Etude de quelques modèles issus de la théorie des jeux en champ moyen

par Igor Swiecicki

Thèse de doctorat en Physique - Cergy

Sous la direction de Thierry Gobron et de Denis Ullmo.

Le président du jury était Jean-Philippe Bouchaud.

Le jury était composé de Denis Ullmo, Pierre Cardaliaguet, Gabriel Turinici.

Les rapporteurs étaient Damien Challet, Pablo Jensen.


  • Résumé

    La théorie des jeux en champ moyen constitue un formalisme puissant introduit récemmentpour étudier des problèmes d’optimisation stochastiques avec un grand nombre d’agents. Aprèsavoir rappelé les principes de base de cette théorie et présenté quelques cas d’applicationtypiques, on étudie en détail un modèle stylisé de séminaire, de type champ moyen. Nousdérivons une équation exacte qui permet de prédire l’heure de commencement du séminaire etanalysons différents régimes limites, dans lesquels on parvient à des expressions approchées de lasolution. Ainsi on obtient un "diagramme de phase" du problème. On aborde ensuite un modèleplus complexe de population avec des effets de groupe attractifs. Grâce à une analogie formelleavec l’équation de Schrödinger non linéaire, on met en évidence des lois d’évolutions généralespour les valeurs moyennes du problème, que le système vérifie certaines lois de conservation etl’ on développe des approximations de type variationnel. Cela nous permet de comprendre lecomportement qualitatif du problème dans le régime de fortes interactions.

  • Titre traduit

    Study of some models from Mean Field Games theory


  • Résumé

    Mean Field Games Theory is a theoretical framework developed recently to deal withstochastic optimization problems when the number of agents is large. First the mathematicaltools are introduced heuristically, step by step, and some examples are presented in finance,economy and social problems. I study then thoroughly a seminar toymodel and derive anequation for the starting time of the meeting. The analysis of the limit regimes allows to builda "phase diagram" of the problem. In a second time, a herding problem, where individualshave their own preferences and are attracted by the group, is tackled. Thanks to a formal analogywith the Non Linear Schrödinger equation, some explicit solutions, conservation laws andso-called variational approximations are derived. Finally I use these tools to get a qualitativeunderstanding of the solution’s behaviour in the strong interaction regime.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université de Cergy-Pontoise. Service commune de la documentation. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.