CC2 + CS2

+ CACY 1
+ CACUV 1

+ CAC2

+ CN (WCY 1, HCY 1, 32) + CN (WCUV 1, HCUV 2, 6) + CN (WC1, HC2, 68) (3.80)

which leads to

CConvNet = 1568WCY 1HCY 1 + 288W1H1

+ 18WSUV 0HSUV 0 + 330480WC2HC2

+ 272WS2HS2 + 24W1H1

+ 342WCY 1HCY 1 + 264WCUV 1HCUV 1 + 450WC2HC2 (3.81)

Feature selection 65

with

WCY 1 = W − 6 (3.82)

HCY 1 = H − 6 (3.83)

WSUV 0 =

⌊
W

3

⌋
(3.84)

HSUV 0 =

⌊
H

3

⌋
(3.85)

W1 = WSY 1 = WCUV 1 =

⌊
WCY 1

3

⌋
= WCUV 0 − 4 (3.86)

H1 = WSY 1 = HCUV 1 =

⌊
HCY 1

3

⌋
= HCUV 0 − 4 (3.87)

WC2 = W1 − 8 (3.88)

HC2 = H1 − 8 (3.89)

WS2 =

⌊
WC2

2

⌋
(3.90)

HS2 =

⌊
HC2

2

⌋
(3.91)

Let’s evaluate this expression as a function of the width W and height h of the input

image. In order to make it more tractable, we approximate it by neglecting the floor

operators bc. Reusing Equation 3.81 to 3.91 we have

CConvNet (W,H) ≈ 38.8× 103WH − 1.12× 106(W +H) + 33.2× 106 (3.92)

It should be noted that we again neglected the classification stage. Considering input

images are 78× 126, we have CConvNet ≈ 484.84 MOP.

Applying Equation 3.92 to the case where we process a 640 × 480, we have 11 GOP.

From the previous analysis, we see that lots of MAC are computed at almost all stage,

including the average downsampling ones. This is largely due to the C2 layer, with its

high amount of convolution filters. It is then clear that optimization efforts should be

directed towards the computation of MACs.

Memory print Let’s now evaluate the memory print of that framework when pro-

cessing a 640 × 480 input image. The CY 1 layer produces 32 634 × 474 feature maps,

in which we assume the features are coded using 32-bits floating point precision, which

needs 38.47 MB. In order to simplify our study, we then assume that the subsampling

and normalization operations are performed in-place, and hence do not bring more need

in memory. The SY 1 layer produces 2 213×160 feature maps, hence needing 272.64 kB.

Feature selection 66

Finally the S2 layer produces 2040 102 × 76 feature maps, which using 32 bits floating

point precision would require 63.26 MB.

3.2.2 HMAX optimizations for pedestrian detection

We propose optimizations along the lines of what was explained in Section 3.1.2. When

we were looking for faces, we hand-crafted the convolution kernel so that it responded

best to horizontal features, in order to extract eyes and mouths for instance. However, in

the case of pedestrians it intuitively seems more satisfactory to detect vertical features.

Thus, we propose to keep the same kernel as represented in Figure 3.7, but flipped

by 90◦. As in Section 3.1.2, we have two descriptors: HMINθ=0 and HMINR
θ=0. For

consistency reasons with what was done for faces in Section 3.1.2 and with the HOG [36]

and ConvNet [145] algorithms, HMINθ=0 expects 64× 128 input images and consists in

a single 37 × 37 convolution kernel. As for HMINR
θ=0, it expects 16 × 32 inputs and

consists in a 9× 9 convolution kernel.

3.2.3 Experiments

In order to test our optimizations, we used the INRIA pedestrian dataset, originally

proposed to evaluate the performances of the HOG algorithm [36]. That dataset is

divided in two subsets: a training set and a testing set. Hence, we simply trained the

system described in Section 3.2.2 on the training set and evaluated it on the testing set.

Results are shown in Figure 3.18, which is a ROC curve produced as done for faces in

Section 3.1.3.1. All images were resized to 16 × 32 before process. Comparisons with

HOG and ConvNet features are shown in Table 3.3.

In this Section, we proposed and evaluated optimizations for the so-called HMIN de-

scriptor applied to pedestrian detection. Next Section is dedicated to a discussion about

the results that we obtained both here, and in the previous Section which was related

to face detection.

3.3 Discussion

Let’s now discuss the results obtained in the two previous Sections, where we described a

feature extraction framework and compared its performance, both in terms of accuracy

and complexity, against major algorithms.

Feature selection 67

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

0 1

1

False positive rate

R
ec

og
n

it
io

n
ra

te
— HMIN
— HMIN|θ=0

— HMIN|Rθ=0

Figure 3.18: ROC curves of the HMIN classifiers on the INRIA pedestrian dataset.
The drop of performance is more important here than it was for faces, as shown on
Figure 3.9. However, the gain in complexity is as significant as in Section 3.1.2.

Framework False positive rate (%)
Complexity (OP)

Memory print Input size
Scanning Classification

HOG 0.02 [36] 12.96 M 344.7 k 4.37MB 64× 128

ConvNet See caption 484.84 M 11 G 63.26MB 78× 126

HMINR
θ=0 30% 13.05 M 41.45 k 1.2 MB 32× 16

Table 3.3: Complexity and accuracy of human detection frameworks. The false pos-
itive rate of the HOG has been drawn from the DET curve shown in [36], and thus
is approximate. The false positive rates presented here correspond to a 90% detection
rate. As in Table 3.2, the “Classification” column gives the complexity involved when
computing a single patch of the size expected by the corresponding framework which
is indicated in the “Input size” column. The “Frame” column indicates the complexity
of the algorithm when applied to a 640 × 480 image. Furthermore, the complexities
involved by HMIN are computed from Equation 3.46, with the input size shown in the
column on the right. Finally the result of the ConvNet may not be shown here as
their strategy for evaluating it is different from what was done in [36] – using the eval-
uation protocol detailed in [145], HOG produces approximately three times as many
false positives as ConvNet. Furthermore, the miss rate of the HOG was determined
on a scene-scanning task, while we evaluated our framework on a simpler classification
task. Thus, comparisons of the accuracy of those frameworks are difficult, although
the preliminary results presented here show a clear disadvantage in using HMINR

θ=0.
Finally, the complexities and memory prints shown here only take into account the
feature extraction, and not the classification. It should also be noted that both are
evaluated without image pyramid, and that in that case they would be much higher
than evaluated here.

Feature selection 68

Results of our framework are sum up in Table 3.2 for face detection applications and in

Table 3.3 for pedestrian detection application. First of all, we see from the ROC curves

shown in Figures 3.11 and 3.18 that the accuracy of our framework is significantly

bigger for face detection tasks than for pedestrian detection task – although comparing

performances on two different tasks is dangerous, those results seem to indicate that

our framework would operate much better in the first case. However, the raw accuracy

is significantly lower than those of the other frameworks presented here, be it for face

or human detection. This is probably due to the fact that our frameworks HMINR
θ=x

2

produce features that are much simpler than those of the other frameworks – indeed,

the feature vector for a 32× 32 input image has only 225 components. Among all other

frameworks, the only other that may be considered better to that respect is Viola-Jones,

where on average only 8 features are computed, although in the worst case that amount

rises dramatically to 6060.

Nevertheless, Viola-Jones and the HOG algorithms are both slightly less complex than

HMINθ = xR. There is also a consequent literature about their implementations on

hardware [147–163]. In particular, the main difficulties of the HOG algorithm for hard-

ware implementations, i.e the highly non-linear computations of the arc-tangents, di-

visions and square roots, have been addressed in [149]. As for the CFF, it was also

optimized and successfully implemented on hardware devices [100] and on embedded

processors [164, 165].

However, one can expect HMINR
θ=x to be implemented easily on FPGA, with really low

resource utilization – that aspect shall be tested in future development. Furthermore,

the only framework that beats HMIN in terms of memory-print is Viola-Jones – that

aspect is crucial when porting an algorithm on an embedded systems, especially in

industrial use cases where constraints may be really high in that respect. Furthermore,

while HMINR
θ=x may not seem as attractive as the other frameworks presented here, it

has a very interesting advantage: it is generic. Indeed, both ConvNet implementations

presented in this Chapter were specifically designed for a particular task: face detection

or pedestrian detection. As for Viola-Jones, it may be used for tasks other than face

detection as was done for instance for pedestrian detection [166] – however, a different

task might need different Haar-like features, which would be implemented differently

than the simple ones presented in Section 3.1.1.1. In terms of hardware implementation,

that difference would almost certainly mean code modifications, while with HMINR
θ=x

one would simply need to change the weights of the convolution kernel. Concerning the

HOG, it should be as generic as HMIN – however it suffers from a much greater memory

print.

2HMINR
θ=x refers to both HMINR

θ=0 and HMINR
θ=π/2.

Feature selection 69

Finally, researchers have also proposed other optimization schemes for HMIN [46, 167]

– future research shall focus on comparing our work with the gained one can expect

with their solutions, as well as use a common evaluation scheme for the comparison of

HMINR
θ=0 with other pedestrian detection algorithms.

3.4 Conclusion

In this Chapter, we presented our contribution concerning the optimization of a feature

extraction framework. The original framework is based on an algorithm called HMAX,

which is a model of the early stages of the image processing by the mamal brain. It

consists in 4 scales, called S1, C1, S2 and C2 – however, in the use case scenarions

presented here the S2 and C2 layers do not provide much more precision, but are by

far the most costly in terms of algorithm complexity. We thus chose to keep only the

S1 and C1 layers, respectively consisting in a convolution filter bank and max-pooling

operations. We explored how the algorithm behaved when diminuing its complexity, by

reducing the number and sizes of the linear and max-pooling filters, by estimating where

the most relevant information is located.

We replaced the initial 64 filters in the S1 layer with only one, the size of which is

9 × 9. It expects 32 × 32 grayscale images as inputs. The nature of the filter depends

on the use case: for faces, we found that most saliencies lie in the eyes and mouth of

the face, thus we chose a filter responding to horizontal features. As for the use case of

human detection, we assume that pedestrians are standing up, which intuitively made

us use a filter responding to vertical features. In both cases, we compared the results

with standard algorithms having reasonable complexities. Optimizing out the HMIN

descriptor provoked a drop in accuracy of 5.73 points on the face detection task on the

CMU dataset, and 21.91 points on the pedestrian detection task when keeping a false

positive rate of 10%. However, that drop of performance is to be put in perspective

with the gain in complexity: after optimizations, the descriptor is 429.12 less complex

to evaluate. In spite of everything, that method does not provide results as good as

other algorithms with comparable complexities, e.g Viola-Jones for face detection – as

for pedestrian detection, we need to perform complementary tests with common metrics

for the comparison of that system with the state of the art, but the results presented

here tend to show that that algorithm is not well suited for this task. However, we

claim that our algorithm provides a low memory print and is more generic than the

other frameworks, which make it implementable on hardware with fewer resources, and

should be easy to adapt for new tasks: only the weights of the convolution kernel are to

be changed.

Hardware implementation 70

This Chapter was dedicated to the proposition of optimizations for a descriptor. Next

Chapter will present another type of optimizations, not based on the architecture of

the algorithm, but on the encoding of the data, with implementation on a dedicated

hardware. As we shall see, those optimizations are much more efficient and promising,

and may easily be applied to other algorithms.

Chapter 4

Hardware implementation

This chapter addresses the second question stated in Chapter 2, about the optimization

of the HMAX framework with the aim of implementing it on a dedicated hardware

platform. We begin by exposing the optimizations that we used, coming both from our

own work and from the literature. In particular, we show that the combination of all

those optimizations does not bring a severe drop in accuracy. We then implement our

optimized HMAX on an Artix-7 FPGA, as naively as possible, and we compare our

results with those of the state of the art implementation. While our implementation

achieves a significantly lower throughput, we shall see that it uses much less hardware

resources. Furthermore, our optimizations are fully compatible with those of the state

of the art, and future implementations may profit from both contributions.

4.1 Algorithm-Architecture Matching for HMAX

In the case of embedded systems, having an implemented model in a high-level language

such as Matlab is not enough. Even an implementation using the C language may not

meet the particular constraints that are found in critical systems, in terms of power

consumption, algorithmic complexity and memory print. This is particularly true in

the case of HMAX, where the S2 layer in particular may take several seconds to be

computed on a CPU. Furthermore, GPU implementations are most of the time not an

option, as GPUs often have a power consumption in the order of magnitude of 10 W.

In the fields of embedded systems, we look for systems consuming about 10 to 100 mW.

This may be achieve thanks to FPGAs, as was done in the past [91–96, 98, 99]. This

Chapter proposes a detailed review of one of those implementations; the other ones are

either based on architecture with multiple high-end FPGAs or focus on accelerating a

71

Hardware implementation 72

part of the framework only, thus they are hardly comparable with what we aim to do

here.

Orchard et al. proposed in [99] a complete hardware implementation of HMAX on a

single Virtex-6 ML605 FPGA. To achieve this, the authors proposed optimizations on

their own, which concern mostly the way the data is organized and not so much the

encoding and the precision degradation – indeed, the data coming out of S1 and carried

throughout the processing layers is coded on 16 bits.

We shall now review the main components of their implementation, e.g. the four modules

implementing the behaviours of S1, C1, S2 and C2. The layers are pipelined, so they

may process streamed data. As for the classification stage, it is not directly implemented

on the FPGA and should be taken care of on a host computer. The results of that

implementation are presented afterwards.

4.1.1 Description

4.1.1.1 S1

First of all, the authors showed how all filters in S1 may be decomposed as separable

filters, or sums of seperable filters. Indeed, if we consider the “vertical” Gabor filters in

S1, i.e. we have θ = π/2, Equations 2.8 and 2.9 lead to [99]

G (x, y)
∣∣
θ=π/2 = exp

(
−x

2 + γ2y2

2σ2

)
cos

(
2π

λ
x

)
(4.1)

= exp

(
− x2

2σ2

)
cos

(
2π

λ
x

)
× exp

(
−γ

2y2

2σ2

)
(4.2)

= H (x)V (y) (4.3)

H (x) = exp

(
− x2

2σ2

)
cos

(
2π

λ
x

)
(4.4)

V (y) = exp

(
−γ

2y2

2σ2

)
, (4.5)

thus, by denoting ∗ the convolution operator and I the input image:

I ∗G |θ=0 = I ∗c V ∗r H (4.6)

where A ∗rB denotes separated convolutions on rows of 2D data A by 1D kernel B, and

A ∗c B denotes column-wise convolutions of A by B. Using the same notations:

G (x, y) |θ=0 = G (y, x)
∣∣
θ=π/2 (4.7)

Hardware implementation 73

and then

I ∗G
∣∣
θ=π/2 = I ∗c H ∗r V (4.8)

Let’s now focus on the filters having “diagonal” shapes. As shown in [99] and following

the same principles as before, we may write

I ∗G
∣∣
θ=π/4 = I ∗c H ∗r H + I ∗c U ∗r U (4.9)

I ∗G
∣∣
θ=3π/4 = I ∗c H ∗r H − I ∗c U ∗r U (4.10)

with

U (x, y) = exp

(
− x2

2σ2

)
sin

(
2π

λ
x

)
. (4.11)

The benefits in using separable filters are twofolds. First of all, the memory prints of

those filters are much smaller than their unoptimized counterparts. Indeed, storing aN×
N filter in a naive way requires storing N2 words, while their separated versions would

require the storage of 2N words for G|θ=0 and G|θ=π/2, and 3N words for G|θ=π/4 and

G|θ=3π/4. The other benefit is related to the algorithmic complexity. Indeed, performing

the convolution of a WI × HI image by a WK × HK kernel has an O (WIHIWKHK),

while for separable filters it goes down to O (WIWK +HIHK). According to [99], doing

so reduces the complexity from 36,146MAC operations to 2816MAC.

In order to provide some invariance to luminosity, Orchard et al. also use a normalization

scheme called l2. Mathematically, computing that norm consists in taking square root

of the sum of the pixels. Gabor filters where thus normalized so that their l2 norms

equal 216 − 1, and so that their means are null.

4.1.1.2 C1

Let’s consider a C1 unit with a 2∆×2∆ receptive field. The max-pooling operations are

performed as follows: first, maximums are computed in ∆×∆ neighborhoods, producing

an intermediate feature map Mt. Second, the output of the C1 unit are obtained by

pooling over 2 × 2 pooling windows from Mt with a overlap of 1. This elegant method

allows to avoid the storage of values that would have been discarded any way, as the

data is processed here as it is provided by S1, in a pipelined manner.

4.1.1.3 S2

In the original model, it is recommended to use 1000 pre-learnt patches in S2. However,

the authors used themselves 1280 of them – 320 per classes – as it was the maximum

Hardware implementation 74

Resource Used Available Utilization(%)

DSP 717 768 93

BRAM 373 416 89

Flip-flops 66196 301440 21

Look-up tables 60872 150720 40

Table 4.1: Hardware resources utilized by Orchard’s implementation [99].

amount that could fit on their device. At each location, pattern-matching are multi-

plexed by size, i.e first all 4 × 4 × 4 in parallel, then 8 × 8 × 4, then 12 × 12 × 4 and

finally 16 × 16 × 4. Responses are computed for two different orientations in parallel,

this results in a total of 320 × 2 = 640 MAC operations to be performed in parallel at

each clock cycle. Thus, this requires 640 multipliers, and 640 coefficients to be read at

each clock cycle. As for the precision, each feature is coded on 16 bits to fit.

4.1.1.4 C2

Due to the simplicity of C2 in the original model, there is not much room for optimiza-

tions or implementation tricks here. Orchard et al.’s implementation simply gets the

320 results from S2 in parallel and use them to perform the maximum operations with

the previous values, again in parallel.

4.1.2 Results

That system all fits in the chosen Virtex-6 ML605 FPGA, including the temporary results

and the pre-determined data that are stored in the device’s BRAM. It was synthesized

using Xilinx ISE tools. It has a latency of 600k clock cycles, with a throughput of one

image every 526k clock cycles. The system may operate at 100MHz, with implies a 6ms

latency and a 190 image per second throughput. The total resource utilization of the

device is given in Table 4.1.

Finally the VHDL implementation was tested on binary classification tasks, using 5

classes of objects from Caltech101 and a background class. Accuracies for those tasks

are given in Table 4.2. Results show that the accuracy on FPGAs is comparable to that

of CPU implementations.

In this Section, we presented the work proposed by Orchard et al [99] and the archi-

tecture of their implementation. Next Section is dedicated to our contribution, which

mainly consists of reducing the precision of the data throughout the process.

Hardware implementation 75

Category Original model CPU FPGA

Airplanes 96.7 97.1 98.2

Cars 99.7 99.3 99.2

Faces 98.2 95.8 96.4

Leaves 97.0 94.6 93.7

Motorbikes 98.0 98.3 98.8

Table 4.2: Accuracies of Orchard’s implementations on Caltech101 [99]. The “Orig-
inal model” column shows the results obtained with the original HMAX code, while
“CPU” shows the results obtained by Orchard et al.’s own CPU implementation, and
“FPGA” show the results obtained with their FPGA implementation.

(a) Car rears. (b) Airplanes. (c) Faces.

(d) Leaves. (e) Motorbikes. (f) Background.

Figure 4.1: Samples of images of the used classes from Caltech101 dataset [142].

4.2 Proposed simplification

In order to save hardware resources, we propose several optimizations to the original

HMAX model. Our approach mainly consists in simplifying the encoding of the data

and reducing the required number of bits. In order to determine optimal encoding and

algorithmic optimizations, we test each of our proposition on the widely used Catlech101

dataset. For fair comparison with other works, we use the same classes as in [99]:

“airplanes”, “faces”, “car rear”, “motorbikes” and “leaves”.

Optimizations are tested individually, starting from those intervening at the beginning of

the feed-forward and continuing in processing order, to finish with optimizations to apply

to the later layer of the model. For optimizations having tunable parameters (e.g the

bit width), those tests shall be used to determine a working point, which is done for all

optimizations that require it in order to have a complete and usable optimization scheme.

Optimizations are performed at the following levels: the input data, the coefficients of

the Gabor filters in S1, the data produced by S1, the number of filters in S2, and finally

Hardware implementation 76

8 bits 3 bits 2 bits 1 bit

Figure 4.2: Precision degradation in input image for three types of objects: faces,
cars and airplanes. Color maps are modified so that the 0 corresponds to black and
the highest possible value corresponds to white, with gray level linearly interpolated in
between. We can see that while the images are somewhat difficult to recognize with 1
bit pixels, they are easily recognizable with as few as 2 bits.

the computation of the distances in S2 during the pattern matching operations. We

shall first present our work, namely the reduction of the precision of the input pixels.

We shall then see how that optimization behaves with further optimizations got from

the literature.

4.2.1 Input data

Our implementation of HMAX, along the lines of what is done in [168], processes

grayscale images. The pixels of such images are typically coded on 8 bits unsigned inte-

gers, representing values ranging from 0 to 255, where 0 is “black” and 255 is “white”.

We propose here to use less than 8 bits to encode those pixels, simply by keeping the

Most Significant Bits (MSB). This is equivalent to an Euclidean division by a power

of two: unwiring the N Least Significant Bits (LSB) amounts to perform an Euclidean

division by 2N . The effect of such precision degradation is shown in Figure 4.2.

In order to find the optimal bit width presenting the best compromise between compres-

sion and performance, an experiment was conducted. It consisted of ten independent

runs. In each run, the four classes are tested in binary independent classification tasks.

Each task consists in splitting the dataset in halves: one half is used as the training set,

and the other half is used as the testing set. All images are resized so that their height

Hardware implementation 77

8 7 6 5 4 3 2 1

92

94

96

98

100

Bit width

A
cc

u
ra

cy
(%

)

HMAX accuracy w.r.t input pixel bit width

Airplanes
Cars
Faces
Leaves
Motorbikes

Figure 4.3: Recognition rates of HMAX on four categories of Caltech101 dataset w.r.t
the input image pixel bit width. For each bit width, ten independent tests were carried
out, in which half of the data was learnt and the other half was kept for testing. We
see that the pixel precision has little to no influence on the accuracy.

is 164 pixel, and are then degraded w.r.t the tested bit width, i.e. all pixels are divided

by 2N where N is the number of removed LSB. The degraded data is then used to train

first HMAX, and then the classifier – in this case, GentleBoost [169]. The images used

as negative samples are taken from the Background Google class of Caltech101. All

tests were performed in Matlab. Is should also be noted that we do not use RBFs in

the S2 layer as described in [168] and in Section 2.1.2.2.The global accuracy for each

class is then given by the mean of the recognition rates for that class across all runs, and

the uncertainty in the measure is given by the standard deviations of those accuracies.

Finally, the random seed used in the pseudo-random number generator was manually set

to the same value for each run, thus ensuring that the conditions across all bit-widths

are exactly the same and only the encoding changes.

The results of this experiment are shown in Figure 4.3. It is shown that for all four

classes the bit width has only limited impact on performances: all accuracies lie beyond

0.9, except when the input image pixels are coded on a single bit where the Airplanes

class gets more difficult to be correctly classified. For that reason, we chose to set the

input pixel’s bit width to 2 bits, and all further simplifications shall be made taking that

into account. The next step is to reduce the precision of the filter’s coefficient, in a way

that is somewhat similar to what is proposed in [167].

Hardware implementation 78

4.2.2 S1 filters coefficients

The second simplification that we propose is somewhat similar to that presented in Sec-

tion 4.2.1, except this time we operate on the coefficients of the Gabor filters used in

S1. Mathematically, those coefficients are real numbers in the range [−1, 1], thus the

most naive implementation for them is to use double precision floating point represen-

tation as used by default in Matlab, and that encoding scheme shall be used as the

baseline of our experiments. Our simplifications consist in using signed integers instead

of floats using n-bits precision, by transforming the coefficients so that their values lie

within
{
−2n−1, . . . , 2n−1 − 1

}
, which is done by multiplying them by 2n−1 and round-

ing them to the nearest integer. Several values for n where tested, along the lines of

the methodology described in Section 4.2.1: 16, and from 8 downto 1. However, using

the standard signed coding scheme the 1 bit encoding would lead to coefficients equal

either to −1 or 0, which does not seem relevant in our case. Thus, we proposed to use

a particular coding here, where the “0” binary value actually encodes −1 and “1” still

encodes 1. The rational is that that encoding is close to the Haar-like features used

in Viola-Jones [30] as explained in Section 3.1.1.1, and this technique is also suggested

in [170]. As explained in Section 4.2.1, the input pixels precision is 2 bits.

Recent works [171] also propose much more sophisticated encoding scheme. While their

respective efficiencies have been proven, they seem more adapted to a situation where

the weights are learnt during the learning process, and thus unknown before learning. In

our case, all weights of the convolution are predetermined, thus we have a total control

over the experiment and we prefered to use optimizations as simple as possible.

Results for that experiment are given in Figure 4.4. We see that the impact of the

encoding of the Gabor filter coefficients has even less impact than the input image

pixels precision, even in the case of 1 bit precision. This result is consistent with the

fact that Haar-like features are used with success in other frameworks. Thus, we shall

use that 1 bit precision encoding scheme for Gabor filters in combination with the 2 bit

encoding for input pixels in further simplifications.

In this Section, we validated that we could use only one bit to encode the Gabor filter’s

coefficients, using “0” to encode “-1” and “1” to encode “1”, in conjunction with input

pixels coded on two bits only. In order to continue our simplification process, next

Section proposes optimizations concerning the output of S1.

4.2.3 S1 output encoding

It has been proposed in [167] to use Lloyd’s algorithm [172, 173], that provides a way

to find an optimal encoding w.r.t a desired number K of possible quantization and a

Hardware implementation 79

float 16 8 7 6 5 4 3 2 1

88

90

92

94

96

98

100

Bit width

A
cc

u
ra

cy
(%

)

HMAX accuracy w.r.t Gabor filter bit width

Airplanes
Cars
Faces
Leaves
Motorbikes

Figure 4.4: Recognition rates on four categories of Caltech101 dataset w.r.t the coef-
ficients of the Gabor filter coding scheme in S1 layer. Those tests were run with input
pixels having 2 bits widths. The protocol is the same as developped for testing the
input pixels, as done in Figure 4.3.

.

subset S of the data to encode. The encoding strategy consists in defining two sets:

a codebook C = {c1, c2, . . . , cQ} and a partition Q = {q0, q1, q2, . . . , qK−1, qK} . With

those elements, mapping a code l (x) to any arbitrary value x ∈ R is done as follows:

∀x ∈ R l (x) =



c1 x ≤ q1,

c2 q1 < x ≤ q2,

. . .

cq−1 qK−2 < x ≤ qK−1,

cq qK−1 < x.

. (4.12)

One can see here that p0 and pK are not used to encode data; however those values are

required to be computed when determining the partition, as we shall now see.

Finding the partition consists in minimizing the Mean Square Error E (C,P) between

the real values in the subset and the values after quantization [167, 172]:

E (C,P) =
K∑
i=1

∫ qi

qi−1

|ci − x|2 p (x) dx (4.13)

Hardware implementation 80

Where p is the probability distribution of x. One can show [167] that

∀i ∈ {1, . . . ,K} ci =

∫ qi
qi−1

xp (x) dx∫ qi
qi−1

p (x) dx
(4.14)

∀i ∈ {1, . . . ,K − 1} qi =
ci−1 + ci

2
(4.15)

a0 = minS (4.16)

aK = maxS (4.17)

We see that Equations 4.14 and 4.15 depend on each other, and there is no closed-form

solution for them. The optimal values are thus determined with an iterative process:

starting from arbitrary values for Q = {q1, q2, . . . , qK}, e.g separating the range of values

to encode in segments of same size:

∀k ∈ {1, . . . , } qi = q0 + k
qK − q0
K

, (4.18)

we compute C = {c1, . . . , ck} with Equation 4.14. Once this is done, we use those values

to compute a new ensemble Q with Equation 4.15, and so on until convergence.

Since the dynamics of the values vary greatly from scales to scales in C1, we computed

a set Ci and Qi per C1 scale in i. However, contrary to what is proposed in [167],

we did not separate the orientations. We thus produced 8 sets Si of data to encode

(i ∈ {1, . . . , 8}). using the same 500 images selected at random among all of the five

classes we use to test our simplifications. As suggested in [167], we used four quantization

levels for all Si. Each partition Qi and code book Ci where computed using Matlab’s

Communication System Toolbox’s lloyd function. The results are given in Table 4.3.

While this simplification uses the values computed in C1, it is obvious that it could easily

be performed at the end of the S1 stage, simply by using a strictly growing encoding

function f . This is easily performed by associated each value from Ci to a positive

integer as follows:

∀i ∈ {1, . . . , 8} , j ∈ {1, . . . , 4} f (cij) = j (4.19)

and encoding f (cij) simply as unsigned integers on 2 bits. By doing so, performing the

max-pooling operations in C1 after that encoding is equivalent to performing it before.

We must now make sure that this simplification, in addition to the other two presented

earlier, does not have a significant negative impact on accuracy. Thus, we perform an

experiment along the lines of what is described in Section 4.2.1, with the exception that

this time we add the simplification proposed here. Results are compiled with further

optimizations in Table 4.4

Hardware implementation 81

i 1 2 3 4

C1 14 27 37 50

Q1 21 32 43 -

C2 42 82 118 154

Q2 62 100 136 -

C3 37 65 94 141

Q3 51 79 117 -

C4 81 148 209 284

Q4 114 178 246 -

C5 122 208 278 380

Q5 165 243 329 -

C6 175 309 427 559

Q6 242 368 494 -

C7 296 521 707 905

Q7 408 614 806 -

C8 499 868 1182 1492

Q8 633 1025 1337 -

Table 4.3: Code books and partitions by scales for features computed in C1. Values
were computed with the simplification proposed in Sections 4.2.1 and 4.2.2 for S1, using
Matlab’s lloyds function.

4.2.4 Filter reduction in S2

As it has been stated many times in the literature [91–96, 98, 99], the most demanding

stage of HMAX is S2. Assuming there are the same amount of pre-learnt patches of

each size, then the algorithmic complexity depends linearly on the amount of filters

NS2 and their average number of elements K. It has been suggested in [46] to simply

reduce the number of per-learnt patches in S2 by sorting them by relevance according

to a criterion, and to keep only the N most relevant patches. The criterion used by the

authors is simply the variance ν of the components inside a patch p = (p1, . . . , pM):

ν (p) =

√√√√ M∑
i=1

|pi − p|2, (4.20)

p =
1

M

M∑
i=1

pi. (4.21)

In their paper, Yu et al. proposed to keep the 200 most relevant patches, which when

compared to the 1000 patches recommended in [168] would allow to divide the complexity

at this stage by 5. In [168], it is suggested to use patches of 4 different sizes: 4× 4× 4,

8× 8× 4, 12× 12× 4 and 16× 16× 4.

In order to ensure that all sizes are equally represented, we propose to first crop at

Hardware implementation 82

random 250 patches of each of those sizes in order to get the suggested 1000 patches

by Serre et al. [168], and we select 50 patches of each size according to the variance

criterion so that we have a total of 200 patches, as proposed in [46]. The rational is that

we must keep in mind that we aim to implement that process on a hardware device,

thus we need to know in advance the amount of patches of each size and to keep them

to pre-determined values.

Let’s now experiment that simplification on our dataset. We followed the methodology

established in Section 4.2.1, and we used the simplification proposed here along with all

the other simplifications that were presented until now. Results are compiled with those

of Section 4.2.3 and Section 4.2.5 in Table 4.4.

4.2.5 Manhattan distance in S2

In S2, pattern-matching is supposed to be performed with a Gaussian function, the

centers of which are the pre-learnt patches in S2, so that each S2 unit returns a value

close to 1 when the patterns are closed in terms of Euclidean distance and 0 when they

are far from each others. Computing an Euclidean distance implies the computation

of square and square-roots function, which may use lots of hardware resources. The

evaluation of the exponential function also raises similar issues, along with those already

exposed in Section 4.2. Since we already removed the Gaussian function to simplify the

training of S2, we propose to compare the performances obtained when replacing the

Euclidean distance with the Manhattan distance:

M (v1, v2) =

Nv∑
i=1

|v1i − v2i| . (4.22)

Doing so allows to remove all multiplications, which simplifies further the implementa-

tion on FPGA. Results are compiled with those of Section 4.2.3 and Section 4.2.4 in

Table 4.4.

In this Section, we proposed a series of optimizations, both of our own and from the

literature. In the next Section, we show how that particular encoding may be put into

practice on a dedicated hardware configuration.

Hardware implementation 83

Input and Lloyd’s Filter reduction Manhattan
filter coefficients encoding in S2 distance

Airplanes 95.49± 0.81 94.43± 0.88 92.07± 0.69 91.83± 0.63

Cars 99.45± 0.41 99.35± 0.40 98.45± 0.54 98.16± 0.60

Faces 92.97± 1.49 90.11± 1.05 82.71± 1.32 83.35± 1.40

Leaves 96.83± 0.79 97.21± 0.89 94.61± 1.12 93.20± 1.42

Motorbikes 95.54± 0.79 94.79± 0.62 88.83± 1.10 89.08± 1.31

Table 4.4: Accuracies of HMAX with several optimizations on five classes of the
Caltech101 dataset [142]. That Table compiles the results of the experiment conducted
in Sections 4.2.3, 4.2.4 and 4.2.5. The column on the left shows the result gotten
from Section 4.2.2. Starting from the second column, each column show the accuracies
obtained on the 5 classes in binary task classification, as described before, taking into
account the corresponding simplification as well as those referred by the columns left
to it.

4.3 FGPA implementation

4.3.1 Overview

We propose now our own implementation of the HMAX model, using both our contribu-

tions and the simplifications proposed in the literature proposed in Section 4.2. We did

not use the architectural optimization proposed in [99] on purpose, to see how a “naive”

implementation of the optimized HMAX model compares with that of Orchard et al.

This implementation of the HMAX model with our optimizations intends to process

fixed-size grayscale images. We aim to process 164× 164 grayscale images. The rational

behind those dimensions is that we want to actually process the 128× 128 ROI located

at the center of the image – however, the largest convolution kernel in S1 is 37 × 37,

therefore in order to have 128× 128 S1 feature maps we need input images padded with

18 pixels wide stripes. That padding is assumed to be performed before the data is sent

to the HMAX module.

The data is processed serially, i.e pixels arrive one after the other, row by row. The

pixels’ precision is assumed to be already reduced to two bits per pixel, as suggested in

Section 4.2. The module’s input pins consists in a serial bus of two pins called din in

which the pixels should be written, a reset pin rst allowing to initialize the module, an

enable pin en din allowing to activate the computation and finally three clocks: a “pixel

clock” pix clk for input data synchronization, a “process clock” proc clk synchronizing

the data produced by the module’s processes, and a “sub-process clock” subproc clk

as some processes need a high-frequency clock. Suggestion concerning the frequencies of

those clocks are given in Section 4.4.

The output pins consist in: an 8 pins serial bus for the descriptor itself called dout and

a pin indicating when data is available named en dout.

Hardware implementation 84

Input image

s1 c1

M

M

M

M

s
1
c
1

c
1
t
o
s
2

s2 c2

s
2
c
2

c
2
t
o
o
u
t

Figure 4.5: HMAX VHDL module. The main components are shown in colors, and
the black lines represent the data flow. We see here that the data from the degraded
164×164 input image is first processed by S1 filters at all scales in parallel – only 8 out
of the 16 filters in the bank are shown for readability. Orientations are processed serially
and the outputs are multiplexed. The data is then processed by the c1 module, which
produces half the feature maps produced in S1, before being serialized by c1 to s2.
The serialized data is sent to s2c2, which perform pattern matching between input data
and pre-learnt patches with its s2 components, several in parallel, with a multiplexing.
The maximum responses of each S2 unit are then computed by c2. The data is then
serialized by c2 to out.

The HMAX module – illustrated in Figure 4.5 – itself mainly consists in two sub-modules,

s1c1 and s2c2. As suggested in their names, the first one performs the computations

required in the S1 and C1 layers, while the second one takes care of the computation

for the S2 and C2 layers of the model. The rational behind that separation is that it is

suggested in [31] that in some cases one may use only the S1 and C1 layers, as we did

in Chapter 3. The following two Sections describe those modules in detail.

4.3.2 s1c1

That module consists uses two components of its own, called s1 and c1, which performs

the operations required by the layers of the same names of the model. It process the input

pixels with a multiplexing across orientations, meaning that all processes concerning the

first orientation of the Gabor filters in S1 are performed in the same clock cycle, then

all processes concerning the second orientation are performed on the same input data,

and so on until all four orientations are processed.

The input pins of that module are directly connected to those of the top module. Its

input pins consist in a dout bus of 4 pins where the C1 output data are written, a

en dout pin indicating when new data is available and a dout ori serial bus that precises

which orientation the output data corresponds to. The s1 and c1 modules shall now be

presented.

Hardware implementation 85

/
2

pix to stripe

din dout

/
74

image cropper

13× 13

11× 11

9× 9

7× 7

conv filter bank

Figure 4.6: Dataflow in s1. This Figure shows the major components of the s1 mod-
ule. First of all the pixels arrive in the pix to stripe, which returns columns of 37
pixels. Those columns are then stored in shift registers, which store a 37× 37 patch –
only 7 lines are represented here for readability. Then for each of the 16 scales in S1,
there exists an instance of the image cropper module that keeps only the data needed
by its following conv module. The convolution kernels’ coefficients are gotten from the
coeffs manager module, which get them from the FPGA’s ROM and retrieve those
corresponding to the needed orientation, for all scales.
Here only 4 of the 16 convolution engines are shown. The computed data is written
in dout, in parallel. Note that not all components of s1 are repesented here: pixmat,
pixel manager, coeffs manager and conv crop are not displayed to enhance read-
ability and focus and the dataflow.

4.3.2.1 s1

That module consists in three sub-modules: pixel manager which gets the pixels from

the input pins and reorder them so that they may be used in convolutions, the coeffs manager

module which handles the coefficients used in the convolution kernels, and the convolu-

tion filter bank module conv filter bank which take care of the actual linear filtering

operations. Shift registers are also used to synchronize the data produced by the differ-

ent components when needed. The main modules are described below, and the dataflow

in the module is sum up Figure 4.6.

pixel manager As mentioned in Section 4.3.1, the data arrives in our module serially,

pixel by pixel. It is impractical to perform 2D convolutions in those conditions, as we

need the data corresponding to a sub-image of the original image. The convolution

cannot be processed fully until all that data arrives, and the data not needed at a

particular moment needs to be stored. This is taken care of by this component: it stores

the temporary data and outputs it when ready, as a 37 × 37 pixel matrix as needed

by the following conv filter bank, as explained below. That process is performed by

two different sub-modules: pix to stripe, which reorder the pixels so that they may

be processed column per column, and the pixmat that stores the data in a matrix of

registers and provide them to the convolution filter bank module.

Hardware implementation 86

pix to stripe That modules consists in a BRAM, the output pins of which are

rewired to its input pins in the way shown in Figure 4.6. It gets as inputs, apart from

the usual clk , en din and rst pins, the 2 bit pixels got from the top-module. Its output

pins consist in a 37× 2 = 74 pins bus providing a column of the 37 pixels, as well as a

en dout output port indicating when data is ready to be processed.

pixmat That module gets as inputs the outputs of the aforementioned pix to stripe

module. It simply consists in a matrix of 37 × 37 pixels. At each pixel clock cycle, all

registered data is shifted to the “right”, and the registers on the left store the data

gotten from pix to stripe. The pixmat module’s output pins are directly wired to

its outputs, and an output pin called en dout indicates when the data is ready. When

that happens, the data stored in the matrix of registers may be used by the convolution

engines.

In order to handle new lines, that module has an inner counter incremented every time

new data arrives. When that counter reaches 164, i.e when a full stripe of the image

went through the module, the en dout signal is unset and the counter is reset to 0. The

en dout signal is set again when the counter reaches 37 again, meaning that the matrix

is filled.

coeffs manager That module’s purpose is to provide the required convolution ker-

nels’ coefficient, w.r.t the required Gabor filters orientation. It gets as inputs the regular

rst, clk and en signals, but also a bus of two pins called k idx indicating the desired

orientation The output pins consists of the customary en dout output port indicating

that the data is ready, and a large bus called cout that outputs all coefficients of all

scales for the requested orientation. This is also close to the box filter approximation

proposed in [167]. As explained in Section 4.2, we use a particular one bit encoding.

Since our convolution kernels’ sizes go from 7× 7 to 37× 37 by steps of 2× 2, the total

amount of input pins in the cout bus is given by

15∑
k=0

(2k + 7)2 = 9104 (4.23)

All the coefficients are stored in BRAM. The module fetches the needed ones depending

on the value written in k idx, and route them to the cout module. Figure 4.7 illustrates

that module.

conv filter bank This module gets its inputs directly from the pixmat and coeffs manager

modules just described. The pixel matrix is written in the din input bus, and the co-

efficients used for the convolution are written in the coeffs bus. It also has the usual

Hardware implementation 87

BRAM2

BRAM1

addr
cout

Figure 4.7: coeffs manager module. In order to simplify the process, all coefficients
needed at a particular time are read all at once from several BRAM, of which only two
are represented here for readability. The coefficients are then concatenated in a single
vector directly connected to the cout output port.

en din and rst pins, which serve their usual purposes. It also gets the orientation iden-

tifier thanks to an id in input bus – that identifier is not directly used for computation,

but is passed with the output data for use in latter modules. Finally, that modules

needs two clocks: the pixel clock, on which the input data is synchronized and acquired

through the clk pin, and the process clock (acquired through clk proc) needed for mul-

tiplexing the filters per orientations, as suggested in Section 4.3.1.

Output pins consist in a dout bus in which the result of the convolutions at all scales are

written, an id out bus simply indicating the orientation identifier got from the id in

input bus and the usual en dout pin. In order to perform its operations, that module

has one distinct instance of the conv crop component per scale (i.e, 16 instances in

total). Each instance has parameters of its own depending on its scale.

conv crop That module’s input and output ports are similar to those of its parent

module conv filter bank. It gets the pixel and process clocks respectively from its clk

and clk sum input ports, and it may be reset using the rst input port. Image data ar-

rive through din, and the convolution coefficients got from coeffs manager are acquired

through the coeffs input port. Data identifier is given by id in input port, and en din

indicates when input data is valid and should be processed. Output ports encompass

dout, which provide the results of the convolution, and id out which gives back the sig-

nal got from id in. Finally, en dout indicates when valid output data is available. dout

signals from all instances of conv crop are then gathered in conf filter bank’s dout

bus. This module gets its name from its two main purposes: select the data required

for the convolution, and perform the actual convolution.

The first stage is done asynchronously by a component called image cropper. As ex-

plained earlier, conv crop get the data in the form of a 37× 37 pixel matrix – however,

all that data is only useful for the 16th scale convolution kernel, which is also of size

37 × 37. A N × N convolution kernel need only the pixels in the N × N sub matrix

Hardware implementation 88

located in the middle of the 37× 37 matrix, as shown in Figure 4.6. The selected data

is then processed by the conv component, which is detailed in the next section.

4.3.2.2 conv

That module carries out the actual convolution filter operations. It gets as inputs two

clocks: clk which gets the process clock and clk sum which is used to synchronize sums

in the convolution sub-process clock. It also has the usual rst pin for initialization, a

bus called din through which the pixel matrix arrives, a bus called coeffs which gets

the convolution kernel’s coefficients, an id in bus allowing to identify the orientation

that is being computed, and an en din pin warning that the input data is valid and that

operations may be performed. Its outputs are a dout bus that provides the convolution

results, another one called id out that indicates which orientation that data corresponds

to and a en dout bus announcing valid output data.

In order to simplify the architecture and to limit the required frequency of the sub-

process clock, the convolution is first performed row by row in parallel. The results of

each rows are then added to get the final result. That row-wise convolution is performed

by a bank of convrow module having one filter per row. The sum of the rows are

performed by the sum acc module, and the result is coded as suggested in Section 4.2

thanks to the s1degrader module; both modules shall now be presented.

convrow That module has almost the same inputs as conv, the only exception being

that it only gets the input pixels and coefficients corresponding to the row it is expected

to process. Its output pins are similar to those of conv. As explained in Section 4.2, our

filters coefficients are either +1’s and −1’s, respectively coded as “1” and “0”. Thus,

each 1 bit coefficient does actually not code a value, but rather an instruction: if the

coefficient is 1, the corresponding pixel value is added to the convolution’s accumulated

value, and it is subtracted if the coefficient is 0. That trick allows to perform the

convolution without any products. In practice, a subtraction is performed by getting

the opposite value of the input pixel by evaluating its two’s complement and performing

and addition. Sums involved at that stage are carried out by the sum acc module, which

shall now be described.

sum acc That module sums serially the values arriving in parallel. The data arrives

through its din parallel bus, and must be synchronized with the process clock arriving

through the clk pin. That module uses a unique register to store its temporary data. At

each process clock cycle, the MSB of the din bus, which correspond to the first value of

Hardware implementation 89

convrow 0

rowmult cumsum

convrow 1

rowmult cumsum

convrow 2

rowmult cumsum

convrow 3

rowmult cumsum

convrow 4

rowmult cumsum

convrow 5

rowmult cumsum

convrow 6

rowmult cumsum

cumsum
din

s1degrader
dout

coeffs manager

Figure 4.8: 7 × 7 convolution module. That module has one convrow module per
row in the convolution kernel, each taking care of a line. In each of those modules,
the “multiplications” are performed in parallel in rowmult between the data coming
from din and coeffs input buses – as mentioned in Section 4.2, those multiplications
consist in fact in simple changes of signs, depending on the 1 bit coefficients provided
by the external module coeffs manager. The results are the accumulated thanks to
convrow’s cumsum component. Finally, the output of all conrow modules are accumu-
lated thanks to another cumsum component. The result is afterward degraded thanks
to the s1degrader module, the output of which is written in dout.

the sum, is written in the register. At each following sub-process clock cycle, an index is

incremented, indicating which value should be added to the accumulated total. Timing

requirements concerning the involved clocks are discussed later in Section 4.4.2. The

result is written on the output pins synchronously with the process clock.

Once the data has been accumulated row by row, and the results coming out of all rows

have been accumulated again, the result may be encoded on significantly shorter words

as we explained in Section 4.2.3. That encoding is taken care of by the s1degrader

module, which shall be described now.

s1degrader This modules takes care of the precision degradation of the convolution’s

output. It is synchronized on the process clock, and as such has a clk input pin, and

Hardware implementation 90

r0 r1 r2 r3
din

en din

dout

en dout

Figure 4.9: shift registers module with 4 registers. At each clock cycle, data is
read from din and en din and written into the next register, the last of which writes
its data into dout and en dout output ports.

a rst pin for initialization. Input data feed this module through its din input port,

and the en din single-bit input port indicates the presence of valid data in din. The

code is written into dout and en dout warns the other modules that valid output data

is available.

The computation is very simple. It simply consists in comparing the input data with the

partition determined for that scale with the Lloyd algorithm presented in Section 4.2.3.

The results written in dout simply depends on the position of the input value w.r.t the

partition boundaries on the natural integer line.

4.3.2.3 shift registers

That module allows to delay data. This is mostly useful to address synchronization

problem, and thus it needs a clock clk. A rst input port allows to initialize it, and data

is acquired through the din port while an en din input port allows to indicate valid

input data. Delayed data may be read from the dout output port, and a flag called

en dout is set when valid output data is available and unset otherwise.

The way that module works is straightforward. It simply consist in N registers ri, each

one of them being connected to two neighboors except for r1 and rN . At each clock

cycle, both the data from din and en din are written in r1, and each other register ri

gets the data from its neighboor ri−1 as shown in Figure 4.9. The last register simply

writes its data in the dout and en dout output ports.

4.3.2.4 c1

Once the convolutions are done and the data encoded on a shorter word, max-pooling

operations must be performed. Following the lines of the theoretical model, this is done

by the c1 module, which gets its inputs directly from s1 output pins. It is synchronized

on the process clock, and therefore it has the mandatory clk and rst pins. It also has

input buses called din, din ori and en din which are respectively connected to s1’s

dout, ori and en dout. Its outputs pins are made up of buses named dout, dout ori

Hardware implementation 91

max 2by2

max 2by2

max 2by2

max 2by2
c1 pix to stripe

c1 reorg stripes

c1 data demux
c1 orientation

c1 orientation

c1 orientation

c1 orientation

data mux

Figure 4.10: c1 module. For more readability, only 4 of the 8 filters are represented
here. Maximums are first computed accross scales with the max 2by2 components. The
data is then organized into stripes in the same fashion as done in the pix to stripe

component used in s1 module. That stripe is organized by lines, and then scales, and
needs to be organized by scales, and then lines to be processed by the latter module –
this reorganization is taken care of by reorg stripes. Orientations being multiplexed,
we needed to separate them so each may be processed individually, which is done by the
data demux module. Each orientation is then processed by one of the c1 orientation

module. Finally, data comming out of c1 orientation is multiplexed by data mux

before being written in output ports.

and en dout, which respectively provide the result of the max-pooling operations, the

associated orientation identifier and the flag indicating valid data.

The process is carried out by the following components: c1 max 2by2 which computes

the pixel-wise maximum across two S1 feature maps of consecutive scales and same

orientation, c1 pix to stripe which reorganize the values in a way similar to that of

the aforementioned pixel manager module, c1 reorg stripes which routes the data

to the following components in an appropriate manner, c1 orientation demux which

routes the data to the corresponding max-pooling engine depending on the orientation

it corresponds to, and finally max filter which is the actual max-pooling engine and

performs for a particular orientation, hence the name. That flow is shown in Figure 4.10.

c1 max 2by2 Apart from the clk, rst and en din input pins, that module has an

input bus called din that gets the data produce by all convolution engines and perform

the max-pooling operations across consecutive scales. Since the immediate effect of that

process is to divide the number of scales by two, that module’s output bus dout has half

the width of din. A signal going through the en dout output pin indicates that valid

data is available via dout.

c1 pix to stripe That module is very similar to the pix to stripe module used in

s1 (see Section 4.3.2.1), except that it operates on data of all of the 8 scales produced by

Hardware implementation 92

c1 max 2by2 and produces stripes of 22 pixels in heights, as the maximum window used

for the max-pooling operations in C1 is 22× 22 as stated in [31]. Its input and output

ports are the same as those of pix to stripe, with additional din ori and dout ori

allowing to keep track of the orientation corresponding to the data.

c1 reorg stripes The data produced by c1 pix to stripe is ordered first by the

position of the pixels in its stripe, and then per scale – i.e first pixels of all scales are next

to each others, followed by the second pixels of all scales, and so on. This is impractical

for the processed needed in the later module, where we need the data to be grouped by

scales. That module achieves it simply by rerouting the signals asynchronously.

c1 orientations demux During C1, each orientation is performed independently

from the others. However, at this point they arrive multiplexed from the same bus: first

pixels from the first orientation, then the pixels at the same locations from the second

orientation, followed by the third and the fourth – we then go back to the first orientation,

then the second one and so on. That modules gets those pixels through its din bus, and

route the signal to the relevant pins of its dout bus depending on its orientation, which

is given by the din ori input bus, which is wired to c1 pix to stripe’s dout ori bus.

Each set of pins corresponding to a particular orientation then routes the signal to the

correct instance of the c1 orientation module. In order to perform that demultiplexing

operation, that module also has the compulsory clk, rst and en din pins.

c1 orientation The actual max-pooling operation is performed by the c1unit com-

ponents contained in that module. Each c1 orientation instance has a bank of 8

c1unit instances, each having its own configuration so as to perform the max-pooling

according to the parameters indicated in [31]. The role of the c1 orientation mod-

ule is to serve as an interface between the max-pooling unit bank and the rest of the

hardware model. As inputs, is has the usual clk, rst and en din input pins as well as

a din input bus. That bus gets the data of the corresponding orientation generated in

the s1 module. Data of all scales arrive in parallel, as a result of the previous modules.

Data of each of the 8 scales is routed to a particular c1unit component, which shall be

described soon. Output data is then written in the dout bus. An en dout output is

set to “1” when data is ready, and pins of an output bus called dout en scales are set

depending on the scales at which the data is available, while the other pins are unset –

e.g, is the output data correspond to the 1st and 4th scales of the C1 layer of the model,

dout en scales shall get the value “00001001”.

Hardware implementation 93

ctrl

/
4

din

en din

dout

maxfilt

maxfilt

mux

(a) Architecture.

clk
en din a

en din b

new a

new b

last a

last b

(b) Control.

Figure 4.11: c1unit. Figure 4.11a shows the principle components of the module
architecture, and Figure 4.11b shows the control signals enabling and disabling the
data.
Figure 4.11a shows the two c1unit components and the control module c1unit ctrl –
named ctrl here for readability. Data coming out of those components are multiplexed
in the same output port dout. The four bits data signal is shown with the thick line,
and the control signals ares shown in light line. We see that dedicated control signals
are sent to each maxfilt components, but also that both get the same data.
The control signals presented in Figure 4.11b show how the control allow to shift the
data between the two units, in order to produce the overlap between two C1 units. We
assume here that we emulate C1 units with 4× 4 receptive fields and 2× 2 overlap.

c1unit This is the core-module of the max-pooling operations – the purpose of all

other modules in c1 is mostly to organize and route data, and manage the whole process.

Its inputs consist in the compulsory clk, rst and en din pins and the din bus. Data

are written to the usual dout and en dout output ports. The max-pooling operations

are performed by two instances of a component named maxfilt. The use of those two

instances, latter refered to as maxfilt a and maxfilt b, is made mandatory by the fact

that there is 50% overlapping between the receptive fields of two C1 unit in the original

model. The data is always sent to both components, however setting and unsetting their

respective en din pins at different times emulates the behaviour of the set of C1 units

operating at the corresponding orientation and scale: at the beginning of a line, only

one of the two modules is enabled, and the other one gets enabled only after an amount

of pixels equal to half the size of the pooling window (e.g the stride) as arrived. That

behaviour is illustrated in Figure 4.11, and is made possible thanks to the c1unit ctrl

module. In the next two paragraphs, we first describe how maxfilt works, and then

how it is controlled by c1unit ctrl.

Hardware implementation 94

maxfilt This is where the maximum pooling operation actually takes place. That

module operates synchronously with the process clock, and thus has the usual clk, rst

and en din input ports – data is got in parallel via the din input port. The input data

corresponds to a column of values generated by s1, with the organization performed

by the above modules. There are also two additionnal control pins called din new and

din last, allowing to indicate the module that the input data is either the first ones

of the receptive field, the last ones, or intermediate data. The value determined by the

filter is written in the dout port, and valid data is indicated with the en dout output

port.

The module operates as follows. the module is enabled only when the en din port is

set to “1”. It has an inner register R that shall store intermediate data. When din new

is set, the maximum of all input data is computed and the result is stored in R. When

both din new and din last are unset and en din is set, the maximum between all

input values and the value stored in R is computed and stored back in R. Finally, when

din last is set the maximum value between inputs and R is computed again but this

time it is also written in dout and en dout is set to “1”. Figure 4.11b shows how those

signals should act to make that module work properly.

c1unit ctrl That module’s purpose is to enable and disable the two maxfilt com-

ponents of c1unit when appropriate. It does so thanks to a process synchronized on the

process clock, and thus has the customary clk, rst and en din input ports. It gets the

data that is to be processed in its parent c1unit module through its din input bus, and

re-write to the dout output bus along with flags wired to the two c1unit components

of its parent module, via four output ports: en new a and en last a which are con-

nected to maxfilt a, and en new b and en last b which are connected to maxfilt b.

maxfilt a and maxfilt b are the modules mentioned in the the description of c1unit,

presented earlier.

4.3.2.5 c1 to s2

That module’s goal is to propose an interface between the output port of c1 and the

input ports of s2. It also allows to get the data directly from c1 and use it as a

descriptor for the classification chain. It reads the data coming out of c1 in parallel,

stores it, and serializes it in an output port when ready. That module needs three

clocks: clk c1, clk s2 and clk proc. It also has the rst port, as any other modules

with synchronous processes. The input data is written in the c1 din input port, and its

associated orientation is written in c1 ori. Data coming from different scale in C1 are

written in parallel. en c1 is a input port having of side 8 – one pin per scale in c1 –

Hardware implementation 95

that indicates which scale from c1 din is valid. Finally, a retrieve input port indicates

that the following module is ready to get new data. Output data is written serially in

dout output port, and a flag called en dout indicates when data in dout is valid.

As shown in Figure 4.12, that module has four major components: two BRAM-based

buffers that store the data and write it in din when ready, an instance of c1 handler

which gets the input data and provides it along with the address where it should be

written in the buffers, and finally a controller ctrl with two processes that takes care

of the controlling signals. The reason why we need two buffers is that we use a double

buffering : the data is first written into buffer A, then when all the required data has

been written the next data is written into buffer B while we read that of buffer A, then

buffer B is read while the data in buffer A is overwritten with new data, and so on. This

allows to avoid problems related to concurrent accesses of the same resources.

When new data in c1 din is available, – that is when, at least one of en c1’s bits is

set – the writting process is launched. This process, which is synchronized on the high-

frequency clk proc clock, proceeds as follows: if en c1’LSB is set, the corresponding

data is read from c1 din and sent to c1 handler along with an unsigned integer identi-

fying its scale. Then the second LSB of en c1 is read, and the same process is repeated

until all 8 bits of en c1 are checked.

In parallel, c1 handler returns its input data along with the address where it should be

written in BRAM. Both are sent to the buffer available for writing, which takes care of

the writing of the data in its inner BRAM. Once data is ready, i.e when all C1 feature

maps for an image are written in the buffer, then that buffer becomes read-only, as new

incoming data is written in the other buffer. Every time the retreive input signal

switches state, data is written into dout and en dout is set. When the data is written,

it is always by batches of four values, one per orientation.

c1 handler That module handles the pixels sent from the c1 to s2 and its corre-

sponding scale, and simply rewrites it in its output ports with the address to which it

should be written in c1 to s2 write buffer. Its input ports consist in clk which get the

clock on which it should be synchronized, the rst port allowing to reset the component,

the din port getting the C1 value to be handled, the scale of which is written in the

scale input port, the rst cnts that allows to reset all of this module’s inner counters

used to generate the address, and the en din input port indicating when valid data is

available and should be processed. This module’s output port consist in dout which is

used to rewrite input data, addr which indicates the address where to write the data in

BRAM and en dout indicating that output data is available.

Hardware implementation 96

c1 handler
din

ctrl

BRAM

BRAM

data

waddr

m
u
x

wea

web

rea

reb

data

data

dout

raddr

Figure 4.12: c1 to s2 module. The blue and red lines show the data flow in the two
configurations of the double-buffering. The data goes through c1 handler, where the
address to which it should be written is generated and written in waddr. The rea and
reb signals control the enable mode of the BRAMs, while the wea and web enable and
disable the write modes of the BRAMs. When the upper BRAM is in write mode, wea
and reb are set and web and rea are unset. When the upper buffer is full, those signals
are toggled so that we read the full buffer and write in the other one. Those signals are
controled thanks to the ctrl component, which also generates the address from which
the output data should be read from the BRAMs. Data read from both BRAMs are
then multiplexed into the dout output port. Pins on the left of both BRAMs correspond
to the same clock domain, and those on the right belong to another one so that it is
synchronized with following modules.

That module works as follows. It has 8 independent counters, one per scale. Let cns be

the value hold on the counter associated to scale s at instant n. When en din is set,

assuming the value read from scale correspond to the scale s coded as an unsigned

integer, the data read from scale is simply written in dout and the value written in

addr is simply cns + os, again coded as an unsigned integer, where os is an offset value as

given in Table 4.5. Those offsets are determined so that each scale has its own address

range, contiguous with each others, under the conditions given in Section 4.3.1:

o0 = 0, (4.24)

∀s ∈ Z∗ os =
s−1∑
k=0

4Sk
2, (4.25)

where Sk is the size of the C1 maps at scale k, also given in Table 4.5. Once all pixels

have been handled by c1 handler, the module’s counters must be reset by setting and

then unsetting the rst cnts input signal.

Hardware implementation 97

scale s 1 2 3 4 5 6 7 8

C1 patch side 31 24 20 17 15 13 11 10

offset os 0 3844 6148 7748 8904 9804 10480 10964

Table 4.5: Offsets used to computed addresses in c1 to s2 modules.

4.3.3 s2c2

That module gets as input the serialized data produced by c1 to s2. and performs

the operation required in HMAX’s S2 and C2 layers. It has two main components, s2

and c2, that respectively take care of the computations needed in HMAX’s S2 and C2

layers. In order to save hardware resources, the pre-learnt in S2 filters are multiplexed

as it is done in s1: every time new data arrives, pattern-matching are performed with

some of the pre-learnt S2 patches in parallel, then the same operations are performed

with other pre-learnt patches and same input data, and so on until all pre-learnt patches

were used. We shall define here for latter use a multiplexing factor that we shall denote

MS2C2, which corresponds to the amount of serial computations required to perform

computations on all S2 patches for a given input data. Is most useful output port is

called rdy, and is connected to c1 to s2’s retreive input port, to warn it when it is

ready to get new data.

4.3.3.1 s2

This module handles the data coming out of c1 to s2 as well as the pre-learnt patches,

matches those patterns and returns the results. Its input pins firstly consist in clk and

clk proc that each get a clock signal: the first one is the clock on which the input data

is synchronized and the other one synchronizes the computations. It also has a rst input

port allowing to reset it. The data should be written in the din port, and a port called

en din indicates that the input data is valid. After performing the pattern matching

operations, the data is written into the dout output port, along with an identifier into

the id out output port. Finally, en new allows the other module to be warned that new

data is available, en dout indicates precisely which parts of dout carry valid data and

should be read and rdy indicates when the process is ready to read data from c1 to s2.

That modules has three major components, which shall be described in the next Sections:

s2 input manager, which handles and organizes input data; s2 coeffs manager, which

handles and provides the coefficients of the pre-learnt filters; and s2 processors, which

takes care of the actual pattern-matching operations.

Figure 4.13 shows the dataflow in that module. We shall now described in more details

the its sub-modules s2 coeffs manager, s2 coeffs manager and s2 processors.

Hardware implementation 98

s2 input manager
din

s2processors

s2 coeffs manager

dout

Figure 4.13: Dataflow in s2c2. The data arriving to the module is handled
by s2 input manager, which make it manageable for the s2processors. The lat-
ter also gets the pre-learnt filter needed for the pattern-matching operations from
s2 coeffs manager in parallel, and perform the computations. Once it is over, the
data is sent in parallel to the dout output port, which feed the next processing module.

4.3.3.2 s2 input manager

This module’s purpose is somewhat similar to that of s1’s pixman module: managing the

incoming data and reorganizing it in a way that makes it easier to process. It gets input

data from c1 to s2 serially and provide a N ×N ×4 map of C1 samples, where N is the

side length of the available map. Its input ports gather a clk port the clock and a rst

port allowing to reset the module, and also a din port where the data should be written

and an en din port that should be set when valid data is written into din. The output

map may be read from the dout output port and its corresponding scale in C1 space

is coded as an unsigned integer and written into the dout scale output port. Finally,

the input matsize output gives a binary string w.r.t the value of the aforementioned

N variable according to Table 4.6. Individually, each bit of dout scale allow to enable

and disable s2bank modules, which takes care of the actual pattern-matching operation

and which are described in Section 4.3.3.6.

s2 input manager mainly consists in two components: s2 input handler, which get

C1 samples serially as input and returns vertical stripes of those samples; and an instance

of the pixmat component described in Section 4.3.2.1. However, pixmat is not used here

in exactly the same way as in s1. First of all, we consider here that a “sample” stored in

pixmat does not actually correspond to a single sample of a C1 map at a given location,

but to an ensemble of four C1 samples, one per orientation. Furthermore, contrary to

s1, the feature maps produced by c1 do not have the same sizes, as stated earlier in

Table 4.5. Thus, we instantiated a pixmat component adapted to the maximum size of

C1 feature maps, i.e 31 × 31. The problem is that pixmat’s en dout signal is only set

when the whole matrix is ready, which make it impractical for C1 feature maps smaller

than 31× 31.

Hardware implementation 99

N 0 4 8 12 16

dout scale 0000 0001 0011 0111 1111

Table 4.6: Mapping between N and dout scale.

To address that issue, we chose to ignore pixmat’s en dout port, and to use a state

machine that shall keep track of the data in a similar way to that of pixmat, although it

manages better the cases where the feature maps are smaller than 31× 31: the process

is similar but the line width depends on the scale to which the input data belongs. That

scale is determined by an inner counter: knowing how many samples there are per scales

in C1, it is easy to know the scale of the input data.

s2 input handler The reorganization of the data arriving sample by sample in

stripes that can feed pixmat is performed by that module. As a synchronous mod-

ule, it has the required clk and rst input ports, the data is read from its din input port

and valid data is signaled with the usual en din input port. Output stripes are written

in the dout output port, along with the identifier of their scales which are written in

the dout scale output port. Finally, the en dout output port indicated that data from

dout scale is valid.

Let’s keep track of the organization of the data that arrives in that module. Pixels

arrive serially, as a stream. The first pixels to arrive are those of the C1 maps of the

smallest scale. Inside that scale, the data is organized by rows, then columns, and then

orientation as shown in Figure 4.14a. The first thing that module does is to demultiplex

the orientations, so that every word contains the pixels of all of the orientations, at the

same locations and scale. Once this is done, this new stream may be processed as we

explain now.

As presented in Figure 4.14b, that module has 8 instances of the s2 pix to stripe

component – one for each size of C1 feature maps – that produces the vertical stripes

given input samples and generic parameters such as the desired stripe’s height and

width. Only one of those instances is used at a time, depending on the scale (which is

computed internally depending on the amount of acquired samples). Thus, at scale 0

the C1 feature maps are 31× 31 and the only active module is the 31× 31 one. When

processing samples of scale 2, which means 24×24 feature maps, the only active module

is the 24 × 24 one, and so one. Whatever its side, the generated stripe is written in

dout and its corresponding scale in dout scale. Finally, en dout indicates which data

from dout is valid – this is somewhat redundant with dout scale, but makes it easier

to interface that model to the others.

Hardware implementation 100

...

scale0

r0

c0c1

r1

c0c1

scale1

r0

c0c1

r1

c0c1

(a) Organization of stream arriving in s2 input handler. Each color indicates the orientation
of the C1 feature map the corresponding sample comes from. We assume here that those feature
maps are 2 × 2. cX indicates that the samples are located in the X-th column in their feature
maps, and rX indicates that the samples are located in the X-th row.

...

input stream d
e
m
u
x

din m
u
x

dout

(b) s2 handler module. Orientations are first demultiplexed, and written in parallel into the
relevant s2 pix to stripe, shown here in gray. There is one s2 pix to stripe per scale in C1
feature maps – i.e 8. The output of those compinents are then routed to the dout output port,
using a multiplexer.

Figure 4.14: Data management in s2 handler. Figure 4.14a shows how the arriving
stream of data is organized. Figure 4.14b shows how this stream is processed.

Hardware implementation 101

s2 pix to stripe That module performs the actual low-level operations needed to

transform a stream of serial samples into stripes. As any other synchronized modules,

it has clk and rst ports, which are used respectively for synchronization and resetting

module. The data arrive through an input port called din, and valid input data are

signaled thanks to the en din signal. The way the stripes are created is similar what

is performed in pix to stripe – see Section 4.3.2.1. It is recalled here that the data is

encoded using codebooks and boundaries determined with Lloyds algorithm as explained

in Section 4.2.3, thanks to the s1degrader module.

4.3.3.3 s2 coeffs manager

This modules takes care of the storage of the coefficients of the pre-learnt patches of S2,

and retreive those that are required at a given time to provide them to the s2processors

component, where the pattern-matching operations takes place. Its input port simply

consist in a clk for the clock and an addr where the address of the desired coefficients

is given. The coefficients are written in the coeffs output port, and their codebook is

written in the cb output port.

At a given instant, many pattern-matching operations are performed in a Single-Instruction-

Multiple-Data (SIMD) manner. Therefore many operands must be provided at each

clock cycle. In order to simplify the process, all the needed data are retrieved at once,

meaning that we need to store the data in several ROM accessible in parallel, as done

in s1’s coeffs manager – see Section 4.3.2.1. The output given by those ROMs contain

both the coefficient of the pre-learnt patch in their Lloyd encoding and the correspond-

ing codebooks. The data is then simply separated, rerouted, concatenated and written

into coeffs and cb.

4.3.3.4 s2processors

That module takes care of the actual computations in S2. Pattern matching of all S2

units of all sizes is performed here. Data are synchronized on the pixel clock which is

provided to this module via its clk input port. Operations, however, are synchronized

on the S2 process clock of much higher frequency, given by the clk proc input port. The

module also has the compulsory rst clock allowing to initialize it. The data resulting

from the processes of the previous layers is passed through the din input port, along

with its codebook identifier via the cb din input port. The pre-learnt patterns to be

used for the pattern matching operations are passed through the coeffs input bus, and

all their corresponding codebooks identifiers are given to the module via an input port

called cbs coeffs. Finally, the id in input port gets an identifier that allows to keep

Hardware implementation 102

track of the data in the latter c2 module, and the en din allows to enable or disable the

module.

Regarding the output ports, they consist in the dout port which provide the results of

all the pattern matching operations performed in parallel, the id dout port that simply

gives back the identifier provided earlier via the id in port, a “rdy” output port that

warns that that module is ready to get new data, and finally an en dout output bus

that indicates which data made available by dout is valid; this is required due to the

fact that, as we shall see, pattern matching operations are not performed at all positions

of the input C1 maps, depending on the various sizes of the pre-learnt pattern. Thus,

data are not always available at the same time, and we need to keep track of this.

For each size of the pre-learnt S2 patches, i.e 4×4×4, 8×8×4, 12×12×4, 16×16×4, this

module implements two components: s2bank that performs the actual pattern matching

operation, and corner cropper that makes sure that only valid data is routed to the

s2bank instance. Data arriving from din corresponds to a matrix of 16× 16× 4 pixels:

all of it is passed to the s2bank instance that match input data with 16×16×4 patterns.

The data fed to s2bank instances performing computations for smaller pre-learnt pattern

corresponds to a chunk of the matrix cropped from the “corner” of the pixel matrix.

Figure 4.15 sums up the data flow in s2processors. We shall now describe the corner cropper

and s2bank modules.

4.3.3.5 corner cropper

This module has a purpose similar to the image cropper used in s1, except that, as

explained in Section 4.3.2.1, image cropper crops a centered fragment of its input pixel

matrix. This module, however, crops the bottom-right corner of the input image. As in

image cropper, this is simply done by not connecting all inputs arriving from the din

input port to the dout output port. This behaviour is shown in Figure 4.15.

4.3.3.6 s2bank

This module consists, as suggested in its name, in a bank of s2unit components (see

below), all processing vectors of the same size. As s2processor, it needs the mandatory

clk and clk proc input ports to get the pixel and process clocks. The rst input pin

allows to reset the module, and en din allow to enable or disable the module. The

data routed by the corner cropper module is written in the din input port along with

the corresponding codebook in cb din. The coeffs input port gets the coefficients of

Hardware implementation 103

din

corner cropper

16 × 16 × 4

12 × 12 × 4

8 × 8 × 4

4 × 4 × 4

s2bench

dout

/
12 bits

/
48 bits

en dout

/
4 bits

Figure 4.15: Data flow in s2processors. Names in italic represent the components
instantiated in that module, and plain names show input and output ports. Only din,
dout and en dout are represented for readability. Each square in din represent one of
the 1024 pixels read from din, and each set of four squares represents the pixels from C1
maps of the same scale and locations, and the four orientations. The corner cropper

module makes sure only the relevant data is routed to the following s2bank components.
Those components perform their computations in parallel. When the data produced
by one or several of those instances is ready, it is written in the corresponding pins of
the dout output ports and the relevant pins of the en dout output port are set.

the pre-learnt vector used for the pattern matching operation, and the corresponding

codebook is got via the cb coeffs input port.

4.3.3.7 s2unit

That module takes care of the computation of a single pattern matching operation in

S2. As its top module s2processors, it has clk and clk proc input ports that re-

spectively get the data and system clocks. It also has rst input ports for reset. The

operands consist on one hand in the data produced by the s1c1 module and selected

by corner cropper and on the other hand in the pre-learnt pattern with which the

Manhattan distance is to be computed. They are respectively given to that module via

the din and coeffs input ports. The data arrive in parallel in the form of the optimized

encoding described in Section 4.2, and as explained there this encoding requires a code-

book. Since there is a codebook per C1 map, the identifiers of the codebooks required

for the input data and the pre-learnt pattern are respectively given by the cb din and

cb coeffs input ports. The identifier mentioned in s2processors passed by the id in

input port, and the module can be enabled or disabled thanks to the en din input port.

The Manhattan distance computed between the passed vectors is written to the dout

Hardware implementation 104

output port, along with the corresponding identifier which is written to the id out out-

put ports. Finally, an output port called en dout indicates when valid data is available.

The Manhattan distance is computed here in a serial way, synchronized on the clk proc

clock. This computation is performed by a component called cum diff, which shall now

be described. Shift registers as described in Section 4.3.2.3 are also used to synchronize

data.

cum diff As suggested by its name, this module computed the absolute difference

between two unsigned integers, and accumulates the result with those of the previous

operations. To that end, it needs the usual clk and rst input ports for respectively

synchronization and resetting purposes. It also needs two operands, which are provided

by the din1 and din2 input ports. An input port called new flag allows to reset the

accumulation to 0 and start a fresh cumulative difference operation, and the en din flag

allows to enable computation. That module has a single output port called dout, which

provides the result of the accumulation as it is computed. It is not required to have

an output pin stating when the output data is valid, for the reason that the data is

always valid. Knowing when the data actually correspond to a full Manhattan distance

is actually performed in s2unit.

In this Section, we described principles of the s2 module. Next Section does the same

for the c2 module.

4.3.4 c2

HMAX’s final stage is performed in the c2 module. It is synchronized, and thus has a

clk input port expecting to get a clock signal, as well as an rst input port allowing to

reset the component. The data used to performe the computation is obtained thanks to

the din input port, and it arrives in parallel. The id in input port allows to indicate

which of the data from din are valid, and a new in input port allows to warn about the

arrival of new data. After performing of the maximum operations, the results for all

pre-learnt vectors in S2 are written in parallel into the dout output port, and the last

output port, which is called new out, indicates that new data is available through dout.

As done in the c1 to s2 presented in Section 4.3.2.5, we use a double-buffering design

pattern to manage output data.

Hardware implementation 105

4.3.4.1 c2 to out

This is the very final stage of our HMAX hardware implementation. It gets the data

given by the c2 module in parallel, and serialize it in a way very similar to that of

the c1 to s2 module. Its input pins consist in the usual clk and rst respectively for

synchronization and reset purposes, as well as a port called din that get the input data

and new in that indicates when new data is available. Serial output data is written in

the dout output port, and the en dout output port indicates when the data from dout

is valid.

As in c2 to out, the parallel data from din is simply read and written serially into the

dout output port, while en dout is set. When this is done, en dout is unset again.

In this Section, we described the architecture of our VHDL model for the HMAX frame-

works, taking into account our own optimizations along with other simplification from

the literature. That implementation was purposely naive, in order to compare it with

the state-of-the-art. Next Section focuses on the implementation results of that model

on a hardware target.

4.4 Implementation results

In the previous Section, we described the architecture of our VHDL model. The next

step is to synthesize and implement it for a particular device. We chose to target a

Xilinx Artix-7 200T FPGA. Both synthesis and implementation were performed with

Xilinx Vivado tools.

We first examine the utilization of hardware resources – in particular, we shall see that

our model does not fit on a single device as is. We then study the timing constraint of

our system, including the latency it induces.

4.4.1 Resource utilization

We synthesized and implemented our VHDL code using Xilinx’s Vivado 2016.2, targeting

a XC7A200TFBG484-1 platform. Results are shown in Table 4.7. On can see that there

is still room for other processes on the FPGA, for instance of a classifier.

Now that we studied the feasability of the implementation of our model on hardware

devices, let’s study the throughput that it may achieve.

Hardware implementation 106

Resource Estimation Available Utilization (%)

Look-up tables 58204 133800 43.50

Flip-flops 158161 267600 59.10

Inputs/outputs 33 285 11.58

Global buffers 6 32 18.75

Block RAM 254 365 69.59

Table 4.7: Resource utilization of HMAX implementation on XC7A200TFBG484-1
with the proposed simplifications. The proportion of used flips-flops is high enough to
cause problems during implementation. However, the biggest issue comes from the fact
that we use way too many blocks RAM for a single such target.

4.4.2 Timing

Our model works globally as a pipeline, where each module uses its own resources.

Therefore, the overall time performances of the whole chain is determined by the module

that takes longest. In order to evaluate how fast is our model in terms of frames per

second, we shall now study, for each stage, the timing constraints it requires.

Let’s begin with the S1 layer. The convolution is computed at 128 × 128 places of the

input image. As detailed in Section 4.3.2.1, the sums of implied by the convolution are

performed row-wise in parallel, and the results per row as then sum sequentially. Thus,

for a k × k convolution kernel, k sums are of k elements are performed in parallel, and

each one of them takes 1 cycle per element – hence, k cycles. That leads to k elements,

which are them sum using the same strategy, and thus requiring another k cycles, thus

totalizing 2k cycles. Since we use a 4-to-1 multiplexing strategy to compute the output

of the orientations one after the other, all scales are processed in parallel and the biggest

convolution kernel is 37×37, the convolution takes 128×128×8×37 = 4.85×106 clock

cycles to process a single 128× 128 image.

As for the C1 layer, it processes the data as soon as it arrives, and thus no bottleneck

is involved there.

The S2 layer is the most demanding in terms of computations. Computations are per-

formed only when all the required data is here, in order to save as most time as possible,

as explained in Section 4.3.3.5. Considering we use a 25-to-1 multiplexer to process all

S2 filters, the time TS2 required by this stage is given by the time required by that layer

may be written as

TS2 = 25 (16× 16× 4M16 + 12× 12× 4M12 + 8× 8× 4M8 + 4× 4× 4M4) , (4.26)

where Mi is the number of valid Xi ×Xi patches in the C1 feature maps where patches

bigger than Xi ×Xi with Xi = 4i are not valid, and may be expressed as

Mi = Ni −Ni+1 (4.27)

Hardware implementation 107

where Ni is the number of valid Xi ×Xi patch in the C1 feature maps. Hence, we have

TS2 =25 [16× 16× 4N16

+ 12× 12× 4 (N12 −N16)

+ 8× 8× 4 (N8 −N12)

+ 4× 4× 4 (N4 −N8)] (4.28)

=2240N16 + 1600N12 + 960N8 + 320N4. (4.29)

Let’s now evaluate the Ni. Considering that some the C1 feature maps are smaller than

some of the pre-learnt patches and that in such case, no computations are performed,

we may write

Ni =

8∑
k=1

max

(⌊
128

∆k

⌋
− i+ 1, 0

)2

. (4.30)

with ∆k defined in Table 2.1. Hence we have

N16 = 435

N12 = 821

N8 = 1437

N4 = 2309, (4.31)

which gives

TS2 = 2240× 435 + 1600× 821 + 960× 1437 + 320× 2309, (4.32)

and thus TS2 = 110.16× 106 clock cycles.

Finally, C2 processes the data as soon as it arrives in a pipelined manner, as done in

C1. Hence, it doesn’t bring any bottleneck.

We see from the above analysis that the stage that takes most time is S2, with 4.41×106

clock cycles per image. Assuming we have a system clock cycle of 100 MHz, we get

22.69 FPS.

4.5 Discussion

One of the most interesting contributions about HMAX hardware implementation is

the work of Orchard et al., described in Section 4.1.1 – as mentioned in Section 2.2.2.1,

there exists several implementations of either parts of the model or of the whole model

on boards containing many FGPAs, but we shall focus here only on that work, as it is the

Hardware implementation 108

only one to our knowledge aiming to implement the whole model on a single FPGA. In

that work, they implemented their algorithm on a Virtex 6 XC6VLX240T FPGA, while

we targeted an Artix-7 XC7A200TFBG484-1 device. Table 4.8 sums up the resources

of those two devices; we see that the Virtex-6 FPGA has slightly more resources than

the Artix-7, however the two devices have roughly the same resources.

The strategy proposed in [99] is very different from what we proposed here. The huge

computational gain they brought is largely due to the use of separable filters for S1,

which allow to use very few resources as explained in Section 4.1.1.1. The fact that,

in their implementation of S1, filters are multiplexed across scales instead of across

orientations as we did here, also allows to begin computations in the the S2 layer as

soon as data is ready, while in our case we chose to wait for all C1 features to be ready

before starting computation, using a double-buffer to allow a pipelined process. In their

case, the bottleneck is the S1 layer, which forces them to process a maximum of 190

images per second. However, that amount is 8.37 times bigger than the FPS we propose.

This is due to the fact that, while reducing data encoding seem to provide performances

similar to those obtained with full double-precision floating point values, it does not take

full advantage of the symmetries underlined by Orchard et al. in [99].

As for the S2 layer, Orchard et al claimed that they used 640 multipliers in order to

make the computation as parallel as possible – however it is not very clear in that paper

how exactly those multipliers were split across filters, and the code is not available

online – hence direct comparison with our architecture is not feasible. However, with

their implementation of S2 they claim being able to process 193 128 × 128 images per

seconds, while our implementation gives 22.69 images per second, although it uses much

less resources. Finally, we did reduce the precision of the data going from S1 to S2, but

the computation in S2 is still performed with data coded on 24 bits integer – this is

due to the fact that we did not tested the model when degrading the precision at that

stage. Future work shall address that issue, and we hope to reduce the precision to a

single bit per word at that stage. Indeed, in that extreme scenario the computation of

the Euclidean distance is equivalent to that of the Hamming distance, i.e. the number

of different symbols between two words of same length. That kind of distance is much

easier to compute than classical Euclidean or even Manhattan distance, be it on FPGA

or CPU. The rational behind that idea is that single bit precisions were successfully

used in other machine learning contexts [85, 170], and such an implementation would

be highly profitable for implementation on highly constraint devices.

Hardware implementation 109

Resource XC6VLX240T Artix 7 200T

DSP 768 740

BRAM 416 365

Flip-flops 301440 269200

Look-up tables 150720 136400

Table 4.8: Hardware resources comparison between the Virtex-6 FPGA used in [99],
and the Artix-7 200T we chose.

4.6 Conclusion

This Chapter was dedicated to the optimizations of the computations that take place in

the HMAX model. The optimization strategy was to use simpler operations as well as

coding the data on shorter words. After that study, a hardware implementation of the

optimized model was proposed using the VHDL language, targeting an Artix 7 200T

platform. Implementation results in terms of resource utilization and timing were given,

as well as comparisons with a work chosen as a baseline.

We showed that the precision of the data in the early stages of the model could be

dramatically reduced, while keeping acceptable accuracy: only the 2 most significant

bits of the input image’s pixels were kept, and the Gabor filters’ coefficients were coded

on a single bit, as was proposed in [167]. We also used the coding strategy proposed

in the same paper, in order to reduce the bit width of the stored coefficients and their

transfer from modules to modules. We also instantiated less patches in S2 as proposed

by Yu and Slotine [46], and we proposed to use the Manhattan distance instead of the

Euclidean distance as in the initial model [168]. Those optimizations made the overall

accuracy of the model lose XXX points in precision for an image classification task based

on 5 classes of the popular Caltech101 dataset, while dividing the complexity in the S2

stage by 5 and greatly reducing the required precision of the data, hence diminishing

the memory print and the needed bandwidth for inter-module communication.

A hardware implementation of that optimized model was then proposed. We aim to

that implementation to be as naive as possible, to see how those optimization compared

with the implementation strategy proposed by Orchard et al. [99]. Their implementation

was made so as to fully use the resources of the target device, and thus they claimed

a throughput much higher than ours. However, our implementation uses much less

resources than theirs, and our optimizations and theirs are fully compatible. A system

implementing both of them would be of high interest in the fields of embedded systems

for pattern recognition.

Future research shall aim to combine our optimizations with the implementation strat-

egy proposed by Orchard et al, thus reducing even further the resource utilization of

Conclusion 110

that algorithm. Furthermore, we shall continue our efforts towards that objective, by

addressing the computation in the S2 layers: at the moment, they are implemented as

Manhattan distance – we aim to reduce the precision of the data during those pattern

matching operation to a single bit. That way, Euclidean and Manhattan distances are

reduced to the Hamming distance, much less complex to compute.

Chapter 5

Conclusion

In this thesis, we addressed the issue of optimizing a bio-inspired feature extraction

framework for computer vision, with the aim of implementing it on a dedicate hardware

architecture. Our goal is to propose an easily embeddable framework, generic enough to

fit different applications. We chose to focus on efforts on HMAX, a computational model

of the early stage of image processing in the mammal’s cortex. Although that model may

not be quite as popular as others, such as ConvNet for instance, it is interesting in that it

is more generic and only requires little training, while frameworks such as ConvNet often

require the design of a particular topology and a large amount of samples for training.

HMAX is composed of 4 main stages, each computing features that are progressively

more invariant that the one before, to translations and small deformations: the S1 stage

uses Gabor filters to extract low-level features from the input image, the C1 stage uses

a max-pooling strategy to provide a first level of translation and scale invariance, the

S2 feature matches pre-learnt patches with the feature maps produced by C1 and the

C2 provides full invariance to translation and scale thanks to its bag-of-word approach

by keeping only the highest responses of S2. The only training that happens here is in

S2, and it may be performed using simple training algorithms with few data.

First, we aimed to optimize HMIN, which is a version of HMAX with only the S1 and

C1 layers, for two particular tasks: face detection, and pedestrian detection. Our opti-

mization strategy consisted in removing the filters that we assumed were not necessary:

for instance, in the case of face detection, the most prominent features lie in the eyes and

mouth, which respond best to horizontal Gabor filters. Hence, we proposed to keep only

such features in S1. Furthermore, most useful information are redundant from scales

to scales, thus we reduced further the complexity of our system by summing all the re-

maining convolution kernels in S1, and we reduced it to a manageable size of 9×9 which

allows it to process smaller images. Doing so helped us to greatly reduce the complexity

111

Conclusion 112

of the framework, while keeping its accuracy to an acceptable level. We validated our

approach on the two aforementioned tasks, and we compared the performance of our

framework with state-of-the art approaches, namely the Convolutional Face Finder and

Viola-Jone’s for the face detection task, and another implementation of ConvNet and

the Histogram of Oriented Gradients for the pedestrian detection task.

For face detection applications, we concluded that, while the precision of our algorithm

is significantly lower than that of state of the art systems, our system still works de-

cently on a real life scenario, where images were extracted from a video. Furthermore,

it presents the advantage of being generic: in order to adapt our model to another task

one would simply need to update the weights of the filter in S1 so as to extract relevant

features, while state of the art algorithm were either design specifically for the consid-

ered task or would require particular implementation for it.

However, our algorithm does not seem to perform to a sufficient level for the pedestrian

detection task, and more efforts need to be made to that end. Indeed, while our simpli-

fications allowed our system to be the most interesting in terms of complexity, they also

brought a significant drop in terms of accuracy, although more tests need to be made

for that use case as our results are not directly comparable to those of the state of the

art.

We then went back to the full HMAX framework with all four layers, and we studied

optimizations aiming to reduce the computation precision. Our main contribution is

the use of as few as two bits to encode the input pixels, hence using only 4 gray levels

instead of the usual 255. We also tested that optimization in combination with other

optimizations from the literature: Gabor filters in S1 were reduced to simple additions

and subtractions, the output in S1 were quantized using Lloyd’s encoding method, al-

lowing to find the optimal quantization given a dataset, we divided by 5 the number of

pre-learnt patches in S2 and we replaced the complex computation of Gaussians in S2

with much simpler Manhattan distance. We showed that all those approximations allow

to keep an acceptable accuracy compared to the original model.

We then implemented our own version on HMAX on a dedicated hardware, namely

the Artix-7 200T FPGA from Xilinx, using the aforementioned optimizations. That

implementation was purposely naive, in order to compare it with state of the art im-

plementation. The precision reduction of the input pixels allows to greatly reduce the

memory needed when handling the input pixels, and made the computation of the S1

feature map being done on narrower data. Furthermore, the replacement of the Ga-

bor filter coefficients by simple additions and subtractions allowed us to encode that

instruction on a single bit – “0” for subtraction and “1” for addition – instead of a full

coefficient, using for instance a fixed or floating point representation. The data coming

out of S1 is then encoding using the codebooks and partitions determined thanks to

Conclusion 113

Lloyd’s method, hence allowing to pass only words of 2 bits to the C1 stage. As for the

S2 layer, the influence of data precision on the performance was not yet evaluated by the

time that document was written, and hence all data processed here used full precision:

input data are coded on 12 bits, and output data on 24 bits.

The main limit of our implementation is that is does not use the symmetries of the Gabor

filters. That technique was successfully used in the literature to propose a full HMAX

implementation on a single FPGA, allong with different multiplexing scheme that allow

a higher throughput. Indeed, our implementation – which is yet to be implemented and

tested on a real device – may process 4.54 164×164 frames per second, while the authors

of the state of the art solution claimed that it may process up to 193 128× 128 frames

per second. It must be emphasized however that our implementation uses much less

hardware resources, and that our optimizations and theirs are fully compatible. Hence,

future development shall mainly consist in merging the optimization they proposed with

those that we used.

Let’s now give answers to the question we stated at the beginning of that document. The

first one was: How may neuromorphic descriptors be chosen appropriately and how may

their complexity be reduced? As we saw, a possible solution is to find empirically the

most promising features, and keeping only the filters that respond best to it. Further-

more, it is possible to merge the convolution filters that are sensible to similar features.

That approach led us to a generic architecture for visual pattern recognition, and one

would theoretically need to change only its weights to adapt it to new problems.

The second question that we stated was: How the data handled by those algorithms may

be efficiently coded so as to reduce hardware resources? We show that full precision is

not required to keep decent accuracy, and that we can acceptable results using even only

a few bits to encode parameters and input data. We also showed that that technique

may be successfully combined with other optimizations.

Given the fact that nowadays, the most widely used framework for visual pattern recog-

nition is ConvNet, it may seem surprising that we chose to stick to HMAX. The main

reason is that their most well known applications are meant to run on very powerful

machines, while on the contrary we directed our research towards embedded systems.

We also found the bio-inspiration paradigm promising, and we chose to push as far as

possible our study of frameworks falling in that categories, in order to use them to their

full potential. While our contribution in deriving an algorithm optimized for a given

task does not provide an accuracy as impressive as the state of the art, we claim that the

architecture of that framework is generic enough to be easily implementable on hard-

ware, and that only the parameters would need to change to adapt it to another task.

Furthermore, our implementation of the general-purpose HMAX algorithm on FPGA is

Conclusion 114

the basis of a future, more optimized and faster implementation on hardware, combin-

ing the presented optimizations which allowed to keep low hardware resource utilization

low and those proposed in the literature, that take full advantage of the features of an

FPGA. Combining those contributions may take several form: one can imagine using

a full HMAX model with all four layers, but with a number of filters in S1 greatly

reduced, thus leading to an implementation on FPGA using even less resources. Or,

one can imagine directly implementing the framework proposed for face detection, i.e.

without the S2 and C2 layers, with the optimizations that we proposed for the S1 and

C1 layers. Doing so would produce a very tight framework, with a low memory print

and a low complexity.

However, one may argue that frameworks such as ConvNet are nevertheless more accu-

rate than HMAX in most use case scenarios, that frameworks such as Viola-Jones have

strikingly low complexities, and that the genericity we claim to bring does not make it

up for it. With that consideration, we claim that the study carried out in Chapter 3

and 4 may still apply to those frameworks. Indeed, as was done in the literature, if one

trains a ConvNet having a topology similar to that of the CFF, where the feature maps

of the second convolution stage ultimately produce a scalar each, one may see that the

weight affected to that scalar if close to zero, and hence the corresponding convolutions

responsible for that feature map may simply be removed; furthermore, for a given task it

may be easy to identify the shape of a Gabor filter that would allow to grasp interesting

features – then, one can either use Gabor filters as the first stage of a ConvNet, as was

done in the past, or initialize the weights of some convolution kernels before training.

As for our hardware implementation of HMAX, most of the optimizations we proposed

may be used for ConvNet as well. For instance, one could still chose to train a ConvNet

on input images with pixels coded on less than 8 bits. Furthermore, after training one

could also imagine to replace all positive weights with 1 and negative weights with -1,

and remove weights close to 0 – given that the dynamics of the weights is not too far

from the [−1, 1] range. We also confirmed that using those techniques in combinations

with other techniques from the literature, such as Lloyd’s algorithm for inter-layer com-

munication, are usable without dramatically altering the accuracy. Hence, our example

of implementation is perfectly applicable to other situations, and goes way beyond the

sole scope of HMAX.

To conclude, we would back the position that claims that bio-inspiration is often a good

starting point and that it may open perspectives that were not explored until then, but

that we should not fear to quickly move away from it. Indeed, humanity conquered the

skies with machines only loosely connected to birds, and submarine depths with boats

that share almost nothing with fishes. Computer vision boomed very recently thanks

to frameworks that are indeed inspired by cognitive theories, but the implementations

RBF networks training 115

of those theories in industrial systems is far from mimicking the brain. But all those

systems, at some point, were inspired by nature – and while it is not always the most

fundamental aspect, going back to that viewpoint and rediscovering why it inspired a

technology may shed new lights on how to go further and deeper in their improvement.

Appendix A

RBF networks training

A.1 Overview

Radial Basis Function neural network (RBF) fall into the fields of generative models. As

suggested in its name, after fitting a model to a training set, that type of models may be

used to generate new data [24] similar to the real one. RBF are also considered as kernel

models, in which the data is processed by so-called kernel functions before the actual

classification; the goal is to represent the data in a new space, in which it is expected

to be more easily linearly separable – particularly in the case when that new space is of

larger dimensionality than the space of the input data. Other well-known kernel-based

models are e.g SVM. Although those models may be used for both classification and

regression tasks, we shall detail here its use for classification tasks only.

A short presentation of such models is proposed in Section 2.1.1.1, page 11 – the reader is

invited to refer to that Section to get an overview of the motivations and the classification

stage of those models. This Appendix in only dedicated to one of the many training

procedure, which is the one we chose in all of our experiments involving an RBF net

in Sections 3.1.3 and 3.2.3. It consists in two stages, the clustering stage and the

output layer optimization stage. The first stage consists in reducing the amount of

training samples by merging them into clusters, to which every sample to classify shall

be compared – the aim of this reduction is to reduce the computational cost of the

classification stage. The second stage consists in fitting the output layer weights – in

this case this is performed with a MSE minimization.

116

RBF networks training 117

A.2 Clustering

This stage consists in reducing the training set to a more manageable size. The method

we chose is based on the work of Musavi et al., but a bit simpler as we shall see. It consists

in merging neighboring vectors of the same categories into clusters, each represented in

the network by a kernel function that is constituted of center, i.e a representation in the

same space of one or several data points from the training set, and a radius, showing

the generalization relevancy of that center: the bigger the radius, the better the center

represents the dataset. As we shall see, this method allows to build highly non-linear

boundaries between classes.

LetX1 =
{
x11, x

1
2, . . . , x

1
N

}
be the training set composed of theN vectors

{
x11, x

1
2, . . . , x

1
N

}
,

and T 1 =
{
t11, t

1
2, . . . , t

1
N

}
be their respective labels. As for many training algorithm, it

is important that the x1i are randomized, so that we avoid the case where all vectors

of a category have neighboring indexes i. Let also d (a, b) denote the distance between

the a and b vectors. Although any distance could be used, we focus here on a typical

Euclidean distance so that

d (a, b) =

√√√√ M∑
i=1

(ai − bi)2 (A.1)

where a and b have M dimensions.

The clustering algorithm proceeds as follows [174]:

1. map each element x1i of X1 to a cluster c1i ∈ C1, the radius r1i of which is set to 0,

2. select the first cluster c11 from C1,

3. select a cluster c at random from the ensemble C of the other clusters of the same

class – let x be its assigned vector and r its radius,

4. merge the two clusters into a new one c21, the vector x21 of which is the centroid of

c11 and c:

∀i ∈ {1, 2, . . . ,M} x21i =
x11i + xi

2
, (A.2)

5. compute the distance dopp between c21 and the closest cluster ĉ ∈ C1 of another

category,

6. compute the radius r21 of the new cluster c21, as the distance between the new center

x21 and the furthest point of the new cluster:

r21 =
1

2
d
(
x11, x

)
+ max

(
r11, r

)
, (A.3)

Résumé en français 118

7. if dopp > µR, where µ is a strictly positive constant, accept the merge and go back

to 3 using C\ {c} instead of C; if dopp ≤ µR, reject the merge and go back to 3

selecting another cluster,

8. repeat steps 3 to 7 until all clusters from C were considered, which leads to a new

set of clusters C2,

9. repeat steps 2 to 8 using C2 instead of C1 and c21 ∈ C2 instead of c11, and continue

using C3, C4 and so on until no further merge is possible.

A.3 Output layer training

As for the final layer, it is trained using a simple least mean square approach. Denoting

W the weight matrix and T the matrix of target vectors, it can be shown [24] that we

have

W =
(
ΦTΦ

)−1
ΦT (A.4)

with

Φ =


Φ0 (x1) Φ1 (x1) . . . ΦM−1 (x1)

Φ0 (x2) Φ1 (x2) . . . ΦM−1 (x2)
...

. . .

Φ0 (xN) Φ1 (XN) . . . ΦM−1 (XN)

 (A.5)

where Φi is the function corresponding to the i-th kernel, and where each vector of T

has components equal to −1, except for it i-th component which is +1 if the categories

of the vector it corresponds to is i.

Appendix B

Résumé en français

B.1 Introduction générale

L’automatisation est un processus visant à remplacer les opérateurs humains par des

machines, afin de gagner en efficacité et de diminuer les coûts. Cela a été grandement

appliqué au cas des tâches non qualifiées, mais les industries sont de plus en plus de-

mandeuses de systèmes dit intelligents, capable d’analyser une information issue de leur

environnement et de prendre une décision en conséquence. Ce genre de technologie est

particulièrement utile par exemple dans le cas de la vidéo-surveillance, pour permettre

au système de détecter automatiquement la présence d’un intrus, et si besoin de s’assurer

qu’il s’agit bien d’une personne avant de lever une alarme. Cela peut également servir

pour du contrôle de qualité sur une châıne de production industrielle, notamment pour

détecter des défauts sur les pièces produites. Des exemples de ces applications sont

donnés en Figure B.1.

Afin de résoudre ce genre de problématiques, deux approches sont possibles : il est possi-

ble soit de créer soit-même un algorithme permettant d’analyser un signal et de prendre

une décision, soit de produire un algorithme permettant à la machine d’apprendre par

elle-même à résoudre la tâche, à partir d’exemples. Cette dernière approche fait ap-

pel à l’apprentissage automatique, qui est une branche faisant partie du domaine de

l’intelligence artificielle.

C’est dans ce cadre que le projet NeuroDSP [5] a été lancé. Son but est de produire

un processeur embarquable dans des systèmes plus vastes, afin de pouvoir analyser des

signaux et prendre des décisions en conséquence au plus près du capteur. Ce processeur

devra donc répondre à de fortes contraintes en termes de consommation d’énergie et

1Travaux de Michael Shick - Production peronnelle, CC BY-SA 4.0, https://commons.wikimedia.
org/w/index.php?curid=44405988.

119

https://commons.wikimedia.org/w/index.php?curid=44405988
https://commons.wikimedia.org/w/index.php?curid=44405988

Résumé en français 120

(a) Voiture autonome de
Google1. (b) Contrôle qualité.

(c) Sécurité. (d) Domotique.

Figure B.1: Exemples d’applications.

Cluster

32 PE

Cluster

32 PE

Cluster

32 PE

Entrée

(son, image. . .)
Décision

Depuis NeuroDSP

précédant

Vers NeuroDSP

Suivant

Figure B.2: Architecture NeuroDSP [5].

d’encombrement. Il est constitué de 32 blocs appelé P-Neuro, qui consistent chacun en

32 processeurs élémentaires (PE), pour un total de 1024 PE. Chacun de ces PE peut

être vu comme un neurone d’un réseau de neurones artificiel, tel que le Perceptron. Au

sein d’un P-Neuro, tous les PE exécutent la même opération sur des données différentes,

constituant ainsi une architecture de type SIMD (Single Instruction Multiple Data), par-

faitement adaptée aux calculs parallèle tels que nécessités dans les réseaux de neurones

artificiels. Cette architecture est présenté en Figure B.2. Les travaux présentés dans ce

documents ont été réalisés dans le cadre de ce projet.

Dans ce résumé, nous ferons tout d’abord un état de l’art de la littérature concer-

nant ce domaine – nous y verrons les principales méthodes d’apprentissage automa-

tique, leurs implantations sur matériel, et nous poserons les problématiques auxquelles

nous répondront dans la suite du document. Une Section sera ensuite consacrée à

Résumé en français 121

notre méthode de sélection de caractéristiques pour la classifications d’objets visuels.

Nous présenterons ensuite une implantation optimisée d’un algorithme de classification

d’images sur une plateforme matérielle reconfigurable. Finalement, la dernière Section

présentera la conclusion de nos travaux.

B.2 État de l’art

Cette Section propose une brève revue de la littérature concernant les travaux présentés

ici. Nous commencerons par les fondements théoriques de l’apprentissage automatique et

de l’extraction de caractéristiques d’un signal. Nous verrons ensuite les implémentations

matérielles existances pour ces méthodes. Finalement, nous proposerons une discussion

au cours de laquelle nous établirons les problématiques auxquelles nous répondront dans

ce documents.

B.2.1 Fondements théoriques

B.2.1.1 Méthodes de classification

Il existe de nombreuses approches permettant à une machine d’apprendre d’elle-même

à classifier des motifs. Nous allons ici revoir les principales. Une approche extrêmement

simple consiste à considérer l’intégralité des vecteurs dont nous disposons a priori, que

l’on appelle base d’apprentissage. Lors de la classification d’un vecteur inconnu, on évalue

une distance (par exemple, Euclidienne) avec tous les vecteurs de la base d’apprentissage,

et on ne considère que les K plus proches. Chacun de ces vecteurs vote alors pour sa

propre catégorie, et la catégorie ayant obtenue le plus de vote est retenue. On considère

alors que le vecteur inconnue appartient à cette catégorie. Cette approche s’appelle

KNN [6], pour K-Nearest Neighbors, et présente l’avantange d’être extrêmement simple

à implanter. Cependant, lorsque le nombre d’exemples de la base d’apprentissage devient

important ou que la taille des vecteurs devient trop grande, cette méthode devient trop

complexe et trop consommatrice en mémoire pour être efficace, en particulier dans un

contexte embarqué.

Il existe beaucoup d’autres méthode de classification de motifs, parmi lesquelles fig-

urent en particulier les réseaux de neurones (cf. le Perceptron en Section B.1), ou des

approches plus statistiques telles que les Machines à Vecteurs de Supports, ou SVM2.

Les réseaux de neurones sont récemment devenus extrêmement populaires, depuis leurs

utilisations par les entreprises Facebook et Google notamment pour leurs applications

2Support Vector Machine

Résumé en français 122

Figure B.3: Architecture feedforward.

de reconnaissances d’images. Nous nous intéresserons ici uniquement aux architectures

dites feedforward, dans lesquelles les neurones sont organisées par couches et chaque

unité transmet l’information à des neurones de la couche suivante – ainsi, l’information

se propage dans un seul sens. Ce genre d’architecture est représenté en Figure B.3. Les

connexions entre les unités sont appelés synapses, et à chacune d’entre elles est affecté

un poid synaptique. Ainsi, la valeur d’entrée z d’un neurone de N entrée ayant des poids

synaptiques w1, w2, . . . , wN est donnée par

z = w0 +
N∑
i=1

wixi, (B.1)

avec xi les valeurs propagées par les unités de la couche précédente et w0 un biais,

nécessaire pour des raisons mathématiques. Une fonction non-linéaire, appelée fonction

d’activation, est ensuite appliquée à z, et le résultat est propagé aux neurones de la

couche suivante. Apprendre un réseau de neurones de ce type à éxecuter une tâche con-

siste à trouver les bons poids synaptiques, au moyen d’un algorithme d’apprentissage.

Dans le cas des réseaux de neurones feedforward à plusieurs couches, l’algorithme le

plus utilisé en raison de son efficacité et de sa faible complexité algorithmique est la de-

scente de gradient stochastique – en effet, celui-ci peut être facilement exécuté au moyen

d’une technique appelée rétro-propagation de l’erreur, qui permet d’evaluer rapidement

la dérivée de la fonction de coût à optimiser [18, 19].

Une autre méthode de classification que nous utilisons dans ces travaux s’appelle le

RBF, qui fait partie des méthode dites à noyaux. Elles consistent à évaluer un en-

semble de fonction à base radiale au point représenté par le vecteur à classifier, et le

valeurs produites par ces fonctions forment un nouveau vecteur qui sera classifié par

un classificateur linéaire – e.g, un Perceptron. En revanche, dans ce cas la technique

d’apprentissage utilisée est simplement une recherche de moindres carrés.

B.2.1.2 Méthodes d’extraction de caractéristiques

Afin de faciliter la tâche du classificateur, il est possible de faire appel à un algorithme

d’extraction de caractéristiques, dont l’objet est de transformer le signal à classifier,

Résumé en français 123

••••

•

••••

•

••••

•

••••

•

•

••••

•

••••

•

••••

•

••••

•

•

••••

•

••••

•

••••

•

••••

•

•

••••

•

••••

•

••••

•

••••

•

•

•x Image d’entre

Couche 1

Couche 2

Couche 3

Uλ1 (x)

Uλ1,λ2 (x)

S0 (x)

Sλ1 (x)

Sλ1,λ2 (x)

Figure B.4: Invariant scattering convolution network [38]. Chaque couche applique
une décomposition en ondelette Uλ à l’entrée, et envoie le résultat auxquels a été ap-
pliqué un filtre passe-bas et un sous-échantillonage à la couche suivante. Les scattering
coefficients Sλ(x) ainsi produits forment le vecteur caractéristique à classifier.

afin d’en avoir une représentation invariante aux paramètres non pertinents. Par exem-

ple, si la tâche est de détecter la présence d’un visage dans une image sans chercher à

le localiser, et ce quelque soit sa position dans l’image, il serait souhaitable que cette

représentation soit invariante aux translations. Pour parvenir à ce genre de résultat,

plusieurs approches existent: il est possible de faire appel à des techniques de traite-

ments de signal classiques, par exemple la transformée de Fourier ou la transformée en

ondelettes. Mais il existe d’autres approches, plus complexes mais souvent plus effi-

caces. Nous pouvons par exemple citer le HOG (Histogram of Oriented Gradients) [36],

ou encore Scattering Transform, qui consiste en une décomposition en ondelette d’ordre

croissant suivit par des filtres passe-bas et un sous-échantillonage – une architecture

typique de ce genre de méthode est donnée en Figure B.4.

Une autre approche possible est celle dite bio-inspirée. Elle consiste à utiliser des modèle

computationnel de processus biologiques ou cognitifs pour répondre à des problèmes

concrets. Parmis ces modèles, l’un des plus connue s’appelle HMAX [168] – il s’agit

d’un modèle computationel des premières étapes du traitement des images par le cortex

visuel des mamifères. Il consiste en 4 couches successives: S1, C1, S2 et C2. La couche S1

est constituée d’un banc de filtres de Gabor, permettant d’extraire des caractéristiques

bas niveau selon différentes orientations et échelles. Un filtre de Gabor consiste en une

Résumé en français 124

Image
d’entre S1

M

M

M

M

C1

P

P

P

P

P

S2

M

M

M

M

M

C2

Figure B.5: HMAX [31].

gaussienne modulée par un cosinus, et peut être formalisé de la manière suivante:

G (x, y) = exp

(
−x

2
0 + γ2y20

2σ2

)
× cos

(
2π

λ
x0

)
, (B.2)

x0 = x cos θ + y sin θ and y0 = −x sin θ + y cos θ, (B.3)

où γ est le ratio d’aspect, λ la longueur d’onde du cosinus, θ l’orientation du filtre et

σ l’écart-type de la gaussienne. S1 comporte des filtres de 16 échelles et 4 orientations

différentes, totalisant ainsi 64 filtres. Les paramètres des filtres sont donnés en Table B.1.

La couche C1 fourni un premier niveau d’invariance aux translations et à l’échelle grâce

à un ensemble de filtres maximum, dont la taille de la fenêtre Nk et le recouvrement ∆k

dépendent de l’échelle considérée, et sont donnés en Table B.1. La troisième couche, S2,

compare les sorties de la couche C1 avec un ensemble de motifs pré-appris aux moyens de

fonctions à base radiale. Finalement, la dernière couche C2 ne conserve, pour chacun de

ces motifs pré-appris, que la réponse maximale, formant ainsi le vecteur caractéristique.

Cet algorithme est présenté en Figure B.5.

D’autres méthodes d’extractions de caractéristiques ou de classifications (ou les deux),

tels que SIFT [32], SURF [33] ou Viola-Jones [136] ont également connu une certaine

popularité.

Enfin, il n’est pas possible de ne pas mentionner les réseaux de neurones à convolu-

tions [49], qui sont les principaux contributeurs au succès que rencontrent les réseaux

de neurones à l’heure actuelle. Leur approche est très simple: plutôt que de séparer

l’extraction de caractéristiques de la classification, ces méthodes considèrent l’ensemble

de la châıne algorithmique et réalisent l’apprentissage sur son intégralité. L’extraction de

Résumé en français 125

Couche C1 Couche S1

Échelle
Taille du filtre Recouvrement Taille Gabor Gabor

maximum (Nk ×Nk) ∆k de filtre S1 k σ λ

Band 1 8× 8 4
7× 7 2.8 3.5
9× 9 3.6 4.6

Band 2 10× 10 5
11× 11 4.5 5.6
13× 13 5.4 6.8

Band 3 12× 12 6
15× 15 6.3 7.9
17× 17 7.3 9.1

Band 4 14× 14 7
19× 19 8.2 10.3
21× 21 9.2 11.5

Band 5 16× 16 8
23× 23 10.2 12.7
25× 25 11.3 14.1

Band 6 18× 18 9
27× 27 12.3 15.4
29× 29 13.4 16.8

Band 7 20× 20 10
31× 31 14.6 18.2
33× 33 15.8 19.7

Band 8 22× 22 11
35× 35 17.0 21.2
37× 37 18.2 22.8

Table B.1: Paramètres des couches S1 et C1 de HMAX [31].

Convolution Sous-chantillonage Convolution Sous-chantillonageConnection complte Sortie

Figure B.6: Réseaux de neurones à convolutions [48].

caractéristiques consiste ici en une succession de convolutions et de sous-échantillonages.

La classification, quant à elle, est réalisée au moyen d’un perceptron à plusieurs couches.

À la différence de HMAX, les paramètres des convolutions de l’extracteur de caractéristiques

sont déterminés à l’apprentissage. Cependant, cette souplesse est également le principal

défaut de ce genre d’algorithmes : ils requièrent des bases d’apprentissage colossale pour

optimiser un si grand nombre de paramètres. Cette méthode est illustrée en Figure B.6.

B.2.2 Implantations matérielles

Afin de répondre aux problématiques de l’embarqué, de nombreuses implantations matérielles

de classificateurs, d’extracteurs de caractéristiques et même de réseaux de neurones à

Résumé en français 126

Table B.2: Comparaison des principaux extracteurs de caractéristiques.

Méthode Précision Apprentissage requis Complexité

Scattering Transform Haute Non Élevée

HMAX High
Oui,

Élevée
requière peu de données

HOG Raisonnable Non Basse

SIFT Raisonnable Non Basse

SURF Raisonnable Non Très basse

Réseaux de neurones
Très élevée

Oui, requière beaucoup
Élevée

à convolutions de données

convolutions ont été réalisées. Il existe également de nombreuse implantations logi-

cielles, mais nous ne les mentionneront pas dans ce résumé. HMAX lui-même a été im-

planté de nombreuses fois sur du matériel reconfigurable (FPGA) [91–98] – récemment,

l’implantation la plus prometteuse pour ce modèle est celle proposée par [99]. Des

travaux ont été menés en ce sens également pour les réseaux de neurones à convolu-

tions [103, 107].

B.2.3 Discussion

Notre but est de proposer un système embarquable et générique de reconnaissance de

motifs. Pour cela, nous allons choisir un extracteur de caractéristiques qui servira de base

à nos futurs travaux. Le problème de la classification ne sera pas traité ici. La Table B.2

présente une comparaison des principaux descripteurs. Au vu de cette comparaison,

nous avons décidé de porter notre étude sur HMAX, qui nous assurera de plus une

certaine généricité.

Notre but est d’adapter cet algorithme à différentes tâches tout en conservant une

généricité au niveau de l’architecture, et d’optimiser, notamment en termes de codage,

ces algorithmes pour faciliter leur portage sur des cibles matérielles, ce qui amène les

problématiques suivantes auxquelles nous nous efforcerons de répondre :

• Comment choisir des caractéristiques bio-inspirées de manière appropriée et com-

ment réduire leurs complexités algorithmes ?

• Comment les données manipulées par ces algorithmes peuvent-elles être codées

efficacement de façon à réduire l’utilisation des resources matérielles ?

Cette Section était dédiée à une revue de l’état de l’art lié à nos travaux. Dans

la prochaine Section, nous allons répondre à la première problématique en décrivant

notre contribution sur la sélection de caractéristiques. Dans la Section suivante, nous

Résumé en français 127

détaillerons les optimisations réalisées sur HMAX en vue d’une implantation sur matériel.

Enfin, la dernière Section sera consacrée aux discussion et conclusions de ces travaux.

B.3 Sélection de caractéristiques

Dans cette Section, nous allons présenter nos travaux concernant la sélection de car-

actéristiques en vue d’optimiser un algorithme, pour deux tâches précises: la détection

de visages, et la détection de piétons.

B.3.1 Détection de visages

Nous allons tout d’abord présenter deux algorithmes populaires pour la détections de

visages: Viola-Jones et le Convolutional Face Finder (CFF).

B.3.1.1 Viola-Jones

Viola-Jones [136] est un algorithme basé sur une cascade de classificateurs opérant sur des

caractéristiques proches des ondelettes de Haar, représentées en Figure B.7. L’avantage

de ces caractéristiques est que, quelque soit leurs tailles, elle peuvent être évaluées en

un nombre constant d’additions et de soustractions, en utilisant une représentation par-

ticulière de l’image d’entrée appelée image intégrale. Dans cette représentation, le pixel

situé au point de coordonnées (X,Y) a pour valeur

II (X,Y) =
X∑
x=1

Y∑
y=1

f (x, y) (B.4)

avec f (x, y) la valeur du pixel situé au point de coordonnées (x, y) dans l’image originale.

Cette représentation est illustrée en Figure B.8. Le calcule de l’image intégrale peut être

réalisée itérativement:

F (x, y) = F (x− 1, y) + s (x, y) , (B.5)

avec

s (x, y) = s (x, y − 1) + f (x, y) . (B.6)

Intéressons-nous maintenant au calcul des caractéristiques. Prenons la caractéristiques

présentées à la gauche de la Figure 3.1. En considérant l’image intégrale II, la réponse

rl (x1, y1, x2, y2) à ce filtre est donnée par

rl (x1, y1, x2, y2) = F (x1, yg, x2, y2)− F (x1, y1, x2, yg) (B.7)

Résumé en français 128

(x1, y1)

(x2, y2)

(
x2, yg

)
+

+

+

(x1, y1)

(x2, y2)(
xg, y2

)
(xw, y2)

+

++ +

Figure B.7: Examples de caractéristiques utilisés dans Viola-Jones [30, 136].

II (X,Y) =
∑X
x=1

∑Y
y=0 f (x, y)

+

X

Y

Figure B.8: Représentation en image intégrale [30].

Entrée

C1

S1

C2

S2

•

•
•
•
•
•
•
•
•
•
•
•
•
•
•

N1

N2

Sortie

Figure B.9: Convolutional Face Finder [50].

avec F (x1, y1, x2, y2) l’intégrale des pixels de l’image originale situés dans le rectangle

délimité par (x1, y1) et (x2, y2).

B.3.1.2 CFF

Le CFF est une implantation particulière d’un réseau de neurones à convolutions, opti-

misée pour la détection de visages. Son architecture est données en Figure B.9.

Résumé en français 129

Descripteur HMIN HMINθ=π/2 HMINR
θ=π/2

Précision (%) 95.78± 0.97 90.81± 1.10 90.05± 0.98

Table B.3: Précision des différentes versions de HMIN sur la base de données
LFW crop.

B.3.1.3 HMIN et optimisations

D’après l’article de Serre et al. [31], nous savons que pour détecter et localiser un objet

dans une scène, il est préférable de n’utiliser que les deux premières couches de HMAX,

i.e S1 et C1. Afin de voir quelles caractéristiques sont les plus pertinentes, et donc quelles

caractéristiques peuvent être enlevées sans trop impacter la précision du système, nous

avons observé les réponses des différents filtres de Gabor pour les visages. Les résultats

sont montrés en Figure B.10. Nous pouvons y voir que les informations qui semblent

les plus pertinentes sont celles correspondant à l’orientation θ = π/2. Par ailleurs, nous

pouvons voir que les informations sont semblables d’une échelle à l’autre. Ainsi, nous

proposons de ne conserver que les filtres d’orientations θ = π/2, et de les sommer, afin

de n’avoir plus qu’une convolution. L’aspect du noyau de cette convolution est donné en

Figure B.11. La sortie obtenue pour un visage après filtrage par ce noyau de convolution

est donné en Figure B.12. Pour C1, la taille de la fenêtre du filtrage est ∆k = 8. Cet

extracteur de caractéristiques sera appelé HMINθ=π/2 dans la suite du document. Nous

proposons ensuite de réduire la taille de ce noyau de convolution, qui comporte à l’heure

actuelle 37×37 éléments, en le réduisant à 9×9 en utilisant une interpolation bilinéaire,

ce qui lui permet de traiter des images 4 fois plus petites. Cette version du descripteur

sera appelée HMINR
θ=π/2.

B.3.1.4 Expérimentations

Afin de valider que nos optimisations n’impacte pas trop négativement la précision, nous

avons mené une série d’expériences. Tout d’abord, nous avons testé HMIN, HMINθ=π/2

et HMINR
θ=π/2 sur la base de données de visage LFW crop [141], où il s’agit de classifier

chaque image entre deux catégories: visage et non-visage. Les résultats sont présentés

en Table B.3 et en Figure B.13. Le classificateur choisi est RBF.

Un autre test, cette fois-ci de détection, a été mené sur la base CMU [143]. Les résultats

sont montrés en Figure B.14. Ce test nous permet de comparer les performances de

notre algorithme avec la littérature – les résultats sont présentés en Table B.4.

Dans cette Section, nous avons étudié comment optimiser HMIN pour la détection de

visages. La prochaine Section est dédiée à une démarche similaire pour la détection de

piétons.

Résumé en français 130

θ = 0 θ = π/4 θ = π/2 θ = 3π/4

Échelle 1

Échelle 2

Échelle 3

Échelle 4

Échelle 5

Échelle 6

Échelle 7

Échelle 8

Figure B.10: Sorties des C1 pour un visage.

+ + +. . . + =

Figure B.11: Somme des noyaux de convolutions dans S1.

Figure B.12: Réponse du filtre unique dans S1 sur un visage.

Résumé en français 131

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

0 1

1

Taux de faux positifs

T
au

x
d

e
re

co
n

n
a
is

sa
n

ce
s

— HMIN
— HMIN|θ=π/2
— HMIN|Rθ=π/2

Figure B.13: Courbes ROC obtenues avec différentes versions de HMIN sur
LFW Crop.

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

0 1

1

Taux de faux positifs

T
au

x
d

e
d

te
ct

io
n

s

Figure B.14: Courbe ROC obtenue avec HMINR
θ=π/2 sur la base CMU.

B.3.2 Détection de piétons

Nous allons commencer par décrire les méthodes avec lesquelles nous allons comparer

notre approche. Nous avons choisi de nous comparer avec l’état de l’art du domaine,

à savoir le HOG et une implémentation particulière d’un réseau de neurones à convo-

lutions, que nous appellerons ConvNet [145]. La seule différence avec la détection de

visages réside dans le fait que, cette fois, nous nous intéressons à des objets verticaux,

et donc nous avons choisis de conserver cette fois-ci les filtres d’orientation θ = 0. Nous

appellerons les algorithmes ainsi produits HMINθ=0 et HMINR
θ=0.

Résumé en français 132

Méthode
Taux de Complexité (OP) Empreinte Taille

faux positifs (%) Scanning Classification mémoire d’entrée

VJ 5.32× 10−5 [136] 20.7 M 2.95 k 1.48 MB 24× 24

CFF 5× 10−5 [50] 50.7 M 129.5 k 64.54 MB 36× 32

HMINR
θ=π/2 4.5 26.1 M 82.9 k 1.2 MB 32× 32

Table B.4: Complexité et précision de différentes méthodes de détections de visages.
Les taux de faux positifs du CFF et de Viola-Jones ont été lus à partir des courbes
ROC de leurs articles respectifs [50, 136], et sont donc approximatifs. Tous les taux de
faux positifs correspondent à des taux de détections de 90%. La colonne Classification
donne la complexité pour la classification d’une image dont la taille est donnée par la
colonne Taille d’entrée. La colonne Scanning donne la complexité de l’algorithme lors
d’un scan d’une image VGA complète de dimensions 640 × 480. Les complexités et
empreintes mémoires ont été évaluées pour l’extraction de caractéristiques seulement,
sans prendre en compte la classification. Il faut également noter qu’aucune pyramide
d’images n’est utilisée ici, pour simplifier les calculs – dans le cas où on en utiliserait
une, Viola-Jones demanderait bien moins de ressurces que le CFF et HMIN grâce à la
représentation en image intégrale.

Figure B.15: HOG [36].

B.3.2.1 HOG

Cet algorithme consiste en différentes étapes, résumée en Figure B.15. Tout d’abord, des

gradients sont calculés à chaque position de l’image d’entrée. Ensuite, des histogrammes

locaux sont produits avec ces gradients, afin de produire une carte d’histogrammes. Ces

histogrammes sont ensuite normalisés localement, par bloc que 4, afin de produire le

vecteurs caractéristique qui sera classifié.

B.3.2.2 ConvNet

Il s’agit simplement d’une implémentation particulière d’un réseaux de neurones à con-

volutions, avec en prime des étages de normalisation. Cet algorithme opère sur des

images représenté en Y’UV. Son architecture est présenté en Figure B.16.

Résumé en français 133

CY 1

CUV 1

Y

SUV 0
UV

SY 1

C2

S2

C
onnexion

com
plte

Figure B.16: ConvNet pour la détection de piétons [145]. Les couches CXX désignent
des couches de convolutions, et les couches SXX désignent des couches de sous-
échantillonage.

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

0 1

1

Taux de faux positifs

T
au

x
d

e
re

co
n

n
ai

ss
an

ce
s

— HMIN
— HMIN|θ=0

— HMIN|Rθ=0

Figure B.17: Courbes ROC obtenues avec les descripteurs HMIN sur la base INRIA.

B.3.2.3 Expérimentations

Afin de tester nos algorithmes, nous avons évalué sa précision sur une tâche de détection

de piétons sur la base INRIA [36]. Les résultats sont présentés en Figure B.17 et en

Table B.5.

B.3.3 Conclusion

Dans cette Section, nous avons présenté notre contribution à l’optimisation d’une méthode

d’extraction de caractéristiques. L’algorithme initial est basé sur HMAX, mais n’utilise

que ses deux premières couches, S1 et C1. La couche S1 est constituée de 64 filtres

Résumé en français 134

Méthode
Taux de Complexité (OP) Empreinte

Taille d’entrée
faux positifs (%) Scanning Classification mémoire

HOG 0.02 [36] 12.96 M 344.7 k 4.37MB 64× 128

ConvNet Voir légende 484.84 M 11 G 63.26MB 78× 126

HMINR
θ=0 30% 13.05 M 41.45 k 1.2 MB 32× 16

Table B.5: Complexité et précisions de différentes méthode de détections de person-
nes. Le taux de faux positifs du HOG a été obtenu à partir des courbes DET présentés
dans l’article original [36], et est donc approximatif. Les taux de faux positifs présentés
ici correspondent à des taux de détections de 90%. Les résultats concernant le Con-
vNet ne sont pas directement indiqués ici, en raison du fait que la méthode d’évaluation
de sa précision employée dans la littérature est différente de ce qui a été réalisé pour
le HOG [145]. Cependant, les contributeurs ont évalué la précision du HOG selon le
même critère, et il en ressort que le HOG produit trois fois plus de faux positifs sur
cette même base que ConvNet. En raison de ces différences de méthodologies, il est
délicat de comparer directement nos résultats avec ceux de la littérature – en revanche,
les résultats présentés ici suggèrent un clair désavantage à l’utilisation de HMINR

θ=0

pour cette tâche.

de Gabor, avec 16 échelles et 4 orientations différentes. En étudiant les carte de car-

actéristiques produites par S1 pour différentes tâches spécifiques, nous avons conclus que

nous pouvions ne conserver qu’une seule orientation, et sommer les noyaux des convolu-

tions des 16 filtres restants de façon à n’en n’avoir plus qu’un, orienté horizontalement

dans le cas de la détection de visages et verticalement dans le cas de la détection de per-

sonnes. Nos résultats montrent que notre système a une complexité acceptable, mais sa

précision est moindre. Cependant, l’architecture est extrêmement simple, et peut facile-

ment être implantée sur une cible matérielle. De plus, notre architecture est générique :

un changement d’applications consiste simplement à changer les poids du noyau de con-

volution, alors que les autres architectures présentées requièreraient des changements

plus en profondeur de l’architecture matérielle. Enfin, l’empreinte mémoire de notre

méthode est très faible, ce qui autorise son implantation sur des systèmes ayant de

fortes contraintes.

La prochaine Section est dédiée à une proposition d’implantation matérielle de l’algorithme

HMAX complet. La dernière Section sera quant à elle dédiée aux discussions finales et

aux conclusions générales de nos travaux.

B.4 Implantation matérielle

Dans ce chapitre, nous allons répondre à la seconde problématique, à savoir com-

ment coder efficacement les données manipulées par HMAX, en vue d’une implanta-

tion matérielle. Nous allons tout d’abord présenter les optimisations que nous avons

Résumé en français 135

8 bits 3 bits 2 bits 1 bit

Figure B.18: Effet de la dégradation de précision sur l’image d’entrée.

mises en place, en précisant lesquelles sont issues de nos travaux. Ensuite, les résultats

d’implantation seront comparés à la littérature.

B.4.1 Optimisations

B.4.1.1 Données en entrée

HMAX traite typiquement des images en niveaux de gris, dans lesquelles les pixels sont

codés sur des entiers non-signés 8 bits. Nous proposons d’utiliser moins de bits pour

les pixels en entrée, en utilisant toujours des entiers non-signés. Nous avons évalué la

précision d’un système de classification d’image constitué de HMAX et d’un classificateur

de type GentleBoost pour chacune des précisions allant de 8 bit jusqu’à 1 bit, sur 4

classes de la célèbre base Caltech101: avions, voitures, visages, feuilles et motos. L’effet

de la précision des pixels sur la qualité de l’image est présenté en Figure B.18, et sur la

précision de la classification en Figure B.19.

B.4.1.2 Filtres de Gabor

Nous nous intéressons maintenant à l’optimisation du codage des filtres de Gabor dans

S1. Nous avons testé un codage näıf sur des flottants, puis des entiers signés 16 bits,

puis de 8 bits jusqu’à 2 bits. Nous avons également testé un codage sur 1 bit, ou 0

Résumé en français 136

8 7 6 5 4 3 2 1

92

94

96

98

100

Nombre de bits

P
ré

ci
si

o
n

(%
)

Précision de HMAX en fonction du nombre de bits des pixels

Avions
Voitures
Visages
Feuilles
Motos

Figure B.19: Taux de reconnaissances avec HMAX en fonction de la précision des
pixels en entrée.

Entrée et Méthode de Réduction Distance de
coefficients des filtres Lloyd des patchs de S2 Manhattan

Avions 95.49± 0.81 94.43± 0.88 92.07± 0.69 91.83± 0.63

Voitures 99.45± 0.41 99.35± 0.40 98.45± 0.54 98.16± 0.60

Visages 92.97± 1.49 90.11± 1.05 82.71± 1.32 83.35± 1.40

Feuilles 96.83± 0.79 97.21± 0.89 94.61± 1.12 93.20± 1.42

Motos 95.54± 0.79 94.79± 0.62 88.83± 1.10 89.08± 1.31

Table B.6: Précision de HMAX en utilisant différentes optimisations.

correspond à −1 et 1 à +1. Le nombre de bit pour les pixels de l’image d’entrée est de

2. Cette approche est similaire à ce qui a été proposé dans [167].

B.4.1.3 Autres optimisations

Nous avons appliqué un ensemble d’autres optimisations. La sortie des S1 est compressée

sur 2 bits seulement grâce à la méthode de Lloyds, telle que proposée dans [167]. Nous

avons également réduit le nombre de vecteurs pré-appris dans S2 grâce à la méthode

de Yu et al. [46]. De plus, nous avons utilisé une distance de Manhattan au lieu d’une

distance Euclidienne dans les opérations de comparaison de motifs de S2. En cumulant

ces optimisations avec une précision de 2 bits pour les pixels de l’image d’entrée et de 1

bit pour les filtres de Gabor, nous obtenons les résultats présentés en Table B.6.

Résumé en français 137

flottant 16 8 7 6 5 4 3 2 1

88

90

92

94

96

98

100

Nombre de bits

P
ré

ci
si

on
(%

)

Précision de HMAX en fonction du nombre de bits dans les filtres de Gabor filter

Avions
Voitures
Visages
Feuilles
Motos

Figure B.20: Précisions en fonction du nombres de bits dans les filtres de Gabor de
S1, avec 2 bits pour l’image d’entrée.

Input image

s1 c1

M

M

M

M

s
1
c
1

c
1
t
o
s
2

s2 c2

s
2
c
2

c
2
t
o
o
u
t

Figure B.21: Aperçu du module VHDL HMAX.

B.4.2 Résultats d’implantation

Nous avons utilisé les optimisations présentées ci-dessus pour implanter notre propre ver-

sion matérielle de HMAX, en VHDL, en ciblant un FPGA Xilinx Artix7-200T. En dehors

de ces optimisations, nous avons fait en sorte que notre implantation soit aussi näıve

que possible, et nous l’avons comparée avec celle de Orchard et al. [99]. L’implantation

ne sera pas détaillée ici, mais un schéma général est montré en Figure B.21.

Résumé en français 138

Ressource Estimation Disponible Utilisation (%)

Look-up tables 58204 133800 43.50

Flip-flops 158161 267600 59.10

Inputs/outputs 33 285 11.58

Global buffers 6 32 18.75

Block RAM 254 365 69.59

Table B.7: Utilisation des ressources matérielles de HMAX sur un Artix7-200T.

La Table B.7 présente une estimation de l’utilisation des ressources matérielles. Concer-

nant le timing, une étude théorique indique que, sur la base d’une fréquence de l’horloge

système à 100 MHz, notre système peut traiter 22.69 images par seconde, contre 193

pour l’implantation présentée en [99]. Cela est dû à une organisation des ressources

très différentes, notamment au niveau du multiplexage. Cependant, notre implanta-

tion requiert moins de ressources matérielles, et il est important de signaler que nos

optimisations et celles proposées par Orchard et al. [99] sont parfaitement compatibles.

B.4.3 Conclusion

Dans cette Section, nous avons présenté une série d’optimisations pour HMAX visant à

faciliter son implantation matérielle. Notre contribution consiste à diminuer la précision

des pixels de l’image d’entrée, diminuer la précision des coefficients des filtres de Gabor

et utiliser une distance de Manhattan dans la couche S2 lors des opérations de compara-

isons de motifs. Nous utilisons également des méthodes proposées dans la littérature

consistant à utiliser l’algorithme de Lloyd pour compresser la sortie de S1, et pour

diminuer la complexité de S2. Nous avons montré que ces simplifications n’ont que peu

d’impact sur la précision du modèle.

Nous avons ensuite présenté les résultats de l’implantation matérielle, que nous avons

voulu aussi näıve que possible en dehors des optimisations proposées ici, puis nous

avons comparé le résultat avec la littérature. Il apparâıt que notre implantation traite

les images significativement moins rapidement que ce qui est proposé dans la littérature ;

cependant notre implantation utilise moins de ressources matérielles et nos optimisations

sont parfaitement compatibles avec l’implantation de référence. Les travaux futurs con-

sisteront donc à proposer une implantation tirant parti des avantages des deux méthodes,

afin de proposer une implantation la plus réduite et avec la plus grande bande passante

possible.

Publications 139

B.5 Conclusion

Dans cette thèse, nous avons proposé une solution à un problème d’optimisation d’un al-

gorithme bio-inspiré pour la classification de motifs visuels, avec pour but de l’implanter

sur une architecture matérielle dédiée. Notre but était de proposer une architecture

facilement embarquable et suffisamment générique pour répondre à différents problèmes.

Notre choix s’est porté sur HMAX, en raison de l’unicité de son architecture et de ses

performances acceptable même avec un nombre réduit d’examples à apprendre, con-

trairement à ConvNet.

Notre première contribution consistait à optimiser HMIN, qui est une version allégée de

HMAX, pour deux tâches précises, la détection de visages et la détection de piétons, en se

basant sur le fait que seules certaines caractéristiques sont utiles. Les performances que

nous avons obtenus, pour chacune des deux tâches, sont significativements inférieures

à celles proposées dans la littérature – cependant, nous estimons que notre algorithme

à l’avantage d’être plus générique, et nous pensons qu’une implémentation matérielle

nécessiterait extrêmement peu de ressources.

Notre seconde contribution est de proposer une série d’optimisations pour l’algorithme

HMAX complet, principalement basées sur un codage des données efficace. Nous avons

montré qu’HMAX ne perdait pas de précisions de manière significative en réduisant la

précision des pixels des images d’entrées à 2 bits, et celle des coefficients des filtres de

Gabor à 1 seul bit. Bien que cette implantation, näıve en dehors des optimisations

nommées ci-dessus, ne permettent pas de traiter une quantité d’images équivalentes à

ce qu’il se fait dans la littérature, nos optimisations sont parfaitement utilisables en

conjonctions avec celles de l’algorithme de référence, ce qui produirait une implantation

particulièrement compact et rapide de cet algorithme – ce qui sera réalisé dans des

recherches futures.

Publications

1. Boisard, O., Sauvage, G., Brousse, O., Paindavoine, M., Implémentation optimisée

dun classifieur neuronal pour la détection en temps réel de personnes à terre.

GRETSI 2015.

2. Paindavoine, M., Boisard, O., Carbon, A., Philippe, J.-M., Brousse, O., NeuroDSP

Accelerator for Face Detection Application, GLSVLSI 2015.

3. Boisard, O., Paindavoine, M., Brousse, O., Doussot, M., Optimizations for a bio-

inspired algorithm towards implementation on embedded platforms, NeuCOMP,

DATE 2015.

4. Boisard, O., Brousse, O., Paindavoine, M., Processeur 4 bits. Patent filed to

the National Institute of Industrial Property (France), December 22th 2015, N.

1563089, N/REF-V/REF G502-B-45133 FR.

140

Bibliography

[1] A. M. TURING. I.computing machinery and intelligence. Mind, LIX(236):433–

460, 1950. doi: 10.1093/mind/LIX.236.433. URL http://mind.oxfordjournals.

org/content/LIX/236/433.short.

[2] Yves Langeron, Michel Doussot, David J Hewson, and Jacques Duchêne. Classify-

ing nir spectra of textile products with kernel methods. Engineering Applications

of Artificial Intelligence, 20(3):415–427, 2007.

[3] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George

van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-

vam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalch-

brenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu,

Thore Graepel, and Demis Hassabis. Mastering the game of Go with deep neu-

ral networks and tree search. Nature, 529(7587):484–489, January 2016. ISSN

0028-0836. doi: 10.1038/nature16961. URL http://www.nature.com/nature/

journal/v529/n7587/full/nature16961.html#auth-1.

[4] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. DeepFace: Closing the Gap

to Human-Level Performance in Face Verification. In 2014 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 1701–1708, June 2014.

doi: 10.1109/CVPR.2014.220.

[5] Michel Paindavoine, Olivier Boisard, Alexandre Carbon, Jean-Marc Philippe, and

Olivier Brousse. NeuroDSP Accelerator for Face Detection Application. In Pro-

ceedings of the 25th Edition on Great Lakes Symposium on VLSI, GLSVLSI ’15,

pages 211–215, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3474-7.

doi: 10.1145/2742060.2743769. URL http://doi.acm.org/10.1145/2742060.

2743769.

[6] E. Fix and J. L. Hodges. Discriminatory analysis, nonparametric discrimination.

US Air Force School of Aviation Medicine, Technical Report 4, February 1951.

141

http://mind.oxfordjournals.org/content/LIX/236/433.short
http://mind.oxfordjournals.org/content/LIX/236/433.short
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html#auth-1
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html#auth-1
http://doi.acm.org/10.1145/2742060.2743769
http://doi.acm.org/10.1145/2742060.2743769

Bibliography 142

[7] Geoffrey E. Hinton and Terrence J. Sejnowski. Optimal perceptual inference. In

In CVPR, Washington DC, 1983.

[8] David H. Ackley, Geoffrey E. Hinton, and Terrence J. Sejnowski. A learn-

ing algorithm for boltzmann machines. Cognitive Science, 9(1):147–169, Jan-

uary 1985. ISSN 0364-0213. doi: 10.1016/S0364-0213(85)80012-4. URL http:

//www.sciencedirect.com/science/article/pii/S0364021385800124.

[9] David E. Rumelhart, James L. McClelland, and P. D. P. Research Group P. D.

P. Research Group. Parallel Distributed Processing - Explorations in the Mi-

crostructure of Cognition: Foundations. MIT Press, new edition edition, January

1986. ISBN 978-0-262-68053-0.

[10] Yoshua Bengio Hugo Larochelle. Classification using discriminative restricted

Boltzmann machines. Proceedings of the 25th International Conference on Ma-

chine Learning, pages 536–543, 2008. doi: 10.1145/1390156.1390224.

[11] J J Hopfield. Neural networks and physical systems with emergent collective

computational abilities. Proceedings of the National Academy of Sciences of the

United States of America, 79(8):2554–2558, April 1982. ISSN 0027-8424. URL

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC346238/.

[12] Teuvo Kohonen. Self-organized formation of topologically correct feature maps.

Biological Cybernetics, 43(1):59–69, January 1982. ISSN 0340-1200, 1432-0770.

doi: 10.1007/BF00337288. URL http://link.springer.com/article/10.1007/

BF00337288.

[13] Laurene V. Fausett. Fundamentals of Neural Networks: Architectures, Algorithms

And Applications: United States Edition. Pearson, Englewood Cliffs, NJ, dition:

1 edition, 1993. ISBN 978-0-13-334186-7.

[14] Frank Rosenblatt. Principles of neurodynamics: perceptrons and the theory of

brain mechanisms. Spartan Books, 1962.

[15] Michael A. Arbib. Brains, Machines, and Mathematics. Springer-Verlag New York

Inc., New York, NY, 2nd ed. 1987. softcover reprint of the original 2nd ed. 1987

edition, October 2011. ISBN 978-1-4612-9153-4.

[16] John Hertz, Anders Krogh, and Richard G. Palmer. Introduction to the Theory

of Neural Computation. Addison-Wesley Publishing Company, 1991. ISBN 978-0-

201-51560-2.

[17] Marvin Minsky and Seymour A. Papert. Perceptrons - An Intro to Computational

Geometry Exp Ed. MIT Press, Cambridge, Mass, revised edition edition, January

1988. ISBN 978-0-262-63111-2.

http://www.sciencedirect.com/science/article/pii/S0364021385800124
http://www.sciencedirect.com/science/article/pii/S0364021385800124
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC346238/
http://link.springer.com/article/10.1007/BF00337288
http://link.springer.com/article/10.1007/BF00337288

Bibliography 143

[18] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning In-

ternal Representations by Error Propagation. Technical report, University of Cal-

ifornia and Carnegie-Mellon University, September 1985.

[19] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning repre-

sentations by back-propagating errors. Nature, 323(6088):533–536, October 1986.

doi: 10.1038/323533a0. URL http://www.nature.com/nature/journal/v323/

n6088/abs/323533a0.html.

[20] D. S Broomhead, D Lowe, and Royal Signals and Radar Establishment (Great

Britain). Radial basis functions, multi-variable functional interpolation and adap-

tive networks. Royals Signals & Radar Establishment, Malvern, Worcs., 1988.

[21] D.S. Broomhead and D. Lowe. Multivariable Functional Interpolation and Adap-

tive Networks. Complex Systems, 2:321–355, 1988.

[22] A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane

current and its application to conduction and excitation in nerve. The Jour-

nal of Physiology, 117(4):500–544, August 1952. ISSN 0022-3751. URL http:

//www.ncbi.nlm.nih.gov/pmc/articles/PMC1392413/.

[23] Timothe Masquelier and Simon J Thorpe. Unsupervised Learning of Visual Fea-

tures through Spike Timing Dependent Plasticity. PLoS Comput Biol, 3(2):e31,

2007. doi: 10.1371/journal.pcbi.0030031. URL http://dx.plos.org/10.1371/

journal.pcbi.0030031.

[24] Christopher M. Bishop. Pattern recognition and machine learning. Springer, 2006.

ISBN 0-387-31073-8.

[25] David Opitz and Richard Maclin. Popular ensemble methods: an empirical study.

Journal of Artificial Intelligence Research, 11:169–198, 1999.

[26] R. Polikar. Ensemble based systems in decision making. IEEE Circuits and Sys-

tems Magazine, 6(3):21–45, 2006. ISSN 1531-636X. doi: 10.1109/MCAS.2006.

1688199.

[27] Lior Rokach. Ensemble-based classifiers. Artificial Intelligence Review, 33(1-2):1–

39, November 2009. ISSN 0269-2821, 1573-7462. doi: 10.1007/s10462-009-9124-7.

URL http://link.springer.com/article/10.1007/s10462-009-9124-7.

[28] Robert E. Schapire. The strength of weak learnability. Machine Learning, 5(2):

197–227, June 1990. ISSN 0885-6125, 1573-0565. doi: 10.1007/BF00116037. URL

http://link.springer.com/article/10.1007/BF00116037.

http://www.nature.com/nature/journal/v323/n6088/abs/323533a0.html
http://www.nature.com/nature/journal/v323/n6088/abs/323533a0.html
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392413/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392413/
http://dx.plos.org/10.1371/journal.pcbi.0030031
http://dx.plos.org/10.1371/journal.pcbi.0030031
http://link.springer.com/article/10.1007/s10462-009-9124-7
http://link.springer.com/article/10.1007/BF00116037

Bibliography 144

[29] Leo Breiman. Arcing classifier (with discussion and a rejoinder by the author).

The Annals of Statistics, 26(3):801–849, June 1998. ISSN 0090-5364, 2168-8966.

doi: 10.1214/aos/1024691079. URL http://projecteuclid.org/euclid.aos/

1024691079.

[30] P. Viola and M. Jones. Rapid object detection using a boosted cascade of sim-

ple features. In Proceedings of the 2001 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, 2001. CVPR 2001, volume 1, pages

I–511–I–518 vol.1, 2001. doi: 10.1109/CVPR.2001.990517.

[31] Thomas Serre, Lior Wolf, Stanley Bileschi, Maximilian Riesenhuber, and Tomaso

Poggio. Robust object recognition with cortex-like mechanisms. Pattern Analysis

and Machine Intelligence, IEEE Transactions on, 29(3):411–426, 2007. URL http:

//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4069258.

[32] David G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints. Int.

J. Comput. Vision, 60(2):91–110, November 2004. ISSN 0920-5691. doi: 10.

1023/B:VISI.0000029664.99615.94. URL http://dx.doi.org/10.1023/B:VISI.

0000029664.99615.94.

[33] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-Up

Robust Features (SURF). Computer Vision and Image Understanding, 110(3):

346–359, 2008. ISSN 1077-3142. doi: 10.1016/j.cviu.2007.09.014. URL http:

//www.sciencedirect.com/science/article/pii/S1077314207001555.

[34] Edward Rosten and Tom Drummond. Machine Learning for High-Speed Corner

Detection. In Lecture notes in computer science, pages 430–443. Springer, 2006.

ISBN 978-3-540-33832-1. URL http://cat.inist.fr/?aModele=afficheN&

cpsidt=20046132.

[35] Adam Schmidt, Marek Kraft, and Andrzej Kasiski. An Evaluation of Image Fea-

ture Detectors and Descriptors for Robot Navigation. In Leonard Bolc, Ryszard

Tadeusiewicz, Leszek J. Chmielewski, and Konrad Wojciechowski, editors, Com-

puter Vision and Graphics, number 6375 in Lecture Notes in Computer Sci-

ence, pages 251–259. Springer Berlin Heidelberg, September 2010. ISBN 978-3-

642-15906-0 978-3-642-15907-7. URL http://link.springer.com/chapter/10.

1007/978-3-642-15907-7_31. DOI: 10.1007/978-3-642-15907-7 31.

[36] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detec-

tion. In In CVPR, pages 886–893, 2005.

[37] Stéphane Mallat. A Wavelet Tour of Signal Processing. Academic Press, 1998.

http://projecteuclid.org/euclid.aos/1024691079
http://projecteuclid.org/euclid.aos/1024691079
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4069258
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4069258
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://www.sciencedirect.com/science/article/pii/S1077314207001555
http://www.sciencedirect.com/science/article/pii/S1077314207001555
http://cat.inist.fr/?aModele=afficheN&cpsidt=20046132
http://cat.inist.fr/?aModele=afficheN&cpsidt=20046132
http://link.springer.com/chapter/10.1007/978-3-642-15907-7_31
http://link.springer.com/chapter/10.1007/978-3-642-15907-7_31

Bibliography 145

[38] J. Bruna and S. Mallat. Invariant Scattering Convolution Networks. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 35(8):1872–1886, 2013.

ISSN 0162-8828. doi: 10.1109/TPAMI.2012.230.

[39] L. Sifre and S. Mallat. Rotation, Scaling and Deformation Invariant Scattering

for Texture Discrimination. In 2013 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 1233–1240, June 2013. doi: 10.1109/CVPR.

2013.163.

[40] Edouard Oyallon and Stephane Mallat. Deep Roto-Translation Scatter-

ing for Object Classification. In 2015, Conference on Computer Vi-

sion and Pattern Recognition, CVPR, pages 2865–2873, 2015. URL

http://www.cv-foundation.org/openaccess/content_cvpr_2015/html/

Oyallon_Deep_Roto-Translation_Scattering_2015_CVPR_paper.html.

[41] Maximilian Riesenhuber and Tomaso Poggio. Hierarchical models of object

recognition in cortex. Nature neuroscience, 2(11):1019–1025, 1999. URL http:

//www.nature.com/neuro/journal/v2/n11/abs/nn1199_1019.html.

[42] D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction, and func-

tional architecture in the cat’s visual cortex. Journal of Physiology (London), 160:

106–154, 1962.

[43] Sharat Chikkerur, Thomas Serre, Cheston Tan, and Tomaso Poggio. What and

where: A Bayesian inference theory of attention. Vision Research, 50(22):2233–

2247, October 2010. ISSN 0042-6989. doi: 10.1016/j.visres.2010.05.013. URL

http://www.sciencedirect.com/science/article/pii/S0042698910002348.

[44] Jim Mutch and David G. Lowe. Multiclass Object Recognition with Sparse, Lo-

calized Features. In Proceedings of the 2006 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition - Volume 1, CVPR ’06, pages 11–18,

Washington, DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-2597-0. doi:

10.1109/CVPR.2006.200. URL http://dx.doi.org/10.1109/CVPR.2006.200.

[45] Jim Mutch and David G. Lowe. Object class recognition and localization using

sparse features with limited receptive fields. International Journal of Computer

Vision, 80(1):45–57, 2008. URL http://link.springer.com/article/10.1007/

s11263-007-0118-0.

[46] Guoshen Yu and J.-J. Slotine. FastWavelet-Based Visual Classification. In 19th

International Conference on Pattern Recognition, 2008. ICPR 2008, pages 1–5,

2008. doi: 10.1109/ICPR.2008.4761069.

http://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Oyallon_Deep_Roto-Translation_Scattering_2015_CVPR_paper.html
http://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Oyallon_Deep_Roto-Translation_Scattering_2015_CVPR_paper.html
http://www.nature.com/neuro/journal/v2/n11/abs/nn1199_1019.html
http://www.nature.com/neuro/journal/v2/n11/abs/nn1199_1019.html
http://www.sciencedirect.com/science/article/pii/S0042698910002348
http://dx.doi.org/10.1109/CVPR.2006.200
http://link.springer.com/article/10.1007/s11263-007-0118-0
http://link.springer.com/article/10.1007/s11263-007-0118-0

Bibliography 146

[47] Le Cun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and

L. D. Jackel. Handwritten Digit Recognition with a Back-Propagation Network.

In Advances in Neural Information Processing Systems, pages 396–404. Morgan

Kaufmann, 1990.

[48] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied

to document recognition. Proceedings of the IEEE, 86(11):2278–2324, November

1998. ISSN 0018-9219. doi: 10.1109/5.726791.

[49] Yann LeCun, Koray Kavukcuoglu, and Clment Farabet. Convolutional networks

and applications in vision. In Circuits and Systems (ISCAS), Proceedings of 2010

IEEE International Symposium on, pages 253–256. IEEE, 2010. URL http://

ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5537907.

[50] Christophe Garcia and Manolis Delakis. Convolutional face finder: A neu-

ral architecture for fast and robust face detection. Pattern Analysis and Ma-

chine Intelligence, IEEE Transactions on, 26(11):1408–1423, 2004. URL http:

//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1335446.

[51] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine

learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[52] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector

machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27,

2011. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[53] Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian J. Good-

fellow, Arnaud Bergeron, Nicolas Bouchard, and Yoshua Bengio. Theano: new fea-

tures and speed improvements. Deep Learning and Unsupervised Feature Learning

NIPS 2012 Workshop, 2012.

[54] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pas-

canu, Guillaume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Ben-

gio. Theano: a CPU and GPU math expression compiler. In Proceedings of the

Python for Scientific Computing Conference (SciPy), June 2010. Oral Presenta-

tion.

[55] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,

Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional

architecture for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5537907
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5537907
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1335446
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1335446
http://www.csie.ntu.edu.tw/~cjlin/libsvm

Bibliography 147

[56] Ronan Collobert, Koray Kavukcuoglu, and Clement Farabet. Torch7: A Matlab-

like Environment for Machine Learning. hgpu.org, December 2011. URL http:

//hgpu.org/?p=6776.

[57] Cliff Woolley Sharan Chetlur. cuDNN: Efficient Primitives for Deep Learning.

CoRR, 2014.

[58] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-

jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,

Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-

berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike

Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul

Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,

Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.

TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. URL

http://tensorflow.org/. Software available from tensorflow.org.

[59] Andrew P. Davison, Daniel Brderle, Jochen Eppler, Jens Kremkow, Eilif Muller,

Dejan Pecevski, Laurent Perrinet, and Pierre Yger. PyNN: A Common Interface

for Neuronal Network Simulators. Frontiers in Neuroinformatics, 2, January 2009.

ISSN 1662-5196. doi: 10.3389/neuro.11.011.2008. URL http://www.ncbi.nlm.

nih.gov/pmc/articles/PMC2634533/.

[60] HansEkkehard Plesser, Markus Diesmann, Marc-Oliver Gewaltig, and Abigail

Morrison. Nest: the neural simulation tool. In Dieter Jaeger and Ranu Jung,

editors, Encyclopedia of Computational Neuroscience, pages 1849–1852. Springer

New York, 2015. ISBN 978-1-4614-6674-1. doi: 10.1007/978-1-4614-6675-8 258.

URL http://dx.doi.org/10.1007/978-1-4614-6675-8_258.

[61] Dejan Pecevski, Thomas Natschlger, Klaus Schuch, Dejan Pecevski, Thomas

Natschlger, and Klaus Schuch. PCSIM: a parallel simulation environment for

neural circuits fully integrated with Python. Frontiers in Neuroinformatics, 3:11,

2009. doi: 10.3389/neuro.11.011.2009. URL http://journal.frontiersin.org/

article/10.3389/neuro.11.011.2009/abstract.

[62] Dan Goodman and Romain Brette. Brian: A Simulator for Spiking Neural Net-

works in Python. Frontiers in Neuroinformatics, 2, November 2008. ISSN 1662-

5196. doi: 10.3389/neuro.11.005.2008. URL http://www.ncbi.nlm.nih.gov/

pmc/articles/PMC2605403/.

http://hgpu.org/?p=6776
http://hgpu.org/?p=6776
http://tensorflow.org/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2634533/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2634533/
http://dx.doi.org/10.1007/978-1-4614-6675-8_258
http://journal.frontiersin.org/article/10.3389/neuro.11.011.2009/abstract
http://journal.frontiersin.org/article/10.3389/neuro.11.011.2009/abstract
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2605403/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2605403/

Bibliography 148

[63] Dan F. M. Goodman and Romain Brette. The Brian Simulator. Frontiers in

Neuroscience, 3(2):192–197, September 2009. ISSN 1662-4548. doi: 10.3389/neuro.

01.026.2009. URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2751620/.

[64] Jim Mutch, Ulf Knoblich, and Tomaso Poggio. CNS: a GPU-based framework

for simulating cortically-organized networks. Technical Report MIT-CSAIL-TR-

2010-013 / CBCL-286, Massachusetts Institute of Technology, Cambridge, MA,

February 2010.

[65] Helmut Sedding, Ferdinand Deger, Holger Dammertz, Jan Bouecke, and Hendrik

Lensch. Massively Parallel Multiclass Object Recognition. In Proceedings of the

VMV 2010, pages 251–257, 2010.

[66] R. Uetz and S. Behnke. Large-scale object recognition with CUDA-accelerated

hierarchical neural networks. In IEEE International Conference on Intelligent

Computing and Intelligent Systems, 2009. ICIS 2009, volume 1, pages 536–541,

November 2009. doi: 10.1109/ICICISYS.2009.5357786.

[67] Christopher J.C. Burges, Yann LeCun, and Corinna Cortes. Mnist database.

http://yann.lecun.com/exdb/mnist/, Accessed: 2016-04-11.

[68] Yann LeCun, Huang Fu Jie, and Léon Bottou. Learning methods for generic object

recognition with invariance to pose and lighting. CVPR, 2004.

[69] Junchul Kim, Eunsoo Park, Xuenan Cui, Hakil Kim, and W.A. Gruver. A fast

feature extraction in object recognition using parallel processing on CPU and

GPU. In IEEE International Conference on Systems, Man and Cybernetics, 2009.

SMC 2009, pages 3842–3847, October 2009. doi: 10.1109/ICSMC.2009.5346612.

[70] Sbastien Courroux, Stphane Chevobbe, Mehdi Darouich, and Michel Paindavoine.

Use of wavelet for image processing in smart cameras with low hardware resources.

Journal of Systems Architecture, 59(10):826–832, November 2013. ISSN 13837621.

doi: 10.1016/j.sysarc.2013.07.007. URL http://linkinghub.elsevier.com/

retrieve/pii/S1383762113001318.

[71] F. Galluppi, C. Denk, M.C. Meiner, T.C. Stewart, L.A. Plana, C. Eliasmith,

S. Furber, and J. Conradt. Event-based neural computing on an autonomous mo-

bile platform. In 2014 IEEE International Conference on Robotics and Automation

(ICRA), pages 2862–2867, 2014. doi: 10.1109/ICRA.2014.6907270.

[72] Olivier Brousse, Michel Paindavoine, and Christian Gamrat. Neuro-inspired learn-

ing of low-level image processing tasks for implementation based on nano-devices.

In International Conference on Design and Technology of Integrated Systems in

Nanoscale Era, 2010. doi: 10.1109/DTIS.2010.5487553.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2751620/
http://yann.lecun.com/exdb/mnist/
http://linkinghub.elsevier.com/retrieve/pii/S1383762113001318
http://linkinghub.elsevier.com/retrieve/pii/S1383762113001318

Bibliography 149

[73] D. Chabi, Weisheng Zhao, D. Querlioz, and J.-O. Klein. Robust neural logic block

(NLB) based on memristor crossbar array. In 2011 IEEE/ACM International

Symposium on Nanoscale Architectures (NANOARCH), pages 137–143, June 2011.

doi: 10.1109/NANOARCH.2011.5941495.

[74] Hyejung Choi, Heesoo Jung, Joonmyoung Lee, Jaesik Yoon, Jubong Park, Dong-

jun Seong, Wootae Lee, Musarrat Hasan, Gun-Young Jung, and Hyunsang Hwang.

An electrically modifiable synapse array of resistive switching memory. Nanotech-

nology, 20(34):345201, 2009. ISSN 0957-4484. doi: 10.1088/0957-4484/20/34/

345201. URL http://stacks.iop.org/0957-4484/20/i=34/a=345201.

[75] M. He, J.O. Klein, and E. Belhaire. Design and electrical simulation of on-chip

neural learning based on nanocomponents. Electronics Letters, 44(9):575–575,

April 2008. ISSN 0013-5194. doi: 10.1049/el:20080442.

[76] Si-Yu Liao, J.-M. Retrouvey, G. Agnus, Weisheng Zhao, C. Maneux, S. Fre-

gonese, T. Zimmer, D. Chabi, A. Filoramo, V. Derycke, C. Gamrat, and J.-

O. Klein. Design and Modeling of a Neuro-Inspired Learning Circuit Using

Nanotube-Based Memory Devices. IEEE Transactions on Circuits and Systems

I: Regular Papers, 58(9):2172–2181, September 2011. ISSN 1549-8328. doi:

10.1109/TCSI.2011.2112590.

[77] J.-M. Retrouvey, J.-O. Klein, Si-Yu Liao, and C. Maneux. Electrical simulation of

learning stage in OG-CNTFET based neural crossbar. In 2010 5th International

Conference on Design and Technology of Integrated Systems in Nanoscale Era

(DTIS), pages 1–5, March 2010. doi: 10.1109/DTIS.2010.5487555.

[78] J.-M. Retrouvey, J.-O. Klein, Si-Yu Liao, and C. Maneux. Electrical simulation of

learning stage in OG-CNTFET based neural crossbar. In 2010 5th International

Conference on Design and Technology of Integrated Systems in Nanoscale Era

(DTIS), pages 1–5, March 2010. doi: 10.1109/DTIS.2010.5487555.

[79] G. Snider, R. Amerson, D. Carter, H. Abdalla, M.S. Qureshi, J. Leveille, M. Ver-

sace, H. Ames, S. Patrick, B. Chandler, A. Gorchetchnikov, and E. Mingolla. From

Synapses to Circuitry: Using Memristive Memory to Explore the Electronic Brain.

Computer, 44(2):21–28, 2011. ISSN 0018-9162. doi: 10.1109/MC.2011.48.

[80] M. Versace and B. Chandler. The brain of a new machine. IEEE Spectrum, 47

(12):30–37, December 2010. ISSN 0018-9235. doi: 10.1109/MSPEC.2010.5644776.

[81] Molecular-junction-nanowire-crossbar-based neural network, Accessed: 2016-02-

14. URL http://www.google.com/patents/US7359888. Classification aux

http://stacks.iop.org/0957-4484/20/i=34/a=345201
http://www.google.com/patents/US7359888

Bibliography 150

tats-Unis 706/26, 706/27, 257/E27.062, 706/15, 977/938; Classification interna-

tionale G06N3/00, G06E3/00, H01L27/092, G06F15/18, G06E1/00, G11C13/02,

G06N3/063, G11C11/54, G06G7/00; Classification cooprative G11C13/02,

G11C13/0014, G06N3/002, G11C11/54, G11C2213/81, G06N3/063, H01L27/092,

G11C2213/77, Y10S977/938, B82Y10/00; Classification europenne B82Y10/00,

G11C13/00R5C, H01L27/092, G06N3/00B, G11C13/02, G06N3/063, G11C11/54.

[82] Janardan Misra and Indranil Saha. Artificial neural networks in hardware: A sur-

vey of two decades of progress. Neurocomputing, 74(13):239–255, 2010. ISSN 0925-

2312. doi: 10.1016/j.neucom.2010.03.021. URL http://www.sciencedirect.

com/science/article/pii/S092523121000216X.

[83] S. Himavathi, D. Anitha, and A. Muthuramalingam. Feedforward Neural Net-

work Implementation in FPGA Using Layer Multiplexing for Effective Resource

Utilization. IEEE Transactions on Neural Networks, 18(3):880–888, 2007. ISSN

1045-9227. doi: 10.1109/TNN.2007.891626.

[84] D. Le Ly and P. Chow. High-Performance Reconfigurable Hardware Architec-

ture for Restricted Boltzmann Machines. IEEE Transactions on Neural Networks,

21(11):1780–1792, November 2010. ISSN 1045-9227. doi: 10.1109/TNN.2010.

2073481.

[85] Philippe Coussy, Cyrille Chavet, Laura Conde Canencia, and Hugues Nono

Wouafo. Fully-Binary Neural Network Model and Optimized Hardware Ar-

chitectures for Associative Memories. ACM Journal on Emerging Technolo-

gies in Computing Systems, pages xx–yy, September 2014. URL https://hal.

archives-ouvertes.fr/hal-01009473.

[86] Andres Upegui, Yann Thoma, Eduardo Sanchez, Andres Perez-Uribe,

Juan Manuel Moreno, and Jordi Madrenas. The perplexus bio-inspired recon-

figurable circuit. In AHS, pages 600–605, 2007.

[87] Héctor Fabio Restrepo, Ralph Hoffmann, Andres Perez-Uribe, Christof Teuscher,

and Eduardo Sanchez. A networked fpga-based hardware implementation of a

neural network application. In Field-Programmable Custom Computing Machines,

2000 IEEE Symposium on, pages 337–338. IEEE, 2000.

[88] Fan Yang and M. Paindavoine. Implementation of an rbf neural network on em-

bedded systems: real-time face tracking and identity verification. IEEE Trans-

actions on Neural Networks, 14(5):1162–1175, September 2003. ISSN 1045-9227.

doi: 10.1109/TNN.2003.816035. URL http://ieeexplore.ieee.org/lpdocs/

epic03/wrapper.htm?arnumber=1243718.

http://www.sciencedirect.com/science/article/pii/S092523121000216X
http://www.sciencedirect.com/science/article/pii/S092523121000216X
https://hal.archives-ouvertes.fr/hal-01009473
https://hal.archives-ouvertes.fr/hal-01009473
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1243718
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1243718

Bibliography 151

[89] F. Benrekia, M. Attari, A. Bermak, and K. Belhout. FPGA implementation of

a neural network classifier for gas sensor array applications. In 6th International

Multi-Conference on Systems, Signals and Devices, 2009. SSD ’09, pages 1–6,

March 2009. doi: 10.1109/SSD.2009.4956804.

[90] T.N.T. Nguyen, K.C. Chandan, B.A.G. Ahmad, and K.S. Yap. FPGA implemen-

tation of neural network classifier for partial discharge time resolved data from

magnetic probe. In 2011 International Conference on Advanced Power System

Automation and Protection (APAP), volume 1, pages 451–455, October 2011. doi:

10.1109/APAP.2011.6180444.

[91] Sungho Park, Ahmed Al Maashri, Kevin M. Irick, Aarti Chandrashekhar,

Matthew Cotter, Nandhini Chandramoorthy, Michael Debole, and Vijaykrish-

nan Narayanan. System-On-Chip for Biologically Inspired Vision Applications.

IPSJ Transactions on System LSI Design Methodology, 5:71–95, 2012. doi:

10.2197/ipsjtsldm.5.71.

[92] A. Al Maashri, M. DeBole, C.-L. Yu, V. Narayanan, and C. Chakrabarti. A

hardware architecture for accelerating neuromorphic vision algorithms. In 2011

IEEE Workshop on Signal Processing Systems (SiPS), pages 355–360, October

2011. doi: 10.1109/SiPS.2011.6089002.

[93] M. DeBole, Yang Xiao, Chi-Li Yu, A.A. Maashri, M. Cotter, C. Chakrabarti,

and V. Narayanan. FPGA-accelerator system for computing biologically inspired

feature extraction models. In 2011 Conference Record of the Forty Fifth Asilomar

Conference on Signals, Systems and Computers (ASILOMAR), pages 751–755,

November 2011. doi: 10.1109/ACSSC.2011.6190106.

[94] A.A. Maashri, M. DeBole, M. Cotter, N. Chandramoorthy, Yang Xiao,

V. Narayanan, and C. Chakrabarti. Accelerating neuromorphic vision algorithms

for recognition. In 2012 49th ACM/EDAC/IEEE Design Automation Conference

(DAC), pages 579–584, June 2012.

[95] Sungho Park, A Al Maashri, Yang Xiao, K.M. Irick, and V. Narayanan. Saliency-

driven dynamic configuration of HMAX for energy-efficient multi-object recogni-

tion. In 2013 IEEE Computer Society Annual Symposium on VLSI (ISVLSI),

pages 139–144, 2013. doi: 10.1109/ISVLSI.2013.6654636.

[96] Mi Sun Park, S. Kestur, J. Sabarad, V. Narayanan, and M.J. Irwin. An FPGA-

based accelerator for cortical object classification. In Design, Automation Test in

Europe Conference Exhibition (DATE), 2012, pages 691–696, March 2012. doi:

10.1109/DATE.2012.6176559.

Bibliography 152

[97] Sungho Park, Y.C.P. Cho, K.M. Irick, and V. Narayanan. A reconfigurable plat-

form for the design and verification of domain-specific accelerators. In Design

Automation Conference (ASP-DAC), 2012 17th Asia and South Pacific, pages

108–113, January 2012. doi: 10.1109/ASPDAC.2012.6164928.

[98] S. Kestur, Mi Sun Park, J. Sabarad, D. Dantara, V. Narayanan, Yang Chen,

and D. Khosla. Emulating Mammalian Vision on Reconfigurable Hardware. In

2012 IEEE 20th Annual International Symposium on Field-Programmable Custom

Computing Machines (FCCM), pages 141–148, April 2012. doi: 10.1109/FCCM.

2012.33.

[99] Garrick Orchard, Jacob G. Martin, R. Jacob Vogelstein, and Ralph Etienne-

Cummings. Fast Neuromimetic Object Recognition Using FPGA Outperforms

GPU Implementations. IEEE Transactions on Neural Networks and Learn-

ing Systems, 24(8):1239–1252, August 2013. ISSN 2162-237X, 2162-2388. doi:

10.1109/TNNLS.2013.2253563. URL http://ieeexplore.ieee.org/lpdocs/

epic03/wrapper.htm?arnumber=6502724.

[100] Nicolas Farrugia, Franck Mamalet, Sbastien Roux, Fan Yang, and Michel Pain-

davoine. Fast and robust face detection on a parallel optimized architecture im-

plemented on FPGA. Circuits and Systems for Video Technology, IEEE Transac-

tions on, 19(4):597–602, 2009. URL http://ieeexplore.ieee.org/xpls/abs_

all.jsp?arnumber=4797837.

[101] C. Farabet, C. Poulet, J.Y. Han, and Y. LeCun. CNP: An FPGA-based processor

for Convolutional Networks. In International Conference on Field Programmable

Logic and Applications, 2009. FPL 2009, pages 32–37, 2009. doi: 10.1109/FPL.

2009.5272559.

[102] C. Farabet, C. Poulet, and Y. LeCun. An FPGA-based stream processor for

embedded real-time vision with Convolutional Networks. In 2009 IEEE 12th In-

ternational Conference on Computer Vision Workshops (ICCV Workshops), pages

878–885, September 2009. doi: 10.1109/ICCVW.2009.5457611.

[103] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and Y. LeCun. Neu-

Flow: A runtime reconfigurable dataflow processor for vision. In Computer Vi-

sion and Pattern Recognition Workshops (CVPRW), 2011 IEEE Computer Society

Conference on, pages 109–116, June 2011. doi: 10.1109/CVPRW.2011.5981829.

[104] C. Farabet, B. Martini, P. Akselrod, S. Talay, Y. LeCun, and E. Culurciello.

Hardware accelerated convolutional neural networks for synthetic vision systems.

In Proceedings of 2010 IEEE International Symposium on Circuits and Systems

(ISCAS), pages 257–260, 2010. doi: 10.1109/ISCAS.2010.5537908.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6502724
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6502724
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4797837
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4797837

Bibliography 153

[105] Phi-Hung Pham, D. Jelaca, C. Farabet, B. Martini, Y. LeCun, and E. Culur-

ciello. NeuFlow: Dataflow vision processing system-on-a-chip. In 2012 IEEE 55th

International Midwest Symposium on Circuits and Systems (MWSCAS), pages

1044–1047, 2012. doi: 10.1109/MWSCAS.2012.6292202.

[106] V. Gokhale, Jonghoon Jin, A. Dundar, B. Martini, and E. Culurciello. A 240 G-

ops/s Mobile Coprocessor for Deep Neural Networks. In 2014 IEEE Conference on

Computer Vision and Pattern Recognition Workshops (CVPRW), pages 696–701,

June 2014. doi: 10.1109/CVPRW.2014.106.

[107] Lukas Cavigelli, David Gschwend, Christoph Mayer, Samuel Willi, Beat Muheim,

and Luca Benini. Origami: A Convolutional Network Accelerator. In Proceedings

of the 25th Edition on Great Lakes Symposium on VLSI, GLSVLSI ’15, pages

199–204, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3474-7. doi: 10.

1145/2742060.2743766. URL http://doi.acm.org/10.1145/2742060.2743766.

[108] S.B. Furber, F. Galluppi, S. Temple, and L.A. Plana. The SpiNNaker Project.

Proceedings of the IEEE, 102(5):652–665, 2014. ISSN 0018-9219. doi: 10.1109/

JPROC.2014.2304638.

[109] Henry Markram. The blue brain project. Nature Reviews. Neuroscience, 7(2):

153–160, February 2006. ISSN 1471-003X. doi: 10.1038/nrn1848.

[110] Kai Kupferschmidt. Virtual rat brain fails to impress its critics. Science, 350

(6258):263–264, October 2015. ISSN 0036-8075, 1095-9203. doi: 10.1126/science.

350.6258.263. URL http://science.sciencemag.org/content/350/6258/263.

[111] Paul A. Merolla, John V. Arthur, Rodrigo Alvarez-Icaza, Andrew S. Cassidy,

Jun Sawada, Filipp Akopyan, Bryan L. Jackson, Nabil Imam, Chen Guo, Yutaka

Nakamura, Bernard Brezzo, Ivan Vo, Steven K. Esser, Rathinakumar Appuswamy,

Brian Taba, Arnon Amir, Myron D. Flickner, William P. Risk, Rajit Manohar, and

Dharmendra S. Modha. A million spiking-neuron integrated circuit with a scalable

communication network and interface. Science, 345(6197):668–673, August 2014.

ISSN 0036-8075, 1095-9203. doi: 10.1126/science.1254642. URL http://science.

sciencemag.org/content/345/6197/668.

[112] IBM Research: Brain-inspired Chip, Accessed: 2016-02-14. URL http://www.

research.ibm.com/articles/brain-chip.shtml.

[113] Jeffrey L. Krichmar, Philippe Coussy, and Nikil Dutt. Large-scale spiking

neural networks using neuromorphic hardware compatible models. J. Emerg.

Technol. Comput. Syst., 11(4):36:1–36:18, April 2015. ISSN 1550-4832. doi:

10.1145/2629509. URL http://doi.acm.org/10.1145/2629509.

http://doi.acm.org/10.1145/2742060.2743766
http://science.sciencemag.org/content/350/6258/263
http://science.sciencemag.org/content/345/6197/668
http://science.sciencemag.org/content/345/6197/668
http://www.research.ibm.com/articles/brain-chip.shtml
http://www.research.ibm.com/articles/brain-chip.shtml
http://doi.acm.org/10.1145/2629509

Bibliography 154

[114] H.M. Hussain, K. Benkrid, and H. Seker. An adaptive implementation of a dynam-

ically reconfigurable K-nearest neighbour classifier on FPGA. In 2012 NASA/ESA

Conference on Adaptive Hardware and Systems (AHS), pages 205–212, June 2012.

doi: 10.1109/AHS.2012.6268651.

[115] Hongying Meng, K. Appiah, A. Hunter, and P. Dickinson. FPGA implementa-

tion of Naive Bayes classifier for visual object recognition. In 2011 IEEE Com-

puter Society Conference on Computer Vision and Pattern Recognition Workshops

(CVPRW), pages 123–128, June 2011. doi: 10.1109/CVPRW.2011.5981831.

[116] Davide Anguita, Luca Carlino, Alessandro Ghio, and Sandro Ridella. A FPGA

Core Generator for Embedded Classification Systems. Journal of Circuits, Sys-

tems, and Computers, 20(2):263–282, 2011. URL http://dblp.uni-trier.de/

db/journals/jcsc/jcsc20.html#AnguitaCGR11.

[117] Minghua Shi, A. Bermak, S. Chandrasekaran, and A. Amira. An Efficient FPGA

Implementation of Gaussian Mixture Models-Based Classifier Using Distributed

Arithmetic. In 13th IEEE International Conference on Electronics, Circuits and

Systems, 2006. ICECS ’06, pages 1276–1279, 2006. doi: 10.1109/ICECS.2006.

379695.

[118] V. Bonato, E. Marques, and G.A. Constantinides. A Parallel Hardware Architec-

ture for Scale and Rotation Invariant Feature Detection. IEEE Transactions on

Circuits and Systems for Video Technology, 18(12):1703–1712, 2008. ISSN 1051-

8215. doi: 10.1109/TCSVT.2008.2004936.

[119] Lifan Yao, Hao Feng, Yiqun Zhu, Zhiguo Jiang, Danpei Zhao, and Wenquan Feng.

An architecture of optimised SIFT feature detection for an FPGA implementa-

tion of an image matcher. In International Conference on Field-Programmable

Technology, 2009. FPT 2009, pages 30–37, 2009. doi: 10.1109/FPT.2009.5377651.

[120] J. Svab, T. Krajnik, J. Faigl, and L. Preucil. FPGA based Speeded Up Robust

Features. In IEEE International Conference on Technologies for Practical Robot

Applications, 2009. TePRA 2009, pages 35–41, November 2009. doi: 10.1109/

TEPRA.2009.5339646.

[121] M. Holler, Simon Tam, H. Castro, and R. Benson. An electrically trainable arti-

ficial neural network (ETANN) with 10240 ’floating gate’ synapses. In , Interna-

tional Joint Conference on Neural Networks, 1989. IJCNN, pages 191–196 vol.2,

1989. doi: 10.1109/IJCNN.1989.118698.

http://dblp.uni-trier.de/db/journals/jcsc/jcsc20.html#AnguitaCGR11
http://dblp.uni-trier.de/db/journals/jcsc/jcsc20.html#AnguitaCGR11

Bibliography 155

[122] N. Mauduit, M. Duranton, J. Gobert, and J.-A. Sirat. Lneuro 1.0: a piece of hard-

ware LEGO for building neural network systems. IEEE Transactions on Neural

Networks, 3(3):414–422, 1992. ISSN 1045-9227. doi: 10.1109/72.129414.

[123] M. Duranton. L-Neuro 2.3: a VLSI for image processing by neural networks.

In , Proceedings of Fifth International Conference on Microelectronics for Neural

Networks, 1996, pages 157–160, 1996. doi: 10.1109/MNNFS.1996.493786.

[124] Kurosh Madani, Ghislain de Trmiolles, and Pascal Tannhof. ZISC-036 Neuro-

processor Based Image Processing. In Jos Mira and Alberto Prieto, editors, Bio-

Inspired Applications of Connectionism, number 2085 in Lecture Notes in Com-

puter Science, pages 200–207. Springer Berlin Heidelberg, June 2001. ISBN 978-3-

540-42237-2 978-3-540-45723-7. URL http://link.springer.com/chapter/10.

1007/3-540-45723-2_24. DOI: 10.1007/3-540-45723-2 24.

[125] Cm1k chip. http://www.cognimem.com/products/chips-and-modules/

CM1K-Chip/index.html, Accessed: 2016-02-14.

[126] Human brain project. https://www.humanbrainproject.eu/, Accessed: 2016-

02-14.

[127] Martin Enserink. A 1 billion brain reboot. Science, 347(6229):1406–1407, March

2015. ISSN 0036-8075, 1095-9203. doi: 10.1126/science.347.6229.1406. URL http:

//science.sciencemag.org/content/347/6229/1406.

[128] K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(10):1615–

1630, October 2005. ISSN 0162-8828. doi: 10.1109/TPAMI.2005.188.

[129] Plinio Moreno, Manuel J. Maŕın-Jiménez, Alexandre Bernardino, José Santos-

Victor, and Nicolás Pérez de la Blanca. A Comparative Study of Local Descriptors

for Object Category Recognition: SIFT vs HMAX, pages 515–522. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2007. ISBN 978-3-540-72847-4. doi: 10.1007/

978-3-540-72847-4 66. URL http://dx.doi.org/10.1007/978-3-540-72847-4_

66.

[130] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the Best Multi-

Stage Architecture for Object Recognition? In 2009 IEEE 12th International

Conference on Computer Vision, pages 2146–2153, September 2009. doi: 10.1109/

ICCV.2009.5459469.

[131] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going

http://link.springer.com/chapter/10.1007/3-540-45723-2_24
http://link.springer.com/chapter/10.1007/3-540-45723-2_24
http://www.cognimem.com/products/chips-and-modules/CM1K-Chip/index.html
http://www.cognimem.com/products/chips-and-modules/CM1K-Chip/index.html
https://www.humanbrainproject.eu/
http://science.sciencemag.org/content/347/6229/1406
http://science.sciencemag.org/content/347/6229/1406
http://dx.doi.org/10.1007/978-3-540-72847-4_66
http://dx.doi.org/10.1007/978-3-540-72847-4_66

Bibliography 156

Deeper with Convolutions. CoRR, 2015. URL http://research.google.com/

pubs/pub43022.html.

[132] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into

rectifiers: Surpassing human-level performance on imagenet classification. CoRR,

abs/1502.01852, 2015. URL http://arxiv.org/abs/1502.01852.

[133] Lapack - linear algrebra package. http://www.netlib.org/lapack/, Accessed:

2016-02-16.

[134] Blas - basic linear algebra subprogram. http://www.netlib.org/blas/, Ac-

cessed: 2016-02-16.

[135] CUDA Implementation of a Biologically Inspired Object Recognition System, Ac-

cessed: 2016-07-31. URL http://code.google.com/p/cbcl-model-cuda/.

[136] Paul Viola and Michael J. Jones. Robust real-time face detection. International

journal of computer vision, 57(2):137–154, 2004. URL http://link.springer.

com/article/10.1023/B:VISI.0000013087.49260.fb.

[137] Itseez. Open source computer vision library. https://github.com/itseez/

opencv, 2015. Accessed: 29-2-2016.

[138] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully Convolutional Net-

works for Semantic Segmentation. arXiv:1411.4038 [cs], November 2014. URL

http://arxiv.org/abs/1411.4038. arXiv: 1411.4038.

[139] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks

for semantic segmentation. CoRR, abs/1411.4038, 2014. URL http://arxiv.org/

abs/1411.4038.

[140] Olivier Boisard, Michel Paindavoine, Olivier Brousse, and Michel Doussot. Opti-

mizations for a bio-inspired algorithm towards implementation on embedded plat-

forms. date, 2015.

[141] Lin-Lin Huang, Akinobu Shimizu, and Hidefumi Kobatake. Robust face de-

tection using Gabor filter features. Pattern Recognition Letters, 26(11):1641–

1649, August 2005. ISSN 01678655. doi: 10.1016/j.patrec.2005.01.015. URL

http://linkinghub.elsevier.com/retrieve/pii/S0167865505000206.

[142] Li Fei-Fei, R. Fergus, and P. Perona. Learning Generative Visual Models from Few

Training Examples: An Incremental Bayesian Approach Tested on 101 Object Cat-

egories. In Conference on Computer Vision and Pattern Recognition Workshop,

2004. CVPRW ’04, pages 178–178, June 2004. doi: 10.1109/CVPR.2004.109.

http://research.google.com/pubs/pub43022.html
http://research.google.com/pubs/pub43022.html
http://arxiv.org/abs/1502.01852
http://www.netlib.org/lapack/
http://www.netlib.org/blas/
http://code.google.com/p/cbcl-model-cuda/
http://link.springer.com/article/10.1023/B:VISI.0000013087.49260.fb
http://link.springer.com/article/10.1023/B:VISI.0000013087.49260.fb
https://github.com/itseez/opencv
https://github.com/itseez/opencv
http://arxiv.org/abs/1411.4038
http://arxiv.org/abs/1411.4038
http://arxiv.org/abs/1411.4038
http://linkinghub.elsevier.com/retrieve/pii/S0167865505000206

Bibliography 157

[143] Kah-Kay Sung, Tomaso Poggio, A. Henry Rowley, Shumeet Baluja, and Takeo

Kanade. Cmu frontal face images test set. http://vasc.ri.cmu.edu/idb/html/

face/frontal_images/, Accessed: 2016-04-11.

[144] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-miller. Labeled

Faces in the Wild: A Database for Studying Face Recognition in Unconstrained

Environments, Accessed: 2016-07-31.

[145] P. Sermanet, K. Kavukcuoglu, S. Chintala, and Y. Lecun. Pedestrian Detection

with Unsupervised Multi-stage Feature Learning. In 2013 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 3626–3633, June 2013.

doi: 10.1109/CVPR.2013.465.

[146] Koray Kavukcuoglu, Pierre Sermanet, Y lan Boureau, Karol Gregor, Michal Math-

ieu, and Yann Lecun. Learning convolutional feature hierarchies for visual recog-

nition. In In NIPS10, 2010.

[147] K. Mizuno, Y. Terachi, K. Takagi, S. Izumi, H. Kawaguchi, and M. Yoshimoto.

Architectural Study of HOG Feature Extraction Processor for Real-Time Object

Detection. In 2012 IEEE Workshop on Signal Processing Systems, pages 197–202,

October 2012. doi: 10.1109/SiPS.2012.57.

[148] M. Jacobsen, Z. Cai, and N. Vasconcelos. FPGA implementation of HOG based

pedestrian detector. In 2015 International SoC Design Conference (ISOCC), pages

191–192, November 2015. doi: 10.1109/ISOCC.2015.7401776.

[149] R. Kadota, H. Sugano, M. Hiromoto, H. Ochi, R. Miyamoto, and Y. Nakamura.

Hardware Architecture for HOG Feature Extraction. In Fifth International Con-

ference on Intelligent Information Hiding and Multimedia Signal Processing, 2009.

IIH-MSP ’09, pages 1330–1333, September 2009. doi: 10.1109/IIH-MSP.2009.216.

[150] Michael Hahnle, Frerk Saxen, Matthias Hisung, Ulrich Brunsmann, and Konrad

Doll. Fpga-based real-time pedestrian detection on high-resolution images. In

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

(CVPRW), Portland, USA, pages 629 – 635, 2013. doi: 10.1109/CVPRW.2013.95.

[151] Pei-Yung Hsiao, Shih-Yu Lin, and Shih-Shinh Huang. An FPGA based human

detection system with embedded platform. Microelectronic Engineering, 138:42–

46, 2015. ISSN 0167-9317. doi: 10.1016/j.mee.2015.01.018. URL http://www.

sciencedirect.com/science/article/pii/S0167931715000271.

[152] K. Negi, K. Dohi, Y. Shibata, and K. Oguri. Deep pipelined one-chip FPGA

implementation of a real-time image-based human detection algorithm. In 2011

http://vasc.ri.cmu.edu/idb/html/face/frontal_images/
http://vasc.ri.cmu.edu/idb/html/face/frontal_images/
http://www.sciencedirect.com/science/article/pii/S0167931715000271
http://www.sciencedirect.com/science/article/pii/S0167931715000271

Bibliography 158

International Conference on Field-Programmable Technology (FPT), pages 1–8,

2011. doi: 10.1109/FPT.2011.6132679.

[153] M. Komorkiewicz, M. Kluczewski, and M. Gorgon. Floating point HOG implemen-

tation for real-time multiple object detection. In 22nd International Conference

on Field Programmable Logic and Applications (FPL), pages 711–714, 2012. doi:

10.1109/FPL.2012.6339159.

[154] C. Kelly, F. M. Siddiqui, B. Bardak, and R. Woods. Histogram of oriented gra-

dients front end processing: An FPGA based processor approach. In 2014 IEEE

Workshop on Signal Processing Systems (SiPS), pages 1–6, October 2014. doi:

10.1109/SiPS.2014.6986093.

[155] Tam Phuong Cao, Guang Deng, and D. Mulligan. Implementation of real-time

pedestrian detection on FPGA. In 2008 23rd International Conference Image and

Vision Computing New Zealand, pages 1–6, November 2008. doi: 10.1109/IVCNZ.

2008.4762094.

[156] S. Lee, H. Son, J. C. Choi, and K. Min. HOG feature extractor circuit for real-

time human and vehicle detection. In TENCON 2012 - 2012 IEEE Region 10

Conference, pages 1–5, November 2012. doi: 10.1109/TENCON.2012.6412287.

[157] P. Y. Chen, C. C. Huang, C. Y. Lien, and Y. H. Tsai. An Efficient Hardware

Implementation of HOG Feature Extraction for Human Detection. IEEE Trans-

actions on Intelligent Transportation Systems, 15(2):656–662, April 2014. ISSN

1524-9050. doi: 10.1109/TITS.2013.2284666.

[158] F. Karakaya, H. Altun, and M. A. Cavuslu. Implementation of HOG algorithm

for real time object recognition applications on FPGA based embedded system. In

2009 IEEE 17th Signal Processing and Communications Applications Conference,

pages 508–511, April 2009. doi: 10.1109/SIU.2009.5136444.

[159] R. Kadota, H. Sugano, M. Hiromoto, H. Ochi, R. Miyamoto, and Y. Nakamura.

Hardware Architecture for HOG Feature Extraction. In Fifth International Con-

ference on Intelligent Information Hiding and Multimedia Signal Processing, 2009.

IIH-MSP ’09, pages 1330–1333, September 2009. doi: 10.1109/IIH-MSP.2009.216.

[160] H. T. Ngo, R. C. Tompkins, J. Foytik, and V. K. Asari. An area efficient modular

architecture for real- time detection of multiple faces in video stream. In 2007

6th International Conference on Information, Communications Signal Processing,

pages 1–5, 2007. doi: 10.1109/ICICS.2007.4449885.

Bibliography 159

[161] C. Cheng and C. S. Bouganis. An FPGA-based object detector with dynamic

workload balancing. In 2011 International Conference on Field-Programmable

Technology (FPT), pages 1–4, 2011. doi: 10.1109/FPT.2011.6132723.

[162] Changjian Gao and Shih-Lien Lu. Novel FPGA based Haar classifier face detection

algorithm acceleration. In 2008 International Conference on Field Programmable

Logic and Applications, pages 373–378, September 2008. doi: 10.1109/FPL.2008.

4629966.

[163] S. Das, A. Jariwala, and P. Engineer. Modified architecture for real-time face

detection using FPGA. In 2012 Nirma University International Conference on

Engineering (NUiCONE), pages 1–5, 2012. doi: 10.1109/NUICONE.2012.6493235.

[164] Sbastien Roux, Franck Mamalet, and Christophe Garcia. Embedded Con-

volutional Face Finder. In IEEE International Conference on Multimedia &

Expo (ICME2006), pages 285–288, August 2006. ISBN 1-4244-0367-7. doi:

10.1109/ICME.2006.262454. URL http://liris.cnrs.fr/publis/?id=6107.

[165] Sbastien Roux, Franck Mamalet, and Christophe Garcia. Embedded facial image

processing with Convolutional Neural Networks. In IEEE Circuits and Systems

Conference (ISCAS 2010), pages 261–264, June 2010. URL http://liris.cnrs.

fr/publis/?id=6072.

[166] Paul Viola, Michael J Jones, and Daniel Snow. Detecting pedestrians using pat-

terns of motion and appearance. International Journal of Computer Vision, 63

(2):153–161, 2005.

[167] Sharat Chikkerur and Tomaso Poggio. Approximations in the HMAX Model, April

2011. URL http://dspace.mit.edu/handle/1721.1/62293.

[168] Thomas Serre, Aude Oliva, and Tomaso Poggio. A feedforward architecture ac-

counts for rapid categorization. Proceedings of the National Academy of Sciences,

104(15):6424–6429, April 2007. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.

0700622104. URL http://www.pnas.org/content/104/15/6424.

[169] Jerome Friedman, Trevor Hastie, Robert Tibshirani, et al. Additive logistic re-

gression: a statistical view of boosting (with discussion and a rejoinder by the

authors). The annals of statistics, 28(2):337–407, 2000.

[170] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. BinaryCon-

nect: Training Deep Neural Networks with binary weights during propagations.

arXiv:1511.00363 [cs], November 2015. URL http://arxiv.org/abs/1511.

00363. arXiv: 1511.00363.

http://liris.cnrs.fr/publis/?id=6107
http://liris.cnrs.fr/publis/?id=6072
http://liris.cnrs.fr/publis/?id=6072
http://dspace.mit.edu/handle/1721.1/62293
http://www.pnas.org/content/104/15/6424
http://arxiv.org/abs/1511.00363
http://arxiv.org/abs/1511.00363

Bibliography 160

[171] Hong-Phuc Trinh, Marc Duranton, and Michel Paindavoine. Efficient Data En-

coding for Convolutional Neural Network Application. ACM Trans. Archit. Code

Optim., 11(4):49:1–49:21, January 2015. ISSN 1544-3566. doi: 10.1145/2685394.

URL http://doi.acm.org/10.1145/2685394.

[172] Stuart P. Lloyd. Least squares quantization in PCM. IEEE Transactions on

Information Theory, 28:129–136, 1982. doi: 10.1109/TIT.1982.1056489.

[173] G. Roe. Quantizing for minimum distortion (corresp.). IEEE Trans. Inf. Theor.,

10(4):384–385, September 2006. ISSN 0018-9448. doi: 10.1109/TIT.1964.1053693.

URL http://dx.doi.org/10.1109/TIT.1964.1053693.

[174] Mohamad T. Musavi, Wahid Ahmed, Khue Hiang Chan, Kathleen B. Faris, and

Donald M. Hummels. On the training of radial basis function classifiers. Neural

networks, 5(4):595–603, 1992. URL http://www.sciencedirect.com/science/

article/pii/S0893608005800383.

http://doi.acm.org/10.1145/2685394
http://dx.doi.org/10.1109/TIT.1964.1053693
http://www.sciencedirect.com/science/article/pii/S0893608005800383
http://www.sciencedirect.com/science/article/pii/S0893608005800383

	Abstract
	Résumé
	Acknowledgements
	List of Figures
	List of Tables
	1 General introduction
	1.1 The need for intelligent systems
	1.2 Machine Learning
	1.3 Embedded systems
	1.4 NeuroDSP: a neuro-inspired integrated circuit
	1.5 Document overview

	2 Related works and problem statement
	2.1 Theoretical background
	2.1.1 Classification frameworks
	2.1.1.1 Neural Networks
	Perceptron
	Multilayer Perceptron
	RBF
	Spiking Neural Network

	2.1.1.2 SVM
	2.1.1.3 Ensemble learning

	2.1.2 Feature extraction frameworks
	2.1.2.1 Signal processing approach
	Classical approaches
	Wavelets

	2.1.2.2 A biological approach: HMAX
	2.1.2.3 ConvNet

	2.2 Frameworks implementations
	2.2.1 Software implementations
	2.2.1.1 Workstations
	2.2.1.2 Embedded systems

	2.2.2 Hardware implementations
	2.2.2.1 Neural networks
	HMAX
	ConvNet
	Spiking Neural Networks

	2.2.2.2 Other frameworks implementations

	2.3 Discussion
	2.3.1 Descriptors and classifiers comparison
	2.3.1.1 Descriptors
	2.3.1.2 Classifiers

	2.3.2 Implementations comparison
	2.3.3 Problem statement

	2.4 Conclusion

	3 Feature selection
	3.1 Feature selection for face detection
	3.1.1 Detecting faces
	3.1.1.1 Cascade of Haar-like features
	Framework description
	Complexity analysis
	Memory print

	3.1.1.2 CFF
	Framework description
	Complexity analysis
	Memory print

	3.1.1.3 HMIN
	Framework description
	Complexity analysis
	Memory print

	3.1.2 HMIN optimizations for face detection
	3.1.2.1 C1 output
	3.1.2.2 Proposed optimizations
	HMIN horizontal
	HMIN horizontal reduced

	3.1.3 Experiments
	3.1.3.1 Test on LFWCrop_grey
	3.1.3.2 Test on CMU
	3.1.3.3 Test on Olivier dataset

	3.2 Feature selection for pedestrian detection
	3.2.1 Detecting pedestrians
	3.2.1.1 HOG
	Gradients computation
	Binning
	Local normalization
	Complexity analysis
	Memory print

	3.2.1.2 ConvNet
	Presentation
	Complexity analysis
	Memory print

	3.2.2 HMAX optimizations for pedestrian detection
	3.2.3 Experiments

	3.3 Discussion
	3.4 Conclusion

	4 Hardware implementation
	4.1 AAM for HMAX
	4.1.1 Description
	4.1.1.1 S1
	4.1.1.2 C1
	4.1.1.3 S2
	4.1.1.4 C2

	4.1.2 Results

	4.2 Proposed simplification
	4.2.1 Input data
	4.2.2 S1 filters coefficients
	4.2.3 S1 output encoding
	4.2.4 Filter reduction in S2
	4.2.5 Manhattan distance in S2

	4.3 FGPA implementation
	4.3.1 Overview
	4.3.2 s1c1
	4.3.2.1 s1
	pixel_manager
	pix_to_stripe
	pixmat

	coeffs_manager
	conv_filter_bank
	conv_crop

	4.3.2.2 conv
	convrow
	sum_acc
	s1degrader

	4.3.2.3 shift_registers
	4.3.2.4 c1
	c1_max_2by2
	c1_pix_to_stripe
	c1_reorg_stripes
	c1_orientations_demux
	c1_orientation
	c1unit
	maxfilt
	c1unit_ctrl

	4.3.2.5 c1_to_s2
	c1_handler

	4.3.3 s2c2
	4.3.3.1 s2
	4.3.3.2 s2_input_manager
	s2_input_handler
	s2_pix_to_stripe

	4.3.3.3 s2_coeffs_manager
	4.3.3.4 s2processors
	4.3.3.5 corner_cropper
	4.3.3.6 s2bank
	4.3.3.7 s2unit
	cum_diff

	4.3.4 c2
	4.3.4.1 c2_to_out

	4.4 Implementation results
	4.4.1 Resource utilization
	4.4.2 Timing

	4.5 Discussion
	4.6 Conclusion

	5 Conclusion
	A RBF networks training
	A.1 Overview
	A.2 Clustering
	A.3 Output layer training

	B Résumé en français
	B.1 Introduction générale
	B.2 État de l'art
	B.2.1 Fondements théoriques
	B.2.1.1 Méthodes de classification
	B.2.1.2 Méthodes d'extraction de caractéristiques

	B.2.2 Implantations matérielles
	B.2.3 Discussion

	B.3 Sélection de caractéristiques
	B.3.1 Détection de visages
	B.3.1.1 Viola-Jones
	B.3.1.2 CFF
	B.3.1.3 HMIN et optimisations
	B.3.1.4 Expérimentations

	B.3.2 Détection de piétons
	B.3.2.1 HOG
	B.3.2.2 ConvNet
	B.3.2.3 Expérimentations

	B.3.3 Conclusion

	B.4 Implantation matérielle
	B.4.1 Optimisations
	B.4.1.1 Données en entrée
	B.4.1.2 Filtres de Gabor
	B.4.1.3 Autres optimisations

	B.4.2 Résultats d'implantation
	B.4.3 Conclusion

	B.5 Conclusion

	Publications
	Bibliography

