Caractérisation quantitative de la variation métabolique cérébrale : application à la comparaison de PET-SCANS.

par Basile Roche

Thèse de doctorat en Sciences pour l'ingenieur

Sous la direction de Fabien Feschet et de Jean-Jacques Lemaire.


  • Résumé

    La Tomographie par Émission de Positons (TEP) est une méthode d'imagerie médicale nucléaire permettant de mesurer l'activité métabolique d'un organe par la dégradation d'un radio-traceur injecté. Cette méthode d'imagerie peut être utilisée pour l'observation de l'activité métabolique cérébrale à l'aide d'un radio-traceur adéquat, tel que le 18F-Fluorodésoxyglucose. Dans le cadre d'une étude clinique, des patients cérébro-lésés ayant des troubles de la conscience ont eu une chirurgie d'implantation d'électrodes de Stimulation Cérébrale Profonde (SCP). Afin d'effectuer un suivi des patients avant et après la procédure de SCP, et parce qu'elle est compatible avec la présence d'électrode, l'imagerie TEP est utilisée. Nous nous posons la question suivante, comment caractériser les variations entre deux imageries TEP afin de mesurer précisément l'éffet d'un traitement ? Par construction les valeurs obtenues en imagerie TEP dépendent de nombreux facteurs. Si le poids du patient ainsi que la quantité injectée de radio-traceur marqué sont classiquement normalisés en utilisant la méthode des 'Standard Uptake Value' (SUV), la glycémie, entre autre ne l'est pas. Pour cette raison, calculer les variations d'activités entre deux imageries TEP est un problème délicat. Nous proposons une fonction pour calculer les cartes de variation métabolique de deux acquisitions TEP basée sur une approche voxel du ratio des imageries TEP. Nous l'appliquons à l'étude des patients stimulés (SCP) avec troubles de la conscience. Plus spéciffiquement, nous nous intéressons à la comparaison des imageries TEP intra-patient (avant versus après SCP), mais aussi à la comparaison interpatient (patient versus référence). Dans le processus de création des cartes intra-patient, les imageries TEP sont recalées rigidement avec une acquisition pondérée T1 d'Imagerie par Résonance Magnétique (IRM) structurelle. Du fait de déformations majeures liées aux lésions cérébrales, un masque cérébral précis est créé manuellement par un expert clinique. Dans le processus de création des cartes inter-patient, les imageries TEP des patients sont recalées de manière élastique à une imagerie de référence, un atlas (groupe témoin), que nous construisons. Dans ce cas, un masque semi-automatique de l'intérieur de la boîte crânienne est réalisé. Les résultats peuvent être affinés par l'application supplémentaire d'un masque manuel déformé. Un des points clefs de la méthode est de calculer une normalisation spécifique à chaque imagerie, les rendant comparables, afin de calculer une caractérisation quantitative des variations métaboliques cérébrales. Les cartes de variation métabolique cérébrale obtenues sont ensuite comparées aux évaluations et effets cliniques observés afin de juger de leur pertinence.

  • Titre traduit

    Quantitative evaluation of brain metabolic variations : Application to PET-scans comparison.


  • Résumé

    Positron Emission Tomography is a nuclear medicine imaging method, allowing measure of an organe metabolic activity through degradation of an injected radio-tracer. This methode can be used, with the appropriate radio-tracer, such as 18F-Fluorodeoxyglucose, for observation of cerebral metabolic activity. Through a clinical study, brain damaged patients with counciousness disorders had an implantation surgery of Deep Brain Stimulation (DBS) electrodes. To be able to do the follow up of the patient before and after the DBS procedure, and because it's compatible with electrodes, PET imaging is used. We ask ourself the following question, how to characterize variations between two PET images, to precisely mesure the impact of a treatment ? By construction, PET imaging obtained values depend of numerous factors. If patient weight and injected radio-tracer are classicaly normalized, using the `Standard Uptake Value' (SUV) method, glycemia for exemple is not. For this reason, compute activity variations between two PET images is a delicate problem. We propose a specific function to allow computation of metabolic variation maps for two PET acquisitions, based on a voxel approach of the PET imaging ratio. We apply it to the study of stimulated patients (DBS) with counciousness disorders. More specifically, we are interested in intra-patient PET imaging comparison (before versus after DBS), but also in inter-patient comparison (patient versus reference). During the intra-patient maps creation process, PET patient images are rigidly registered with a T1 weighted structural Magnetic Resonance Imaging (MRI) acquisition. Due to major deformation caused by cerebral injuries, a precise brain mask is created by a clinical expert. During the inter-patient maps creation process, PET patient imaging are non-rigidly registered to a reference imaging, an Atlas we build. In this case, a semi automatic mask of the inside skull is computed. Results can be further improved by the supplementary application of a deformed manual mask. One of the method key elements, is to estimate a specific normalization for each imaging, making them comparable, in order to calculate quantitative charaterisation of cerebral metabolic variations. Cerebral metabolic variation maps obtained are then compared to observed clinical assesments and effects to judge their relevance.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?