Conjurer la malédiction de la dimension dans le calcul du noyau de viabilité à l'aide de parallélisation sur carte graphique et de la théorie de la fiabilité : application à des dynamiques environnementales

par Antoine Brias

Thèse de doctorat en Informatique

Sous la direction de Jean-Denis Mathias.

Soutenue le 15-12-2016

à Clermont-Ferrand 2 , dans le cadre de École doctorale des sciences pour l'ingénieur (Clermont-Ferrand) , en partenariat avec Laboratoire d'ingénierie pour les systèmes complexes (laboratoire) et de Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (France) (Etablissement public à caractère scientifique et technologique) .

Le président du jury était Luc Doyen.

Le jury était composé de Jean-Denis Mathias, Guillaume Deffuant, Alaa Chateauneuf.

Les rapporteurs étaient Jean-Christophe Soulié, Vincent Martinet.


  • Résumé

    La théorie de la viabilité propose des outils permettant de contrôler un système dynamique afin de le maintenir dans un domaine de contraintes. Le concept central de cette théorie est le noyau de viabilité, qui est l’ensemble des états initiaux à partir desquels il existe au moins une trajectoire contrôlée restant dans le domaine de contraintes. Cependant, le temps et l’espace nécessaires au calcul du noyau de viabilité augmentent exponentiellement avec le nombre de dimensions du problème considéré. C’est la malédiction de la dimension. Elle est d’autant plus présente dans le cas de systèmes incorporant des incertitudes. Dans ce cas-là, le noyau de viabilité devient l’ensemble des états pour lesquels il existe une stratégie de contrôle permettant de rester dans le domaine de contraintes avec au moins une certaine probabilité jusqu’à l’horizon de temps donné. L’objectif de cette thèse est d’étudier et de développer des approches afin de combattre cette malédiction de la dimension. Pour ce faire, nous avons proposé deux axes de recherche : la parallélisation des calculs et l’utilisation de la théorie de la fiabilité. Les résultats sont illustrés par plusieurs applications. Le premier axe explore l’utilisation de calcul parallèle sur carte graphique. La version du programme utilisant la carte graphique est jusqu’à 20 fois plus rapide que la version séquentielle, traitant des problèmes jusqu’en dimension 7. Outre ces gains en temps de calcul, nos travaux montrent que la majeure partie des ressources est utilisée pour le calcul des probabilités de transition du système. Cette observation fait le lien avec le deuxième axe de recherche qui propose un algorithme calculant une approximation de noyaux de viabilité stochastiques utilisant des méthodes fiabilistes calculant les probabilités de transition. L’espace-mémoire requis par cet algorithme est une fonction linéaire du nombre d’états de la grille utilisée, contrairement à l’espace-mémoire requis par l’algorithme de programmation dynamique classique qui dépend quadratiquement du nombre d’états. Ces approches permettent d’envisager l’application de la théorie de la viabilité à des systèmes de plus grande dimension. Ainsi nous l’avons appliquée à un modèle de dynamique du phosphore dans le cadre de la gestion de l’eutrophisation des lacs, préalablement calibré sur les données du lac du Bourget. De plus, les liens entre fiabilité et viabilité sont mis en valeur avec une application du calcul de noyau de viabilité stochastique, autrement appelé noyau de fiabilité, en conception fiable dans le cas d’une poutre corrodée.

  • Titre traduit

    Dispel the dimensionality curse in viability kernel computation with the help of GPGPU and reliability theory : application to environmental dynamics


  • Résumé

    Viability theory provides tools to maintain a dynamical system in a constraint domain. The main concept of this theory is the viability kernel, which is the set of initial states from which there is at least one controlled trajectory remaining in the constraint domain. However, the time and space needed to calculate the viability kernel increases exponentially with the number of dimensions of the problem. This issue is known as “the curse of dimensionality”. This curse is even more present when applying the viability theory to uncertain systems. In this case, the viability kernel is the set of states for which there is at least a control strategy to stay in the constraint domain with some probability until the time horizon. The objective of this thesis is to study and develop approaches to beat back the curse of dimensionality. We propose two lines of research: the parallel computing and the use of reliability theory tools. The results are illustrated by several applications. The first line explores the use of parallel computing on graphics card. The version of the program using the graphics card is up to 20 times faster than the sequential version, dealing with problems until dimension 7. In addition to the gains in calculation time, our work shows that the majority of the resources is used to the calculation of transition probabilities. This observation makes the link with the second line of research which proposes an algorithm calculating a stochastic approximation of viability kernels by using reliability methods in order to compute the transition probabilities. The memory space required by this algorithm is a linear function of the number of states of the grid, unlike the memory space required by conventional dynamic programming algorithm which quadratically depends on the number of states. These approaches may enable the use of the viability theory in the case of high-dimension systems. So we applied it to a phosphorus dynamics for the management of Lake Bourget eutrophication, previously calibrated from experimental data. In addition the relationship between reliability and viability is highlighted with an application of stochastic viability kernel computation, otherwise known as reliability kernel, in reliable design in the case of a corroded beam.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Clermont Auvergne. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.