Estimation de la volatilité pour des processus de diffusion : grandes déviations et déviations modérées

par Yacouba Samoura

Thèse de doctorat en Mathématiques Appliquées

Sous la direction de Arnaud Guillin et de Hacène Djellout.

Soutenue le 09-12-2016

à Clermont-Ferrand 2 , dans le cadre de École doctorale des sciences fondamentales (Clermont-Ferrand) , en partenariat avec Laboratoire de mathématiques appliquées (Clermont-Ferrand) (laboratoire) et de Laboratoire de Mathématiques Blaise Pascal - Clermont Auvergne / LMBP (laboratoire) .

Le président du jury était Marguerite Zani.

Le jury était composé de Arnaud Guillin, Hacène Djellout, Emmanuelle Clément, Liming Wu.

Les rapporteurs étaient Marguerite Zani, Jamal Najim.


  • Résumé

    Cette thèse est consacrée à l’étude de théorèmes limites : grandes déviations et déviations modérées pour des estimateurs liés à des modèles financiers. Dans une première partie, nous nous sommes intéressés à l’étude des déviations grandes et modérées des estimateurs de la covariation et de la (co)volatilité réalisée issus des fonctionnelles associées à deux processus de diffusion couplés de manière synchronisée. Les techniques utilisées dans ces travaux sont basées d’une part sur celles utilisées dans Djellout-Guillin-Wu et sur la sous additivité et sur la notion d’approximation exponentielle inspirées des travaux de J. Najim d’autre part. Dans une deuxième partie, on considère que les deux processus de diffusion sont observés de manière non synchronisée et on établit des déviations modérées pour l’estimateur de la variation généralisée et pour celui de Hayashi-Yoshida. Les résultats sont obtenus par l’utilisation d’une nouvelle approche sur les déviations modérées des variables aléatoires m−dépendantes vérifiant des conditions de type "Chen-Ledoux". Dans la troisième et dernière partie, on s’intéresse à l’étude processus autorégressif d’ordre p dont le bruit est un processus autorégressif d’ordre q. On montre des déviations modérées pour certains estimateurs associés à notre modèle dont la statistique de Durbin-Watson. Les résultats sont donnés dans le cas où le bruit est gaussien puis dans le cas de condition de type "Chen-Ledoux" portant sur le bruit.

  • Titre traduit

    Estimation of the realised volatility for diffusion processes : large and moderate deviations


  • Résumé

    This thesis is devoted to the study of the limits theorem : large and moderate déviations for some financial mathematicals estimators. In the first part, we studied the large and moderate deviations of the estimators of covariation and the realized (co)volatility obtained from the functional associated to two diffusion processes coupled in synchronous manner. The techniques used in this work are based, on the one hand, on those used in Djellout-Guillin-Wu and the subadditivity and the exponential approximation notion inspired by J. Najim results on the other hand. In the second part, we consider that ours two diffusion processes are observed in a nonsynchronized manner and on the establish the moderate deviations for the generalised bipower variation estimator and the Hayashi-Yoshida estimator. The results are obtained by using a new approach on the moderate deviations of the m−dependent random variables based on the Chen-Ledoux type condition. In the third and last part, we study the stable autoregressive process of order p where the driven noise is also given by a q-order autoregressive process. We prove the moderate deviations for some estimators associated with our model such as the Durbin-Watson statistic. The results are given in the case where the driven noise is the normally distributed then in the case where the driven noise satisfy a Chen-Ledoux type condition.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Clermont Auvergne. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.