Développement et modélisation d'un photobioréacteur solaire à dilution interne du rayonnement

par Vincent Rochatte

Thèse de doctorat en Génie des Procédés

Sous la direction de Jean-François Cornet.

Soutenue le 22-06-2016

à Clermont-Ferrand 2 , dans le cadre de École doctorale des sciences pour l'ingénieur (Clermont-Ferrand) , en partenariat avec Institut Pascal (Aubière, Puy-de-Dôme) (laboratoire) et de Institut Pascal - Clermont Auvergne / IP (laboratoire) .

Le président du jury était Jean-Stéphane Condoret.

Le jury était composé de Jean-François Cornet, Claude-Gilles Dussap, Jérémi Dauchet, Christophe Lasseur, Vincent Eymet.

Les rapporteurs étaient Jérémy Pruvost, Cyril Caliot.


  • Résumé

    La présente thèse, concernant l’ingénierie de la photosynthèse naturelle et notamment l’optimisation des procédés de production de microalgues, a été menée à l'Institut Pascal. L'approche suivie repose sur la construction de modèles de connaissance des photobioréacteurs, capables d'en prédire les performances quelle que soit leur géométrie, les conditions d'éclairement, ou le type de microalgues cultivées. Ces modèles de connaissance permettent de dégager des stratégies de conception et de conduite du procédé, qui sont utilisées pour développer et réaliser des démonstrateurs performants, à l'échelle pilote. Cette thèse a pour objet d'étude un photobioréacteur pilote de 24 litres utiles à agitation pneumatique dans lequel la lumière est apportée dans le volume réactionnel par 1000 fibres optiques à diffusion latérale. Sa conception repose sur le principe innovant de Dilution Contrôlée du Flux solaire en Volume (DiCoFluV) dont l'objectif est d'atteindre l'efficacité thermodynamique maximale de la photosynthèse. Au cours de cette thèse, le réacteur a été étudié en conditions d’éclairement parfaitement contrôlées, grâce à des lampes à décharges. Il a été rendu fonctionnel (en incluant sa régulation et son amélioration), puis caractérisé en termes d'hydrodynamique et de transfert radiatif. Notamment, le flux radiatif incident à la surface des fibres optiques a été déterminé par des expériences d'actinométrie (sel de Reinecke), grâce à un traitement original permettant l'analyse de situations avec absorption partielle du rayonnement et en géométrie complexe. Ensuite, une année de culture ininterrompue de la cyanobactérie Arthrospira platensis (dont six phases de fonctionnement continu) ont permis de mesurer la vitesse volumétrique moyenne de production de biomasse et l'efficacité thermodynamique du pilote. Pour les faibles densités de flux testées (dilution), les résultats expérimentaux ont montré l’apparition d’un phénomène de photorespiration qui a été intégré dans le modèle de couplage thermocinétique. De plus, ce manuscrit présente également l'utilisation de la méthode de Monte Carlo pour la résolution des modèles radiatifs dans la géométrie réelle du procédé, définie à partir d’une conception assistée par ordinateur, ce qui est une nouvelle avancée pour le traitement des géométries complexes. Après validation de l'adéquation entre les mesures expérimentales et l'estimation prédictive par le modèle, des premières simulations du pilote en fonctionnement solaire ont été menées, à partir de bases de données solaires (DNI). Les résultats obtenus donnent des premières indications quant aux paramètres d'ingénierie (en particulier le facteur de dilution) menant à une productivité surfacique moyenne annuelle maximale, en fonction de l'implantation géographique.

  • Titre traduit

    Development and modeling of a solar photobioreactor with internal dilution of radiation


  • Résumé

    The present PhD dissertation deals with photobioreaction engineering for efficient microalgae production. The approach is based on the construction of knowledge models that permit predicting the performances of the process, whatever its design, the illumination conditions, or the microalgae species cultivated. These models are used to establish optimal design and control strategies that are implemented to construct and operate pilot-scale plants. Here, a 24 liters air-lift photobioreactor is studied, that is based on the principle of incident solar light-flux dilution for approaching the maximum thermodynamic efficiency of natural photosynthesis. For that purpose, the culture volume is internally illuminated by 1000 light-diffusing optical fibers. As a first step toward solar production, this PhD work focuses on perfectly controlled illumination conditions ensured by discharge lamps. First, the reactor hydrodynamics and radiative transfer are characterized. In particular, incident light-flux density at the fiber surfaces is measured by actinometry (with Reinecke salt), thanks to a novel treatment enabling analyses of situations with partial light absorption and complex geometries. Then, the mean volumetric rate of biomass production and the process efficiency are measured based on one year of continuous Arthrospira platensis culture. For the low radiative flux densities tested (dilution), photorespiration by the cyanobacterium is observed and included in the thermokinetic model. Moreover, this dissertation includes a presentation of the Monte Carlo method for solving the radiative transfer equation withinthe complex geometry of the computer aided design used for manufacturing the reactor. After validation against experimental results, the model is predictively used to simulate the pilot operating with natural solar light, based on solar DNI databases. These results indicate engineering parameters (in particular the dilution factor) for optimal yearly-averaged surface productivity, as a function of Earth location.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Bibliothèque Clermont Université (Clermont-Ferrand).
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.