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Résumé

Dans la premiére partie de cette thése, nous avons considéré les équations de Maxwell
en temps et construit une formulation discontinue de Galerkin (DG). On a montré que
cette formulation est bien posée et ensuite on a établi des estimateurs a priori pour cette
formulation. On a obtenu des résultats numériques pour valider les estimateurs a priori
obtenus théoriquement. Dans la deuxiéme partie de cette thése, des estimateurs d’erreur
a posteriori de cette formulation sont établis, pour le cas semi-discret et pour le systéme
complétement discrétisé. Dans la troisiéme partie de cette thése, on considére les équations
de Maxwell en régime harmonique. On a développé une formulation discontinue de Galerkin
mixte. On a établi des estimations d’erreur a posteriori pour cette formulation.

Mots-clés: Equations de Maxwell, Méthode de Galerkin discontinue (DG), a posteriori, a

priori

Abstract

In the first part of this thesis, we have considered the time-dependent Maxwell’s equations
in second-order form and constructed discontinuous Galerkin (DG) formulation. We have
established a priori error estimates for this formulation and carried out the numerical
analysis to confirm our theoretical results. In the second part of this thesis, we have
established a posteriori error estimates of this formulation for both semi discrete and
fully discrete case. In the third part of the thesis we have considered the time-harmonic
Maxwell’s equations and we have developed mixed discontinuous Galerkin formulation.
We showed the well posedness of this formulation and have established a posteriori error
estimates.

Keywords: Maxwell’s equations, Discontinuous Galerkin(DG), a posteriori, a priori
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CHAPTER 0

Introduction

Motivation

The modeling of enviromental and physical phenomena arising in engineering
and the sciences leads to partial differential equations in space and time, ex-
pressing the mathematical model of the problem to be solved. Unfortunately,
in most cases the analytical solution of these problems does not exist, hence
the numerical methods are developed and employed to find the approximate
solutions. These methods provide approximate solutions belonging to a func-
tional space of finite dimension.

The discretization of partial differential equations by the numerical methods
generally leads to large systems. Solving large systems is costly in terms of
computation time and computer resources. Here it comes the issue of deter-
mining the accuracy of the numerical method, the questions that arise are:
how can the approximation error be mesured, controlled, and effectively min-
imized?

The theories and methods of a posteriori error estimation have been devel-
oped to answer these questions, where the approximate solution itself is used
to assess the accuracy. Indeed, the goal of a posteriori error estimates is to
give bounds on the error between the approximation and the exact solution
in an appropriate norm, these bounds can be calculated in practice, once the
approximate solution is known.

A posteriori error estimation formed the basis of adaptive mesh, refinement
and coarsening techniques which are used to control and minimize the er-
ror. This procedure provide stopping criteria to ensure control overall error.
The literature on a posteriori error estimation is vast. There exists different
categories of a posteriori error estimates. We cite here the explicit residual
estimates, cf. [BR78al, [VE96|, and [CA97|, the equilibrated residual method,
cf. Ainsworth and Oden [OA00|, equilibrated fluxes estimates, cf. [PS47],
[BS08], [AI05], [VO13], functional a posteriori error estimates, cf. [RE08],
hierarchical estimates, cf. [BS93].

In this thesis, we analyse the numerical approximation of Maxwell’s equations
by discontinuous Galerkin (DG) method, which is a very interesting method
for adaptive mesh technique as it can easily handle complex geometries, irreg-
ular meshes with hanging nodes and approximations that have polynomials
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of different degrees in different elements. In the first part of this thesis, we
propose a new symmetric DG method for the spatial discretization of time-
dependent Maxwell’s equations in second order form. We derive a priori error
estimates for this DG formulation and carried out some numerical experiments
to confirm our theoretical results. In the second part of this thesis, we have
derived a posteriori error estimates in the L2-norm for the DG formulation
of this problem both for semi-discrete and fully discrete case. For Maxwell’s
equations, there exists the work on a posteriori error control, mostly for the
time-harmonic case. For example, in [CDO07|, they have derived three types of
a posteriori error estimates for finite element method. In [BHHWO00], [SCO08]
residual type estimates have been developed for finite element method. In
|[HPDO7|, the a posteriori error estimates for DG method has been derived.
To our knowledge, a posteriori error estimates have not been derived for the
DG discretisation of time-dependent Maxwell’s equations.

In the third part, we consider the time-harmonic Maxwell’s equations in fre-
quency domaine. We discretize this problem by the mixed DG method and
we derive a posteriori error estimates for this DG formulation.

In this chapter, we first state the Maxwell’s equations in time and frequency
domain. Then we give a brief introduction of DG method. We end this general
introduction by giving an outline of this thesis.

Maxwell’s equations

In 1873 Maxwell introduced the equations that founded the modern theory
of electromagnetism with the publication of his Treatise on FElectricity and
Magnetics, these equations now bear his name. A macroscopic electromagnetic
field created by a distribution of static electric charges with charge density o
and the directed flow of electric charge with current density J is described by
the four Maxwell’s equations

oB
E—FVX&'_O, (1&)
oD
STV XH =7, (1c)
V-B=0, (1d)

where the vector functions £, D, H,B,J and the scalar ¢ are functions of
position = € R? and time ¢.
Equation (1a) is Faraday’s law and gives the effect of a changing magnetic



field B on the electric field £. Equation (1b) is Gauss’s law and describes the
effect of the charge density o on the electric displacement D. Equation (1c) is
Ampeére’s law and it gives the effect of a changing electric displacement D and
a flow of electric charges J to the magnetic field H. Finally, (1d) is Gauss’s
law and it shows that the magnetic induction B is solenoidal.

If charge is conserved, the divergence constraint (1b) and (1d) follows from
(1a) and (1c) by taking the divergence of these two equations, we have

oB oD

But it can be proved that from charge conservation p and J are linked by the

following relation
Do

V-j+a=(), (3)
hence, we have
2V~B—2(V-D— )=0 (4)
oty T ot o=5

Thus if the divergence constraints (1b) and (1d) hold at one time, they hold
for all time. However, these divergence constraints can not be ignored while
discretizing (1). A good numerical scheme must satify the discrete analogues
of (1b)and (1d).
The equations (1)-(4) are completed by two constitutive laws that links B
to H and D to & respectively. These laws depend on the characteristics of
the matter in the domain of electromagnetic field. We assume that material
occupying the domain is inhomogeneous, isotropic and linear, then the fields
are related by

D = €€ and B = uH, (5)

where p, relative magnetic permittivity and e, relative electric permeability are
scalar, postive and bounded functions of € R. In conducting materials, we
have another constitutive law, the electromagnetic field gives rise to currents.
If we assume the field strength small, we can suppose that Ohms law holds

J =0&+ Js. (6)

Here o the conductivity of the medium is scalar function of position. It is
positive in a conductor and vanishes in an insulator. J; gives the applied
current density.

By subsituting (5) and (6) in to (1a)-(1d), we obtain

o0&
EEZVXH—Ug—ﬂ, (7)

V- (e€) = o, (8)
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“%—7: V&l (9)
V- (uH)=0 (10)

which is the fundamental Maxwell time dependent system. By taking the
time derivative of (7) and the rotation of (9), we eliminate the magnetic field
H, and we get the second order form of Maxwell system for the electric field

&
2
{ eaa—t‘;:—i-a%—i-Vx (M_1Vx5):—%, (1)
V- (e€) =o.

A similar equation can be derived for H, if o = 0 or if ¢, 0 > 0 are constants.
Now we will derive the Maxwell’s system for time harmonic fields. By taking
the Fourier transform in time or considering the electromagnetic propagation
at a single frequency w > 0, e.g. if the source currents J; and charge density
o vary sinusoidally in time, the Maxwell’s time dependent system (7)-(10)
can be reduced to stationary equation in frequency domain. We subsitute in
(7)-(9) the time-harmonic fields

E(x,t) = Re(exp(iwt)E(x)), H(x,t) = Re(exp(iwt)H (x)),

12
Js(x,t) = Re(exp(iwt)Js(x)), (12)
to get
ciwkE =V xH—-ocFE — J, (13)
pwiwH =V x E. (14)
Combining the equations (13)-(14), we obtain the second order time-harmonic
equation
VX (p 'V x E)—uwec—iow " E = j, (15)
where j = —iwJ;. Now we derive the divergence constrain (8) in time-

harmonic fields, Taking the derivative with respect to time of (8) and using
the Ohm’s law (6) and the relation (3), we get

o0&
V- (GE) = —V.(c€+ Ts).

Subsituting the time-harmonic fields (12) in the above equation, it reduces to,
1

V- (w(e—iow )E) = ——=V.j. (16)
w

The system of equations (15)-(16) is Maxwell’s time-harmonic system for elec-
tric field E. The similar equations can be derived for magnetic field H.

In the low frequency case, we have ¢ >> ew and the term w?
the system (15)-(16) in this case is also referred to eddy current problem.
Whereas in the high frequency case, we have 0 << ew and the term with
icw™! is neglected.

€ is neglected,



Discontinuous Galerkin Method

The discontinuous Galerkin (DG) method is a numerical method which was
first introduced by Reed and Hill [RH73] in 1973, as a tool to solve neutron
transport problems. The advantage of DG methods are that they are locally
conservative, stable, and high-order accurate. Recently this technique has
become popular as a method for solving fluid dynamics or electromagnetic
problems. An introduction to DG methods can be found in [CO99|. A history
of their evolution can be found in [CKS00|. Finally, a fairly complete and
updated review is given in [CS01].

Outline of thesis

The thesis is organised as follows: the chapter 1 consists of the preliminary
results and notations, which we will use througout the thesis. In chapter 2,
we first present the mathematical model problem and we derive the DG for-
mulation for the semi and fully time discretization. We prove the continuity
and coercivity of the bilinear form. In chapter 3, we derive a priori error esti-
mates for the formulation proposed in previous chapter and we present some
numerical results to confirm the convergence of our theoretical results. The
chapter 4 is devoted to derive an abstract a posteriori error estimate for the
seme-discrete case. To derive the a posteriori error estimates, we introduce
the time-harmonic reconstruction of the approximate solution. In chapter 5,
the a posteriori error estimate for fully discrete case is developed using an
appropraite space-time reconstruction. In chapter 6, we generalize our time-
harmonic reconstruction technique to obtain a posteriori error estimates for
any time-dependent problem via the a posteriori error estimates of the cor-
responding stationary problem. In chapter 7, we consider the time harmonic
Maxwell’s equations and we derive a mixed DG formulation for this model
probelm. We prove the well-posedness of our formulation and further we de-
rive a posteriori error estimates for this DG formulation.

In chapter 8, we give the conclusion and perspectives of our work.

In the end, we have put the proof of some auxiliary results in appendix A.






CHAPTER 1

Preliminaries and notations

Contents
1.1 Elements of function spaces . ... ... ........ 11
1.1.1 Sobolev spaces . . . . . . .. ... .. 12
1.1.2 Finite element spaces . . . . . . . . .. ... ... ... 14
1.1.3 Some functional inequalities . . . . . . . .. ... ... 16
1.1.4 Interpolation operators. . . . . . . .. ... ... ... 17

1.1 Elements of function spaces

Let © be a bounded Lipschitz polyhedron in R%, d = 2,3, with boundary 09
and outward unit normal n. We assume () to be simply connected and 0Of)
to be connected. We consider a class of spaces that consist of (Lebesgue-)
integrable functions. Let p be a real number, p > 1, we denote by LP()) the
set of all real-valued functions defined on €2 such that

/Q lu(z)Pda < co.

Any two functions which are equal almost everywhere (i.e. equal, except on
a set of measure zero) on € are identified with each other. LP({) is equipped

(@)l = ( / |u<x>|pda:> g

A function u that is measurable on € is said to be essentially bounded on
Q) if there is a constant M such that u(z) < M a.e. on Q. The greatest
lower bound of such constants M is called the essential supremum of u on {2,
and is denoted by esssup,.qu(z). We denote by L*(2) the vector space of
all functions v that are essentially bounded on €2, functions being once again
identified if they are equal a.e. on . L*°(Q) is equipped with the norm

with the norm

|u(x)|| Lo = esssup,equ(x).
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A particularly important case corresponds to taking p = 2. The space
L?(€2) is Hilbert space endowed with the inner product

(u,v)Q:/Qu(a:)v(J:)da:.

The norm in L?*(2) is denoted by ||.|[o.o or simply |.|lo when no confusion
about domain (2 is possible.

1.1.1 Sobolev spaces

Let m be a non-negative integer, and 1 < p < co. We define with D® denoting
a weak or distributional derivative of order |a|, where o = (v, aa,..., ) €
N and |o| =1 +as + -+ ay

W(Q) ={ue LP(Q) : D € LP(Q), |a] < m},

p

W () is called Sobolev space of order m; it is a Banach space equipped with
the norm

1

P

lullwy @) = ( > ||Dau||gp> when 1 < p < 00
|| <m

and

lullwz@) = Y ID*ulz= when p = co.

la|<m

We define the semi norm on W"(€2), for m > 1

B =

ulwm ) = ( Z HDO‘uH’ip) when 1 < p < o0

|lal=m

and

[ulwm ) = Z | D%u|| L when p = oo.

laf=m

A special case corresponds to taking p = 2; W3"(€2) is a Hilbert space with
the inner product

(U,U)W;L(Q) = Z (D%u, D).

laj<m

We denote by H™(S2), the hilbertian Sobolev space of order m > 0 instead
of W3*(€2), we shall use the notation |.||,nq and |.|,q for H™ norms and
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semi norms respectively. In particular, for m = 0, we identify the space

HO(Q) = L*(Q2), and so the norm ||ulloo = ||ul/12(0)-

Negative-order Sobolev spaces H " (£2) for m > 0 are defined through duality.

In the case m = 1, the definition of (-, -)q is extended to the standard duality

pairing between H () and H{(Q).

When considering vector-valued functions u : 2 — R?, we define the space
H(curl; Q) = {u € L*(Q)* : V x u € L*(Q)*}.

It is endowed with the norm

lullzreune) = (Jullge + IV x ul§q)?. (1.1)
And the space
H(div;Q) = {u € L*(Q)® : V -u € L*(Q)}.
It is equipped with the graph norm, i.e.,
1
[ull . = (lullgo + IV - ullgq)2.

For space-time vector valued functions v(t, ), (t,x) € (0,7) %2, we introduce
the space, for 1 < p < o0,

T
LP(0,T;X) ={v:(0,T) — X|v is measurable and/ o) |5 dt < oo},
0

where X is a real Banach space with norm ||.||x. In similar way, we can define
L*>(0,T;X). L*(0,T,X) is endowed with the norm

T P
[0l zorix) = (/ ||v(t)||§<dt> for 1 <p < oo,
0

[0]l 2o (1:x) = esssupo<<rl[v(t)]|x for p = oo.

Theorem 1.1.1. (Trace theorem) Let Q be a bounded open set of RY with
Lipschitz continuous boundary and let m > 1/2.

(a) There exists a unique linear continuous map ~yo : H™(Q) — Hm_%(ﬁﬁ)
such that yov = v, for each v € H™(Q) N C°(Q).

(b) There exists a linear continuous map R : H™ 2(0) — H™(Q) such
that voRod = ¢ for each ¢ € H™ 2 (9).

H; () is space of functions in H'(Q) that vanish on the boundary O
(boundary values are taken in the sense of traces).



14 Chapter 1. Preliminaries and notations

Remark 1.1.1. Similar results as in theorem 1.1.1 can be obtained for vector
functions belonging to H(div,Q) and H(curl, Q). See e.g. {[GR86], Chapter
1, Section 2}.

Hy(curl; Q) denotes the subspaces of functions in H (curl; 2) which have
zero tangential trace on 092. Hy(div; ) denotes the subspaces of functions in
H(div; Q) which have zero normal trace on 0.

We also denote

H(curl0; Q) = {u € L*(Q)*: V xu € L*(Q)*>,V x u = 0},

and
H(div0; Q) = {u € L*(Q)*: V- -u € L*(Q),V-u =0}

We define the functional space, which we will use throughout this thesis,
X () = Hy(curl, ) N H(div, Q).
With the canonical norm
lullx@) = llullo + IV < ullo + [V - ulo. (1.2)

The space X (Q) is compactly embedded in L?(Q)3 [WE80]. As a result when
OS2 is connected, we have the following result for X (€2).

Proposition 1.1.1. In X (), the semi-norm |u|x = (|V X u|2+ ||V - u|?)2
is a norm, which is equivalent to the canonical norm ||| xq). In other words,
there exist a constant C' > 0, such that

lullo < CUIV x ullg + IV - ul5)? Yu € X (). (1.3)

1.1.2 Finite element spaces

Let .7 be a subdivision of € into disjoint open sets, which we call elements.
We assume .7 to be parametrized by mappings F , for each k € .7, where F, :
k — kis a diffeomorphism and £ is the reference element. The above mappings
are such that Q = U,c>k. We often use the word mesh for subdivision, and
we say that a mesh is regular if it has no hanging nodes; otherwise the mesh is
irregular. Unless otherwise stated, we allow the mesh to be 1—irregular; i.e.,
for d = 2, there is at most one hanging node per edge, typically its center; for
d = 3 a corresponding concept is available.

We define and characterise the sides of the subdivision .7, which we
refer as “faces”. An interior face of 7 is defined as the (non-empty) two-
dimensional interior of k1 N Ok, , where k1 and ko are two adjacents elements
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of 7 . A boundary face of .7 is defined as the (non-empty) two-dimensional
interior of Ok N OS) , where k is a boundary element of .7. We denote by .7
the union of all interior faces of .7, %5 the union of all boundary faces of .7
and

Fn=F1UFp.

Let H3(.7) = {v : v, € H(k), Vi € J}, for s > L with the norm
[v]12 7 = > pc7 V]2, Then the elementwise traces of functions in H*(.7)
belong to TR(%,) = U,e7L?*(0k); They are double-valued on .#; and single-
valued on .Zp. The space L?(.%}) can be identified with the functions in
T R(Z},) for which two values coincide.

The diameter of element x is denoted by h,, and the mesh size h is given by
h = max,c 7, h.

We assume the mesh to be shape regular where the shape-regularity of the

mesh 7 is defined as

hy
u(7) == sup — < oo, (1.4)
k€T Tk
where r, is the radius of the largest ball that fits entirely in x, see [CI78].
For approximation order [ > 1, we introduce the following DG finite element

space

Vi, ={v e L*(V)":v, € P(r)! Vre %}, (1.5)

where P!(k) denotes the space of real polynomials of total degree at most [
on K.

To this end, we fix g € TR(%,)? and ¢ € TR(.%;,). Let e € Z; be an interior
side shared by x; and ky. Let ny (resp. nq) be the outer unit normal vector
on e with respect to ri(resp. k3). Let q; = q|., and ¢; = ¢y, (i=1,2), we
define for x € e the average, tangential and normal jumps of q as follows:

a+gq
@}:1227Hﬂszxqﬁ4wxwamWMNznrm+"r%'

Similarly we define for x € e the average and normal jump of ¢

©1=22% and [y =m bt

Then, for any boundary face e C .%p, we set for z € ¢

fa} =4q, [g]r =mn1 x qand [¢]y =n.¢.

In order to define the average of V x q, we set for s > %,

H*(curl, 7) := {v : v, € H*(k)? and V x (v|,) € H*(k)?,VKk € T}.
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1.1.3 Some functional inequalities

In this section, we present some relevent properties without proof of functions
belonging to Sobolev spaces. The following inequalities are used at several
places in this thesis. They can be found e.g. in [RI08] and the references
therein.

Lemma 1.1.1. (Cauchy-Schwarz’s inequality ). For all f,g € L*(Q), the
following inequality holds

(£ 9)al < flloallglloq- (1.6)

Lemma 1.1.2. (Young’s inequality ). For all § > 0, Ya,b € R, the following
inequality holds

0 1
ab S 5@2 + %1)2 (17)

Lemma 1.1.3. (Poincaré inequality). Assume that Q) is a bounded connected
open set of R? with a Lipschitz boundary 0S). Then there exists a constant
Cq > 0, such that

lullo < CallVullo, Vu € Hy(Q)

Corollary 1.1.1. The mapping u — ||[Vullo is a norm on H}(Q) equivalent
to the norm ||ull;.

Lemma 1.1.4. (Friedrich’s inequality.) /[KN8//
Let Q C R? is a bounded simply connected Lipschitz domain, then there exists

a constant C' > 0 such that
[ullo < C(IV-ullo + [V ullo).
Yu € X () and Yu € Y (2) = H(curl, Q) N Hy(div, 2).
We have the following discrete trace inequality (see e.g. in [PE12]).

Lemma 1.1.5. (Discrete trace inequality ). Let .7 be a shape and contact
regqular mesh with parameter v defined in (1.4). Then, for all v, € P*(7),
Vk € T, Ve € Fy, the following inequality holds

1
hé|lvnllo,e < Ciellvn

0,k (18)

where Cy, only depends on r,, and k. In particular, summing over € %y, we
infer from (1.8) and Cauchy-Schwarz inequality that

1 1
h.‘% ||UhHO,8n < C"cr‘N'a2 ||UhH0,m (19)

where Ny is the maximum number of mesh faces composing the boundary of
mesh element, and they are bounded in h.
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Remark 1.1.2. Note that analogous bounds as in lemma 1.1.5 can be easily
obtained for vector valued function.

Lemma 1.1.6. (Inverse inequality.) Let x be an element of the mesh 7, then
we have

lwllo,0n < Cinnhie 2wl Y € (P'(x))%. (1.10)

with a constant Ciy, that depends only on the shape-reqularity of the mesh,
the approximation order I, and the dimension d.

The following result can be seen for example in [QV94].

Lemma 1.1.7. (Gronwall lemma.) Let f € L'(ty,T) be a non-negative func-
tion, g and ¢ be continuous functions on [to, T). If ¢ satisfies

o(t) < glt) + / F()él(r) Vi€ [to, T,

then

o) <o(t)+ [  F(s)g(s)exp( / ' Flr)dr) Vi € [to,T1.

If moreover g is no-decreasing, then

B(t) < g(t)exp(/ttf(T)dT) vt € [to, T).

Remark 1.1.3. Often the Gronwall lemma will be used in the special case in

which
o(t) = H(0) + / b(s), ¥(s) >0,

1.1.4 Interpolation operators

Definition 1.1.1. (Clément interpolation.) The Clément interpolation oper-
ator maps a function from H(Q) to the usual space S(2,.T), consisting of
continuous piecewise linear functions on the triangulation which are zero on

the boundary. The Clément interpolation operator of a function v € H}(Q) is
defined by I, : H}(Q) — S(T,Q)

1
I,(v) = — V) gy (1.11)

where x denote a nmodal point, and Nq denote the set of internal nodes of
the mesh. By w, we denote the union of all elements having x as node.



18 Chapter 1. Preliminaries and notations

¢ € S(Q,.7) is the nodal basis function associated with a node x, uniquely
determined by the condition

¢a:(y) - 5z,y vy € NQ

In the next lemma, we state the interpolation estimates. For detail see in

[CL75],[KUO1],[NCOS3]

Lemma 1.1.8. For any v € H}(Q), we have

> bl = Lav|E S IVl (1.12)
KET
> IV = Iaw)|2 S Vo], (1.13)
KET
> Mo = L2 < Vol (1.14)
eE€EF

In the following lemma we define the quasi interpolant operator for vector
valued functions [BHHW00].

Lemma 1.1.9. (Quasi-interpolant operator.) Let N D.(Q2, T)? be the stan-
dard Nédélec’s finite element space, setting N D o(Q, T)> = N D (Q, T)*N
Hy(curl,Q). For k € T, e € Py, let Dy, D! and D} be given by

D,=U{k € T, ec Fu(r)},
D}{ = U{D,{,e S yh(/f)}v
D; = U{Dy, e € Fp(k)}.

There erists a linear projection 2" : HY(Q)3N Hy(curl,Q) — N D,.0(Q, T)3,
such that for all ¢ € H'(Q)?

|Brb ok < 1l mr(prys (1.15)

|Zn(V < P)llox < calthlm(py)s (1.16)
% — Brpllox < cshe|t|ar(prys (1.17)
|l — Brpllo.e < C4\/h_e|7/’|H1(Dg)3 (1.18)

where the constants cy,ca,c3,¢4 > 0 do neither depend on ¥ nor on k, but
only on the shape reqularity of the mesh 7 .

In the following lemma we give some properties of L? Projection.

Lemma 1.1.10. Let I1;, be the L? projection on to piecewise constant poly-
nomial functions. Let k € T then
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e For v e H™(k)*,m > 0, we have

|lv — Ipvlo, < Ch;m”{m’l“}Hva. (1.19)

e Forve H™(k)>,m> 1% we have

min{m—21 1+1
v — Hpvlloan < Chr ™ 212 1y, . (1.20)
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2.1 Model problem

We consider an initial boundary value problem derived from the time dependent
Mazwell’s equations (11), with € = 1 in a loseless medium i.e. with vanishing
charge density o, and conductivity o. We augment the problem with a perfect
electric conducting boundary condition

Pu+Vx(p''Vxu)=Ff in QxI,
V-u=0, in QxI,

n X u(x,t) =0, on 00 x I, (2.1)
U(J}, O) - uO(m)a 8tu(m> 0) = ul(w)a on 2.
Here I = [0,T] is a finite time interval, f is source function in

L*(0,T,L*(2)?). ug € X(Q) = Hy(curl; Q) NH(div, Q) and u;, € L*(Q)3.
We assume that 1 is scalar positive function, which is bounded uniformly from
below and above, 1i.e.

0 < py < p(x) < p* < oo, (2.2)

for simplicity we assume that p is piecewise constant.
Assume that the analytical solution w of (2.1) satisfies uw € H'(0,T, L*(Q)*)N
L*(0,T, X (Q)),0:u € L*(0,T,L*(2)3), 02w € L*(0,T, L*(Q)®). The standard
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variational form of (2.1) is given by:

find w € H(0,T, L*(2)*) N L*(0, T, X (2)), such that

(02w, v) + b(u,v) = I(v) Vv € X(Q), a.e. in I, (2.3)

where the bilinear form b(.,.) is defined by

b(u,’v) = (M_lv X ’U,,V X U)Q + (V ’ u,V ’ v)Q)

and the linear form [(.) is given by

l(v) = (f,v)a

The problem (2.3) is well-posed and admits a unique solution which can be
shown to be continuous in time,

ue 0,7, X(Q)NCH0,T, L*(Q)%) N H*(0,T, X (Q)),

where X' (Q) is the dual space of X (Q). The existence and uniqueness is
followed by the result of equivalence of norms in X () stated in proposition
1.1.1 and the Lions varitional theory {|LM68], Chapter III,Th. 8.1 and Th.
8.2}. For more details see for example [RT92].

Remark 2.1.1. We identify a function v € Q x [0, T] — R3 with the function
v:[0,T] = X () and we use v(t) to indicate v(-,1t).

2.2 Discretization in space:

In this section, first we will discretize the problem (2.1) by interior penalty
discontinuous Galerkin method in space. We propose a symmetric interior
penalty discontinuous Galerkin (DG) formulation. Then we will show the
well-posedness of the proposed formulation.

2.2.1 Semi-discrete discontinuous Galerkin (DG) formu-
lation

2.2.1.1 Derivation of DG formulation

Let T, h > 0, be a family of partitions of S into tetrahedra defined in section
1.1.2. To derive the DG formulation of (2.1), let vy, be a test function vy, € V},
where the finite element space Vj, is defined in (1.5). We multiply the first
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equation of (2.1) by vy|. and integrate by parts on one element Kk € J},, we
get the following identity

/(ﬁu - vpdx + /(ulv x u).(V X vp)dx

K K

+/ (W 'V x u) x n,, - vpds = /f cvpdx,  (2.4)
Ok

K

where n,, is unit outward normal to Ok. Summing over all the elements Kk in
T, we obtain

Z /Qgtu - vpdx + Z (W 'V x u) - (V x vy)dx

KET KETp, k
+ E / (W 'V x u) xn, - vpds = E [ opdx,
KETp Or KET} k

Using the following identity which holds true for v,w € TR(F)3,

v-n, X wds = — w - n, X vds
Z/ 2
ok

KETp, KETp oK

| Blrfwhas+ [ [ulrgups

we get

> / Oju-vpdx+ ) / (' Vxw) (Vxvp)ds— Y [ [oallrfu 'V x ulds

KETp KETy eEFp €

T Z [V x ulrfonfds = Z [ - vpdx.

eeF] ¢ S/

Since w is solution to equation (2.1), we have

Z /8t2tu - vpdx + Z (n'V x u).(V x vp,)dx

KETp, KETp, K
— Z /[[vh]]T{[,u_lv X u}}ds = Z f . ’Uth. (26)
ey V€ k€T 1

Using the fact that w € H(curl,QY), we have, the tangential jump [u]r vanishes
on Fi. Moreover, uw satisfies the boundary condition in (2.1) thus, [u]r =0
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on FP. Hence, we have [u]r = 0 on F,. We add the following continuity

term to equation (2.6)

Z [ul 7 §u 'V x v, }ds.

eEFy €
We also add the following penality terms, which vanish for the exact solution

u to (2.6)
J(u,vp,) = Z /V-uv-vhdx+z /a[[u]]T[[vh]]Tds+Z afu] n[vn]nds.

KETR VP ecFy V€ ceF} €
(2.7)

Hence we get the semi discrete discontinuous Galerkin formulation of (2.1),

which reads:

find up, € [0, T| — V), such that

(07 un, vr)a + bu(un, vi) = (f,vn)a, Yo, € Vi, t € (0,7,
Uh\t:o = IT,uo, (2-8)

8tuh‘t:0 = [Mpu,.

Here, 11, denotes the L*-projection onto Vj,, and the discrete bilinear form

by, on Vi, x Vj is given by

V-4V -vdx

bp(w,v) = Z/M1V><u~V><vd:c—|— Z

KETh K KET K

-y /[[u]]T AV x oA = > [[olr - fu'V x uhdA
e€Fy v ¢ e€ Ty "¢
s / afulr - [olrdA + 3 / a[uly - [o]ndA; (2.9)

eE€EF,
The function a penalizes the tangential and normal jumps; it is referred to as
the interior penalty stabilization function. To define it we first introduce the

function h by
e € Zr,e=0kNOK,

|, = min{ by, hy },
< e € Fp,e= 0k N O

P

Now we define,
(2.10)

a=ah,

where a 18 a positive parameter independent of the local mesh size.
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2.2.2 Well-posedness of the Discrete problem

To show the well-posedness of DG formulation (2.8), we introduce the
semi-norm,

1
1 1 2
vl = (Z IV xolf5 4> IVolls .+ a2 [o]rll5 .+ ||a2[[’U]]N||3,e> :

KET KETh ecIy, eEF
Yo e Vy (2.11)

where ||.|lo.x and |.|o. denote the L* norm over an element r and a face e
respectively.

Proposition 2.2.1. The semi-norm |.|, given by (2.11) defines a norm on
Vh.

Proof. From [DZ09], we have

[vllo < (Z IV x vl + ) H\F[[v]]THoe

KETh KET e€T,
Y \/—[['v]]zv\lo@) Yo € Vi (212)
e€EJ
Then the proof follows from the fact that \/a > \/iﬁ O

We have the following lemma for the proof of the well-posedness of the DG
semi-discrete problem.

Lemma 2.2.1. 1) There is a constant Ceony > 0, independant of mesh-size
such that
bn(wn, v1)| < Ceont|wn|n|vn|n, (2.13)
Yuy, v, € Vj.

2) There is a parameter oy > 0 and a constant Cper > 0, independent of
mesh size such that for parameters « in (2.10) with o > o, we have that

bh(vhavh) Z Ccoer|vh|}2l, V’U}L € Vh- (214)
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Proof. 1) Applying the Cauchy-Schwarz’s inequality, we have

|bn (wn, o) < IV X wnllogl|V X vrllog + |V - unllopllV - vrllog

(X ety x ik, ) % (2 aluuvhwﬁ,e)%

eEFy e€Fy
1 1
2 2
+( S all 'V x vh}}né,e) ( 3 a-lnuuhﬂTnae)
eeFy eeFp
: :
1 1
+( 3 HW[[uh]]THS,e) (Z Hmuvhwae)
eEFy, eEFy
: :
1 1
+( 3 ||azﬂuhﬂw||%,e) (Z lad [l ) .
ecFy eeFp
(2.15)

Using the inverse inequality on third and fourth term of the above in-
equality and using Cauchy-Schwarz’s inequality, we have the following
bound
_ _1 _
o (wn, vp) | < max{2, it + a2 Cing i Han | vnln, (2.16)

where Ciy,, is the constant from inverse inequality (1.10) and u, is given
by (2.2). Choosing Ceons = max{2, u;t + a_%C’inv,u:l}, we obtain the
continuity of bilinear form by,.

2) Now, to show the coercivity of the bilinear form b, we have

bn(wn, wn) > (1) IV [[§ o+ Vom0 —2

DoV < w ualr

ecFp €
+ > alllualrlig. + D alllwalnl,. (217)
ecFn eeFn

Using Cauchy-Schwarz’s and Young'’s inequality (1.7), we get the follow-

ing bound
AT [V xwdlwds] <23 (14679 < wblo ) (1wl )
ecF, V€ eceFn
< 00202 ST AV X w bR, + 0GR S bl
e€Fy, ecFp

<O IV xwnlg, +07 0w 2Che Y Tunlrlfer (2:18)

KE T, eeFp



2.2. Discretization in space: 27

where we have used the inverse inequality (1.10) to obtain the last
bound. Now inserting the above bound in (2.17), we obtain

bn(wn, un) > 0) > IV xwnll,+ DIV -wallg,,
KET}, KE T
+ (=07 2Ch ) Y allfunlells, + D alllualnllG,. (2:19)
e€Fn eEFy

Setting 0 = (“ — and g = 4pu2CE p*, for a > ap, we get the coercivity
bound with Ccoer = min{ “2) ' , 5}.

]

Lemma 2.2.2. (Consistency) The semi-discrete DG formulation (2.8) is con-
sistent with the continuous problem. i.e. If w is the solution of problem (2.1),
then w satisfies the DG problem (2.8).

Proof. Let w € Hy(curl, ) N H(div,2) be the solution of (2.1), this immedi-
ately follows that the terms in b(, ., ) involving V.u and [u]y vanish. From
the fact that w, ™'V x u € L?(Q)3, we have

[[U]]T =0on fh. (220)

Thus we get,

br(w,vp) = (p'V x u, V x vp)q — Z /{u 'V x u}vp]r.(2.21)

eEFy

Using the identity (2.5), we can write the above equation in the form

bh('un'vh) ( 1VXUVX’U}LQ—Z/ leu))dS
KE T,
+ Z {31 'V x u]pds.  (2.22)
e€F}l ¢

Integration by parts yields
bu(w,v1) = (V % (17'V x w), vp)a
O

The stability result in lemma 2.2.1 implies that the discrete DG formulation
(2.8) is well-posed and uniquely solvable provided that o > «y.
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2.3 Fully discrete scheme

To introduce the fully discrete implicit scheme approzimating (2.8),
we consider a subdivision of the time interval [0,T] into subintervals
(th1,tn),n=1,..., N, withty =0 and ty =T, and we define k,, :=t,, —t,_1,
the local time step. Associated with the time subdivision, let 7", n=0,...,N
be a sequence of meshes. The meshes are assumed to be shape reqular and
compatible in the sense that for any two consective meshes T ' and T, T"
s obtained by locally refining some elements and coersening some other ones.
The finite element space corresponding to 7, will be denoted by V}, defined by

V= {v e L*(Q)": v, € P(r)?, Vxe T}, (2.23)

where PL(k) denotes the space of real polynomials of total degree at most 1 on
K.

Since the bilinear form by, depends on the mesh, we denote by b} the bilinear
form associated with the mesh ;. We consider the fully discrete scheme for
the Mazwell’s problem (2.1):

for eachn=1,...,N, find u} € V;" such that

(O*u), v)q + by (u),v) = (f*,v)q for all v € V}, (2.24)

where f" = f(t",-).

The backward second and first finite differences are given by

a n o__ a n—1
PPy = 20 ; tn (2.25)
with .
up — up""
- =1,2,...N
oull = o forn=12 N, (2.26)

v = wOu, forn =0.

Where u,? == wu® and «° : L*(Q)? — V) is a suitable projection onto
the finite element space (for example the orthogonal L?>—projection operator).
The continuity and coercivity of by (.,.) implies that the problem (2.24) admits
a unique solution (u})o<n<nat each time step.

2.4 Conclusion

In this chapter, a discontinuous Galerkin method for the discretization of the
time-dependent Mazwell’s equations in “stable medium” subject to the perfect
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conducting boundary condition has been proposed. Both semi-discrete and fully
discrete problems have been analysed.
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3.1 Introduction

In this chapter, we derive the a priori error estimates in L*-norm. These
estimates are optimal tn mesh size h, and slightly sub-optimal in the approzi-
mation degree p. To complete the convergence analysis some numerical exper-

iments are given.

The outline of this chapter is as follows: in first section we give the definitions
and some notations that we will need later in the chapter. In second section
we derive a priori error estimates. In the third section, we show the numerical
results and give some concluding remarks.

3.2 Preliminaries

We give an hp— approxzimation result to interpolate scalar function, see [BS87].

Proposition 3.2.1. Let k € 9}, and suppose that w € H*(k), s > 1. Then
2.

. . }7"€ .
there ezists a sequence of polynomials m~(u) € PP(k), p =

ing, V0 < g <'s,

satisfy-

hTin(erLS)—q
Juw — ()l < C

lu

el
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and
hmin(p—‘rl,s)—%
lu =7y (w)llo.on < C————Ilulls -
p 2
The constant C' s independent of w, h, and p, but depends on the shape
reqularity of the mesh.

Definition 3.2.1. In order to interpolate vector function, for uw = (u1, ug, us),
we define HZ s Hé(curl, Z,) — V,, by

IT, (u) = (m, (ur), my (u2), m, (us)),
with WZ” (u)]e = W}’;” (uilx),i=1,.,3. Where Wg” is given by proposition 3.2.1.
In this chapter w denotes the exact solution of (2.1) and wy, is its discrete

solution by symmetric discontinuous Galerkin method. Thus up € [0,T] =V,
1s the solution to the following problem:

(Ofun, vp)o + bp(un, v) = (F,vn)a, Yo, € Vi, t € (0,7
Upli—o = I ug, (3.1)
(9t’u,h‘t:0 = qul

Here, HZ 18 given by definition 3.2.1, and the discrete bilinear form by, on
Vi, X Vi, is given by (2.9).
3.3 A priori error estimates
Let e = uy, — u denotes the approzimation error. We decompose e as follows:
e=n-—19, (3.2)

with 9 = HZ(U,) —u and n = HZ(U) — uy, where HZ is given by definition
3.2.1. We have the following error relation:

(8t2te, ’Uh)Q + bh(e,'vh) =0, Yv, € V). (33)
By using (3.2), we have

(O7m,vn)a + br(n,vn) = (059, vn)a + br(9,vs), Yo, € Vi, (3.4)
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Since n(t) € Vi, we have Om € Vj,. Choosing vy, = 0m in (3.4), we get

1d
iabhcr], 'r,) = (8,52{197 nt)Q + bh<197 at'r’)u

1
< 192915 + 3 ||8m||3+bh(19,5‘m)-

d
—10mlls +

l\DlH

Thus, we have

||8m||o bn(m,m) < 95915 + 101§ + 26(9, Opm).-

d
dt
Integrating in time on [0,t], and using the fact that n(0) = n,(0) = 0, we get

t t
10l + br(m,m) < 1029 12(0.4.12(0)) +/ 0|5t + 2/ by (9, Oym)dt
0

0
Integrating the last term on right hand side, we get

t
oI+ bulrg.m) < 108D oo + | oIt + 206n(9.m)
0 (3.5)

+2 /Ot |br (09, m)|dt,
using the continuity and coercivity of bilinear form by, we have
10l + Ceoerlnli < 1059 r20.,22(0) + /Ot 10enllodt + C|8]n|n]n
w2 [ @t mlar

’ t t
< 1059220122 + /0 10en|lodt + CI9;, + Clnlj + C/O (10817, + Inl7)dt
C 107D L2(0.1,L2(0)) + Suprepo.n|O;, + /Ot |0v9dt) + Clml;

w o[ Qanli+ mity
In particular, we have

t
10mll5 + [ml; < CU1059 r200.2(0)) + Supiefo |97 +/ |0,9];.dt)
0 (3.6)

t
o / (0mll2] + nl2)dt
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As it holds for all t € [0,t], applying Gronwall’s lemma 1.1.7, we get

t
10mllg + [mli < CU1059 200200 + Suptefo |97 +/ |9,|5dt).
0

Since e = 9 — n, we have

t
||8te||3 + |e|i < C'(||31t2t’l9||L2(o,t,L2(Q)) + SUpte[O,t]|’l9|i +/ |3t’l9|idt) (3.7)
0 )
+C|0:|| oo (0,1, £2(02))-

Hence, we conclude that error estimates for the DG approximation to the exact
solution reduce to the error estimates for the piecewise polynomial interpolant.
In the following proposition we give the estimates for |9|p,.

Proposition 3.3.1. Let u be the exact solution of (2.1) and suppose that
u(.,t)|. € H*(k)?, with s > 2 and for any t € [0,t], then we have

b QMN—Q
u =Tl <C Y o |ullon, V€ [0,1] (3.8)
KETp
and
|'u,—7r u|q,€_ se V0<qg<s, Vtel0,t], (3.9)

where p,, = min{p + 1,8} and C is independent of h and p.

By applying the previous proposition we obtain the following estimates for
19ell5 + leli-

Proposition 3.3.2.

p2-
lowell§ + leli <C Y 5= || el o s oys) 18 T sy
KETp
h2,u,,i72
+C Z (10|22 (g oyey + N0l oo (a3 yey ) (3-10)
ne%

where p,, = min{p + 1,s} and C is independent of h and p.

Remark 3.3.1. In order to get the estimate for ||e(t)||o, we could have used
v, = N(t) in (3.3), but this can be deduced from propostion 3.3.2 since we
have ||e(t)llo < [e()]n-



3.4. Numerical experiments 35

3.4 Numerical experiments

In this section, we will present numerical results to confirm the theoretically
established error bounds in proposition 3.3.2. To fully discretize our equation
in time, we use the second order Newmark scheme in time, see for example
[RT92]. In our example, we choose the DG stabilization parameter o = 10.

3.4.1 Time discretization

We discretize (2.1) in space by the DG method (3.1) and we get linear second
order system of ordinary differential equations as follows:

Mau, (t) + Auy(t) = folt), tel, (3.11)
with initial conditions
Mu,,(0) = u), Mou,(0) = u;. (3.12)

Here, M denote the mass matrixz and A the stiffness matriz. To discretize
(3.1) in time, we make use of the Newmark time stepping scheme; see, e.g.
[RT92]. Let k denotes the time step and set t, = n - k. Then the Newmark
method consists in finding approzimation {uj }, to un(t,) such that

1
2

1

(M + k*BA)u;, = {M — E2( 5)4 u) + kMu; + k* | Bf + (5 - B)f,?}?).l?))

and

1
(M + E2BA)u) " = [QM — K5 - 28+ A | uj

1
— MR + 5= ) A up (3.14)

+RE BT+ G =28+ i+ G- B+0NY

form=1, 2 --- N—1. Here f' := fu(t,), while >0 and v > % are free
parameters that still can be chosen. We recall that for v = % the Newmark
scheme is second order accurate in time, whereas it is only first order accurate
for v > % For B = 0, the Newmark scheme (3.13)-(5.14) requires at each
time step the solution of a linear system with the matriz M. However, because
individual elements decouples, M s a bloc diagonal with a bloc size equal to
the number of degrees of freedom per element. It can be inverted at very low
computational cost and the scheme is essentially explicit. In fact, if the basis
functions are chosen mutually orthoghonal, M reduces to the identity; see
[CKS00] and the references therein. Then, with v = %, the explicit Newmark



36 Chapter 3. A priori error estimates

method corresponds to the standart leap-frog scheme.

For B > 0, the resulting scheme is implicit and involves the solution of a
linear system with the symmetric positive definite stiffness matriz A at each
time step. We finally note that the second order Newmark scheme with v = %
1s unconditionally stable for B > }l, whereas for i > (3 > 0 the time step k
has to be restricted by a CFL condition. In the case 8 = 0 the condition is
E* Amax(A) < 4(1 —€), € € (0,1), where Apax(A) is the mazimal eignenvalue
of the DG stiffness matriz A.

In our test, we will employ the implicit second order Newmark scheme, setting
y=1and B =1 in (3.13)-(5.14).

3.4.2 Example

We consider the three dimensional equation (2.1) in Q x I := (0,1)* x (0,1)
and data f, ug and wy chosen such that the analytical solution is given by

sin(t(y” — y)(2* — 2))
u(z,y,2,t) = sin(t(xz — x)(zz —-2)) |- (3.15)

sin(t(z® — 2)(y* — y))

This solution s arbitrarily smooth so that our theoretical assumptions are
satisfied. We discretize this problem wusing the polynomial spaces PP(k)3,
p = 1,2, on a sequence I, of tetrahedral meshes. With decreasing meshsize
h, smaller time step k is not necessary, because the scheme is unconditionally
stable. In table Tab. 5.1, we show the relative errors at time T = 1 in
the energy norm, as we decrease h. In (Fig 1) and (Fig 2) we see that the
decrease of the energy norm as a function of the meshsize h is of order one
for p =1 and of order two for p = 2. Then the numerical results corroborate
with the expected theoretical rates of O(hP) as we decrease the meshsize.
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h Nbte | Nbtr | ||u—uplln, p=1] ||u—up|pn p=2
0.4367 12 30 0.2781E+00 0.1516E-+00
0.2184 96 216 0.1867E+00 0.4129E-01
0.1733 192 432 0.1485E+00 0.2140E-01
0.1694 371 826 0.1122E+-00 0.1935E-01
0.1379 660 1416 0.1002E+-00 0.1176E-01
9.268E-02 | 2631 | 5502 0.6927E-01 0.4619E-02
7.703E-02 | 4682 | 9793 0.5584E-01 0.3152E-02

Table 3.1:

Table of errors in the energy norm.

Here Nbte is the number of tetrahedra on ) and Nbtr is the number
of triangles on the set of F,. We also give the errors of ||u — uplloq as a
function of h in the following table.

h Nbte | Nbtr | [|[u —uplloq, p=1] [[u—uplloqn, p=2
0.4367 12 30 0.48550E-01 0.2109E-01
0.2184 96 216 0.2500E-01 0.2540E-02
0.1733 192 432 0.1513E-01 0.8845E-03
0.1694 371 826 0.1035E-01 0.8023E-03
0.1379 660 1416 0.8141E-02 0.3891E-03
9.26E-02 | 2631 | 5502 0.3868E-02 0.9734E-04
7.703E-02 | 4682 | 9793 0.2552E-02 0.5080E-04

Table 3.2: Table of errors in the L?(Q) norm.
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Fig 1: Errors in the energy norm at time 7'=1 for p =1
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3.5 Conclusion

In this chapter, we have derived hp a priori error estimates for the DG
formulation proposed in previous chapter. The hp—error estimates obtained
are optimal in the mesh size and sub-optimal in the approximation degree.
The numerical results are given to confirm the convergence rates as a function
of the mesh size.
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4.1 Introduction

In this chapter, we derive a posteriori error bound for the error |lu —
Upl|Loo(0,1,02(0)3) between the exact solution of (2.1) and that of the semi-
discrete scheme (2.8). The technique to derive these a posteriori error bounds
1s based on construction of an intermediate variable w, which we refer as
time-harmonic reconstruction of approximate solution wup, and then we ap-
proximate the error u — wp by means of error w — uy. The time-harmonic
reconstruction w s an auziliary variable and is used as analysis tool, we do
not need it in practical computation. The idea of this reconstruction follows
from [GLV11] for parabolic problem, and [GLM13] for wave equation. This
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method allows us to estimate the a posteriori error of time dependent problem
through the a posteriori error bounds of time-harmonic problem.

The outline of this chapter is as follows: in the first section we give the defi-
nition of time-harmonic reconstruction. In second section, we derive an error
relation. In the third section, we obtain the abstract a posteriori error esti-
mates using the error relation derived in previous section. In the forth section,
we derive the a posteriori error estimates for the time-harmonic Maxwell’s
equations and we conclude the result using the estimates derived in the previ-
ous section.

4.2 Time-harmonic reconstruction

Definition 4.2.1. Let uy, be the (semidiscrete) solution to the problem (2.8).
Let also 11, : L*(Q) — Vi be the orthognal L2-projection operator onto
the finite element space V. We define the time-harmonic reconstruction,
w=w(t) € X(2) = Hy(curl,Q) N H(div,Q),t € I, of up, to be the solution
of the problem

b(w,v) =(g,v)q, Yve X(Q), (4.1)

where

g=Aup — 1L, f + f. (4.2)
and A : V, — V), is the discrete operator defined by

(Aq> X)Q = bh(q7 X)> f()’f’ all q,X € Vh-

The time-harmonic reconstruction is well defined. Indeed Auy, € V), is the
unique Lo-Riesz representation of a linear functional on the finite-dimensional
space Vi, and the existence and uniqueness of (weak)solution of (4.1), with data
Aup, — L f + f € Ly(Q)? follows from the Lax-Milgram theorem.

4.2.1 Error splitting

We decompose the error as
e:=u,—u=p—E¢, (4.3)
where € :=w — uy and p == w — u.

Remark 4.2.1. (The role of w) The DG solution wp of the semi-discrete
time dependent problem (2.8) is also the DG solution of the time-harmonic
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boundary-value problem (4.1). Indeed, let wy € V), be the DG-approzimation
to w, defined by the finite-dimensional linear system

bh('wh, ’U) = (Auh — th + f, ’U)Q7 (44)
for all v € V},, which implies
bp(wp, v) = (Aup, v)g = bp(up,v), v €V,

i.e., Wy = up. Thus, by construction w is the exact solution of the time-
harmonic Mazwell’s equations with Dirichlet boundary

Vx(p'Vxw)=g, in Q
V.-w =0, in (4.5)

nxw=0, on Jf2

with data g defined by (4.2) and the DG approzimation of this problem is wy,.

4.3 Error relation
Lemma 4.3.1. With reference to the notation in (4.2.1), we have
(02e,v)q +b(p,v) =0, for all v € X(Q). (4.6)

Proof. We have

(atZtev v)Q + b(ﬂa ’U) = (aftufh U>Q + b<w7 ’U) - (atztuﬂ U)Q - b(“’? U)'

Where we have used the error splitting defined in (4.3), now by using (2.3),
we obtain

= (atztuha v)Q + b(w7 ’U) - (fa 'v)ﬂv
= (02 up, Lv)g + b(w,v) — (f,v)q,
= —bp(up, 1) + b(w,v) + (Il f — f,v)q,

by the properties of L%-orthognal projection and the formulation (2.8).
Now observing the identity by (up, [I,v) — (I f — f,v)q = b(w,v), due to
the construction of w, we get

(81521567 v)ﬂ + b(p7 ’U) =0.
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4.4 Abstract a posteriori error bounds for the
semi-discrete problem

Theorem 4.4.1. (Abstract semidiscrete error bound) Let w be the solution of
equation (2.3) and wy, be the semi-discrete discontinuous Galerkin (DG) ap-
prozimation of uw obtained by (2.8), let w be the time-harmonic reconstruction
of wy, as defined in definition (4.2.1), with the notations introduced in (4.3),
the following error bound holds:

el <2 < ll€llzeorz@ + V2(|to — un(0)]log + [€(0)[|on)

T
+2/ 10velloe + 27| ur — Dyun(0)]og.
0
(4.7)

Proof. We use a testing procedure introduced by Baker [BA76|. Let © : [0, 7] x
Q — R? with

o(t,) = /tT p(s,-)ds, t €[0,T], (4.8)

for some fixed 7 € [0,7]. Clearly o € X(Q2) as p € X (). It follows from
definition of ¥ that

o(r,) =0, and 00(t,-) =—p(t,-) ae. in [0,7T]. (4.9)

Set v = ¥ in (4.6), integrate between 0 and 7 with respect to the variable ¢
and integrate by parts the first term on the left-hand side to obtain

_ /0 (e, 045)0 + (Bre(r), 5(r))a — (Bre(0), 5(0))q + /0 “b(p. ) = 0.

Using (4.9), we have

| 5leiad =5 [ Goo0). o0 = [ (@ pla-+ @re0),50)n

which implies

3100l 51000+ 566(0),50) = [ (@, pla + (@1e(0), 50D

Hence, we deduce
1 ) 1 ) 1, . T
3 lP(Mlloa = 5lP0)5.e + 56(2(0),5(0)) < max [lp()lo. i (0celo.c

+110:€(0)[|o2([9(0) lo.g)-
(4.10)
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Now, we select 7 such that p(7) = maxo<<r ||p(t)]|oq (this is possible
due to the continuity of w in the time variable under the data and do-
main regularity assumptions above see e.g. [RT92|. For this 7, we have
15(0)]Jo.o < 7|lp(7)|l0.0, furthermore the positive semi-definiteness of the form
b ensures that b(9(0),9(0)) > 0. This leads to the inequality,

1 1 T
slp(MGe = 51PO)5e < o) oo (/0 1:€ljo + THate<O>HO,Q>- (4.11)

Now using the inequality AB < 1A%+ B2, with A = ||p(7)]o,0 and
B = [; [0€llogn + 7[0:€(0)[o,0, we get

2
1 1 1 T
Sle() e = 51Ol q < 7le()IEg + ( / ||@te||m+T||ate<o>||o,9) ,
0

which gives immediately

2
1 1 T
e IBg = 5100} g < ( | 10loa+ r||ate<o>||o,a) .
0

Using the bound [|p(0)lloe < [le(0)]oq + [[€(0)]o.0, €(0) = ua(0) -
ug , 0,e(0) = dyup(0) —uy, and (4.11) for 7 as above, we have

T
oIl r:r2@a) < V2(llto — un(0)log + €(0) lo.0) + 2/ 10:€llo
0

—|—2T”U1 — (9tuh(0)\|0,g.

(4.12)

Now by using (4.3) and the above inequality (4.12), we get

||e||L°O(0,T;L2(Q)d) < ||€”L°°(O,T;L2(Q)d) + ||P||Loo(o,T;L2(Q)d)
T
< |l€llz=oriz2@n + V2([[wo — un(0)[log + [l€(0)]o.0) + 2/ |0s€llo,0
0

—|—2TH'LL1 — 8tuh(0) HO,Q'
(4.13)
O

Remark 4.4.1. The bound (4.7) is not yet explicitly a posteriori error bound:
we still need to bound the norms involving the conforming error € = w — up,
by a computable quantity.

Remark 4.4.2. To this end, given q € L*(Q)3, consider the problem
Find z € X () such that
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Vx (p'Vxz)=gq, in Q,
V.z=01in Q, (4.14)
n x z =0 on 09,

whose solution can be approximated by the following DG method:

find zp, € V),
bh(zh,v) = (q,’U)Q, Yv € V. (4.15)

We assume that an a posteriori estimator functional & exists, i.e.,
Iz = 20l be < Cob(2n,q, Th), (4.16)

where ||.||pg is the corresponding energy norm in Vi, and Cy is a constant
independent of 9, z, zn and mesh size.

Now recalling the fact that wp, which is the semi discrete DG approzima-
tion of (2.3) is also the DG approzimation of the w satisfying (4.1) with data
g = Aup, — 11, f + f as described in remark (4.2.1).

Thus, if we have an a posteriori error estimator functional, which bounds
the error between the exact solution w of (4.1) and its DG approzimation, as
we see in above remark (4.4.2). Then the terms involving norms of € in (4.7)
can be bounded as follows:

Proposition 4.4.1. Let & be an a posteriori error estimator functional which
bounds the error between the exact and DG approzimation of (4.1), with data
g = Aup — I, f + f , and assume that f be differentiable in time then the
terms in (4.7) can be computably bounded as:

l€ll o o.1:22(0)2) < |6 (wn, g, Th) || e 0,1)5

V2|[€(0)[lo.0 < V28 (u(0), g(0), F),

(4.17)
T T
2 / 1Orellog < 2 / &0y, 019, T).
0 0

In the following section we will derive the functional of type & for time-
harmonic Maxwell’s problem.

4.5 A posteriori residual bounds for the time-
harmonic Maxwell problem

In this section, we present the method to derive a posteriori bounds in L*-
norm of the error for the time-harmonic Mazwell’s problem. We will extend
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the DG formulation with lifting operator to a larger finite element space to
derive the error estimate in energy norm, which will give the L? norm of the
error as well. This technique is widely used for error analysis in finite element
method see e.g. [GSS06] for a priori error and [HPDO7] for a posteriori error
estimates.

4.5.1 A posteriori error bounds in L?-norm via energy
norm

Now to establish our a posteriori error bounds, we define a larger finite
element space V(h) = X (Q) 4+ V.
On V(h) we define the DG energy norm by

2
loll” = llvllg + vl (4.18)

with |.|, defined in (2.11). We will augment the bilinear form by, in (2.9)
to V(h) x V(h) in a non-consistent manner following [HPDO07] by using the
lifting operator. To this end, we give the definition and derive the bounds
related to lifting operator in the following section.

4.5.2 Lifting operator

Definition 4.5.1. Yv € V(h), the lifting operator £ (v) € V}, is defined by

/Q L)ywdr =Y [l fu whds, YweVi  (419)

eEFy, €

The operator £ is well defined. We notice that the term on the right-
hand-side of equation (4.19) is a linear operator over Vy, for each v € V(h).
Hence, £ (v) € V}, is the representation of this linear operator obtained from
Riesz representation theorem under L* scalar product in Vy,, cf [TLO0].

Lemma 4.5.1. (Stability of lifting operator) Let £ be the lifting operator
defined by (4.19) and the stabilisation parameter a defined by (2.10), then
under the assumptions on p, we have for v € V(h)

1L @50 < o (1 ")Coy D llaz[w]zll5,.- (4.20)
eEF

Where the constant Cy,, > 0 only depends on the shape regularity of the mesh
and the approrimation degree .
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Proof. Let v € V(h), we have

Z(v)|lo = su 4.21
HILL ( )”0 we\% Hw”O ( )
s Yeez, JIolr{u™ } (4.22)
welj, [[wllo
(Sees falol) (Soes, fa i w}?)’
< sup : (4.23)
weV), lwlo
} }
1 (Zeeyh fea[[’v]]%> <Ze€£’/"h feh|{w}|2>
<a >p; ! sup : (4.24)
weV, l|lw]o
1 1
_1 4 <Ze€(?7h fea[[lv]]%> (Zneﬁh fa,{h‘n‘wP)
<a 2u," sup (4.25)
weVj, l|lw|o
(4.26)

Where we have used Cauchy-Schwarz inequality, and definition of a in
(2.10). Now recalling the inverse inequality (1.10)

[w]l0.05 < Cinvhi 2 wllo, for all w € (P'(x))?, (4.27)

with a constant C},, that depends only on the shape-regularity of the mesh,
the approximation order [, and the dimension d.
Using this inverse inequality in above bound we get (4.20). O

We now introduce the non-consistent bilinear form

(u,v) Z/ IV x w- vadx—l—Z/V uV - vdx

KET, KET,
_;h/g vadx—Kg/z (VX w)dx
3 / afulr - [o]rds + 2; [aluls - [olas; (429

b, = by, on Vi, X Vi, and by, = b on X(Q) x X(Q), the bilinear form by, can
be viewed as an extension of the two bilinear forms by, and b to the space

V(h) x V(h).
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The semi discrete problem (2.8) in space can be written now as follows:

find uy, € CY(0,T;V},) such that

(2up, v)q + by(up,v) = (f,v)g Yo € Vi, te[0,T). (4.29)

Now we show the continuity and coercivity of b, on V(h).

Lemma 4.5.2. Let « be defined as in (2.10) and oy > 0 be a constant, then
there exists constants Ceone > 0 and Ceoer > 0, independent of mesh size, such
that Voo > ag

|[~7h('u’7’v>| S Ccont|u|h"v|h; (430)
|Bh(’U,’U)| Z C’coer|’v|}2p (431)
for all uw,v € V(h)

Proof. The application of the Cauchy-Schwarz’s inequality and the result in
(4.20), readily gives in general case

[bn(w, v)] < max{(1+ 1), (1) Chy + ) }Hulwlvln.

Set ag = 4C2 (u;')?,
For a > «, the continuity of b, immediately follows. To show the coercivity
of the form by, we note that

=D IV x g+ Y IV -uli,

Ne__?h Heyh
2% / (Vxwds+ Y e[l + S ot [l
KET, eEFy, ee 7}

(4.32)

By using the Weighted Cauchy-Schwarz’s inequality, the geometric-arthmetic
inequality ab < ‘5i + ¢ 25 , valid for any 0 > 0 and Va,b € R, on the third term
of the above equa’rlon we obtain

22/ ) (V x wdx <2 371V x wlloull £ () o,

KET} KET}
<Y IVxulf+" D 1L @)
KET, KET,

Using the stability bound for the lifting operator in (4.20), we get

<OV xufl, + o (1 )G D a2 [ullf

KETp e€EFy
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for a parameter 0 > 0, we conclude that

bu(u,u) > (1) =8) Y IV xulg,+ D IV -uli,

KETp, KETp

+ (1 =67 ()20 Y ez [ulr 2, + Y llat [uln 3, (4.33)

e€Fp 669}{

Setting § = (u*)71/2, and ag = 4C2_(u;1)2u*, for a > ap, we obtain the

mv

desired coercivity bound. ]

4.5.3 A posteriori error estimate

In this section, For simplicity we assume that

=1, (4.34)

for the case of u piecewise constant, the proof follows analogously.

The proof of a posteriori error is based on decomposing the error in two parts.
One part s conforming and the second part is non-conforming. We first define
the largest conforming space V)¢ underlying V}, that is,

Ve =V, N X(Q).

The space Vi is in fact Nédélec space of the second kind. The space Vi© can
be decomposed into

Vi =X ® VS,
with the spaces X, and Sy given by
Sn={q € H)(Q) : ql« € P (r), 5 € T}, (4.35)
Xp={veVi:(v,Vq) =0Vq € Sp}. (4.36)

The space X, is referred as the space of discrete divergence free functions.
Let z be the exact solution to the time-harmonic Mazwell’s equations (4.14)
and zp, be the DG approzmation of w as in (4.15). We decompose the error
e as

e:=2z—2zp=2—2,+ 2, — zn, (4.37)
where zy, € Vi, we denote

d

e=z—z, e =zp— z,°. (4.38)

We will use the following lemma in the proof of our a posteriori error bound.

From this lemma we can prove the existance of a conforming finite element

function and can bound the non-conforming part of error e?.
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Lemma 4.5.3. Suppose 7}, is a reqular mesh. Then, for any function
zn € V), there exists a function zj, € V)¢ such that

lzn — zill5e < C1 ) helllznlzlie

) e ) (4.39)
YNV x(zn—2R)l5. < O Y b zale ]
KETp, eE€EFp
Where Cy > 0 is a constant depending on shape regularity of the mesh.
Proof. The proof follows from [HPSDO05|. O

Theorem 4.5.1. Let .7, be a reqular mesh. Let z be the exact solution to the
time-harmonic Mazwell’s equations (4.14) and zp be the DG approzmation of
z asin (4.15). Under the assumption (4.34) on p the following bound holds

HZ — Zp 0,Q S g(’zha q, %)a

where

£(2n, 4. %) = cup< > (R2la+ ¥ x ( x z)

KET

1
+V(V 26wt la+V(Vez)lfe+ Y 5hallV < znlrli,

ecor\T'

1 1 _ ’
£ ShlIV -l + X ladTanlel, + 3 h;n[[v-zhﬂnae)

eeaﬁ,\r e€EFp ec.F,

+maz{1, cm}< S (L+atCi(t+mD) a2 [zalrlR. + D llaz [za] w3,

ec.7y, ec.7r
1

+ ) ||V'zh|!3,n> , (4.40)

KE T,

from Lemma 4.5.3 and Ceon 18 the continuity constant of bilinear form by,.

where Cy, > 0 is a constant independent of z, zn and J,. Cy is the constant

To prove this theorem we will use the following two lemmas.

Lemma 4.5.4. Under the notations introduced in (4.37)-(4.38), the following
a posteriori bound holds

_1 2 1 1
Iz = znlloo < elon +a™2CE (D h2lla2[zn]rl3 )2 (4.41)

eEF,

where Cy > 0 is the constant from (4.39).
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Proof. We decompose the error e = z — z5, as in (4.37). By triangular in-
equality, we have

Iz = znlloa < 2 = 2 log + 25 = znllog = l€lon + lle®log.  (4.42)

Now using the bound in lemma 4.5.3, we have

le?|2q < a7'Cy > hllaz[eY]r .. (4.43)

eEF},

Using the fact that [e?]r = [zn]r, we obtain

1 1 1 1
lefllog < @207 () hllaz[znlrllG.)?. (4.44)
e€Fy,
Combining (4.44) and (4.42) we get the result. O

Now to proof theorem 4.5.1 we derive the upper bound for ||€||oq

Lemma 4.5.5. Under the notations introduced in (4.57)-(4.38), the following
bound holds

1 1 1
el < |eln < \/§Cdemax{1,C’ma:v{l,ofﬁCifw},CtrNg}x

(Z <hi!|q+V x (V X zp)

KET,

1
TV 2l + g+ V(T 20+ D ShallV x 2l

e€Or\I'

1 1 _ :
+ 3 ShllIV - zdalBe) + 3 et lenlelih + 3 helH[[V'zhl]Hﬁ,e>

e€dr\I' e€.Fy, ec.7y,

+ccom(<1+a—lcl> S ot endelBot 3 ot lanlnlBot 3 HV-zhHﬁ,n) .

eET, e€Fr KE T,

Proof. Clearly we have e® € X (Q2). Thus, we have

bh(z7 ec) = b(Z, ec) - <q> eC>Q-
We decompose e by using regular decomposition from [CFLO00|, as follows

e =19+ Vy,
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where ¥ € X (Q) N H' () and v € {HJ(Q) : Ay € L*(Q)}. Furthermore
there exists a constant Cy, > 0 such that

[%]l1.0 < Caelle]| x (@),

. (4.46)
Yl < Caelle®ll x@),

where the norm ||.||x) is defined by (1.2). We choose ej = 1, + Vv,
where 1), is the quasi interpolant of @ defined in lemma 1.1.9 and ~; is the
Clément interpolation of v in H] defined in lemma 1.1.8. In consequence of
the properties in lemma 1.1.9 and lemma 1.1.8, we have the following bounds,

S (195 (0 = ) e+ Bl — o+ o o — ) < ORI

KETp

(4.47)

> (V=452 =l oy = 3 00) < CElIE s (448)
KETp,

where C and Cs are positive constants which only depends on shape regularity
of the mesh. Now we have

br(e, €°) = bu(2, €°) — bu(zn, €°) = (q,€)q — bn(2n, € — €}) — bu(zn, €})

= (q7 e’ — GZ)Q - bh(zfu e’ — 62)7
(4.49)

which implies
e[ = bu(e”,€) = (g, " — €})o — bu(zn, € — €},) — bu(e”, ).
Now we have
ei < (g, € — €f)a — bu(zn, € — €f)| + (e’ )| = T1 + To.  (4.50)
Now to bound T}, we have

(q7 e’ — elcz)ﬂ - Bh(zhn e’ — 62) = Tll + T127

where

Ty = Z q- (Y — Pn)dz + by (zn, P — ),

kET U F

Tio= /q V(v —m)ds =Y [ (V- zn) - Aly — m)dx.

keg vk keT VK
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Let us next bound 7}; and T,

Tn—Z/ (Y — Tbhdx—Z/VXZh (V x (¢ —1yp))dx

KET KET
—Z/V 2n) (¢ — ) dx—I—Z/iﬂzh (V x (¢ —p)).
KET KET

(4.51)
Integration by parts of second and third term on right hand side yields

(@, (¥—n))a—bn(zn, (v—1h1)) Z/ <Q+V>< Vxzp)+V (V- Zh)) (Y—1pp)dx

KET

—Z (V x zp) xn,) - (Y — ) — Z (V-zp) n.) - (Y — )

k€T, Ok KET; Ok

+Z/zzh (V % (% — p1))da

KETp

_Z/<q+vx(szh)+V(V Zh)) (P — P )dx

KET
_Z Z /[[szh]]T (Y —y) — Z /HV zn]n - (Y — )
KET} e€Or\T ¢ KET e€Or\T ¢
+Z/$zh (V X (¢ — 4pp))da, (4.52)
KETp

here n,, is the unit outward normal vector on Ox.
The terms on right hand side can be bounded as follows

Z/<Q+V><(szh)+v(v Zh)) (¢ —yp)dx <

KET
S hllg +V x (V x 2) + V(Y - 20) loschi [ — ullos. (4.53)

KET}

Z/.zzh (Vx(p—1p,) dx<(2|\.$zh HM> (ZHVX —4) Ioﬁ)é

KE Ty, KET, KET},

< aéCﬁ( > Haé[[zh]]ﬂ%,e) ( DIV x (- ¢h)\|§,ﬁ> :

e€Fy, KET,

[V

(4.54)
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Where we have used the stability of lifting operator (4.20).
Now to bound the second and third term on right hand side of (4.52), we
apply the Cauchy-Schwarz inequality to get

1

>y %/[[szh]]T'WJ—lﬁh) <> ( > %hnH[[VXZhHTH?J,e) X

KET} ecOr\T € KET, e€dr\I’
1
| - 2 i
Zghﬁ Y — nllo,.
ecok
%
1 _1
<2 ( > ghnuuthuTuae) B 1 = Gllogn. (455)
k€T \ e€cor\I
Similarly,
1 1 2
S ILY (LB MITERIED oY (D o WIS NN
KET) e€dr\T' € KETL \ e€dr\I
|- 2 :
2{: _}%i ”1p _'@bhHOﬁ
e€0k
1 ?
<X ( 2 §hnllﬂv-zh]]zv\|3,e> B 1% = $allog. (4.56)
K€=7h EEGH\F

Using Cauchy-Schwarz inequality, and the bounds in (4.53), (4.54)
and (4.56) we conclude that

(4.55)

’

mv

1
T < C’max{l,oz_%a2 }( Z (hi”q +V X (Vxzr)+V(V-z)5.

KET,

1 1
20 Sl zleli + DS ShallIV - zlali)

ecOr\I' ecOr\I'

+ ) ||a5[[zh]]T||3,e> [4ll10. (4.57)

ecFy,

Where we have used the bound (4.47).
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Now to bound T}y, we integrated the second term to obtain

Z/q-v(v—vh)dx— Z/(V-zh)-A(v—vh))dx,
keT VK keT VR

-y </ q+ V(Y- 2))V (7 —))dx — v(y_w.nﬁv.zhds)?

KET 0K
—Z/q+vv zn))V(y — 7 dx—z IV(y =)V - zp] - neds
KET Eg[ €
— Z V(v —=9n) - m.V - zpds,
eefB €
= Z/ q+V(V-z,))V(y—vy)dx — Z /{V Y =)} ne[V - zp]ds,
eET,

- T21 -+ TQQ. (458)
T5; can be bounded by

Ty < lg+ V(V - zp)lloell V(Y = )l

(4.59)
< llg+ V(V - zn)lloallvlle.

For term Ty, using lemma 4.50 from |PE12|, the trace inequality (1.9), and
Cauchy-Schwarz inequality, we have

Ty < (Z Zhe||vw—vh>|ﬁ.neuae> (Zhelll[[Vzh]]H%,e) ,

KET e€.Fy e€EFy,
3 3
< ( Z hnva/ - Vh)ln-ne”g,aﬁ> ( Z h;1||[[v ’ zh]]H?),e) s
KET eEFp
: :
(Z CallV(y = Hoﬁ) ( > nIv- Zh]]||06> :
KET e€Ty,

SCtr(ZhelH[[V-zh]]Hﬁ,e) Il (4.60)

e€Fy

Using Cauchy Schwarz inequality, the bounds in (4.59) and (4.60), we can
bound Tj, as follows

Tz < (Z lg + V(Y - 20)[5, + Caul ) h21||[[V'zh]]||3,e> V][0 (4.61)

KET ecFy,
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We conclude from bounds (4.57) and (4.61) that

Ty < max{l,Cmaz{l, a’%Céw},Ctr}x < Z (hin+V><(szh)—l—V(Vzh)HaH

KET},

1
+la+ VIV z)l5e+ D ShlllV x zalrll3.
e€Or\I'

N

1 1 _ 1
+ > §hﬁ||[[V-zh]]NH§,e)+Z la? [zn]rll .+ ) hel||[[V'zh]]||3,e> <19l o+ 7 0)?.

e€dr\I' eEFp ec.Fy,
(4.62)

Using the estimate in (4.46), we have

Ty < V2Cemaz{1, Cmaz{1, oz_%C'éw}, Cip } X
( Z <hi|]q +V X (V xzp)+V(V-2)|5
KET,

1
+la+ VIV z)lie+ D ShlllV x zalrll3.
e€Or\I’

N

1 1 — c
+ > §hn|![[V-zh]]N||3,e)+Z laz [zn]rllG e+ Y helH[[V-zh]]llﬁ,e> €.
e€Or\I' eEFy, e€EFy,
(4.63)
For bounding 75, we use the continuity of b, and obtain
|6h<ed’ec)’ S Ccontled|h|ec|h-
Using the result in Lemma 4.5.3, we have

T, = [bu(e’, €]

_ 1 1 2.
< Ocom(<1+a 100 S et ozt 3 ot fandnlBot 3 ||v-zh||aﬁ) el

eEIy e€EF KET,

-

(4.64)

Combining the estimates in (4.63),(4.64) along with (4.50) , we get the
bound for |e|,. Now using the proposition 2.2.1 we get the bound for ||e||o q-
O
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4.5.4 Proof of Theorem 4.5.1

Proof. Combining the result of lemma 4.5.4 and lemma 4.5.5, we get the
desired result. [

Theorem 4.5.2. (Semidiscrete residual-type a posteriori error bound). As-
sume that f is differentiable with respect to time and g = Auy — I, f + f,
then the following error bound holds:

T
el Lo o,m:20)) < Coll€(wn, g, T0) || Lo,m) + 200/ & (Opup, Org, T)
0

+V2C08 (un(0), 9(0), i) + v2||uo — un(0) o0 + 2T |1 — dyaun (0) oo

where Cy is a constant independent of w, up, and . And & is given by

(4-40).

4.6 Conclusion

In this chapter, we derive a posteriori error estimates for semi-discrete DG
formulation of Mazxwell’s problem by applying time-harmonic reconstruction
technique, we control the error for the time-dependent Mazxwell’s problem via
the error of the auxiliary time-harmonic Mazwell’s problem.
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In this chapter, we derive a posteriori error estimates for fully discrete

case. We bound the error ||u — un|| o0 1.12(0)1) between the ezact weak solu-
tion of (2.1) and its approzimation wy, calculated from fully discrete solution
up,n=0,...,N in (2.24).
The outline of this chapter is as follows. We first define the space-time re-
construction for fully discrete scheme in section 5.1, which has a crucial
zero-mean value property in the time variable. This approach was studied
by [GLM13] for the a posteriori error for conforming finite element approxi-
mation of the wave equation. We apply this technique for our DG formulation
for Mazwell’s time-dependent equations. In section 5.2, we derive the fully
discrete error relation, and analogously to the semi-discrete case, we use the
special testing procedure by [BA76] to derive the abstract fully a posteriori er-
ror bound in section 5.3.1. Section 5.4 is devoted to calculate explicitly the
fully discrete a posteriori estimates, followed by the proof of the main theorem
i section 5.95.

5.1 The reconstructions in space and time

Analogues to time-harmonic reconstruction introduced in section 4.2, we will
introduce here the time-harmonic reconstruction for fully discrete case. Note
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that the time harmonic reconstruction here depends on n since finite element
spaces change with time.

Definition 5.1.1. (The reconstruction in space) Let uj,n =0,..., N, be the
fully discrete solution computed by the method (2.24), TI} : L?(Q)4 — V™ be

the orthogonal L?*-projection, and A™ : V;* — V" to be the discrete operator
defined by

for x € Vi', (A"x,v)q = by (x,v), Yv € V. (5.1)

We define the time-harmonic reconstruction w™ € X () of u}} to be the solu-
tion of the time-harmonic Maxwell problem

by (w",v) = (g",v)a, Yv € X(),
with
g" = A'up —TLf" + f. (5.2)
where ?O = f(0,), f' = k;lﬁf_l f(t,)dt, forn = 1,...,N. Finally, we

define the time-harmonic reconstruction Ow® € X (Q), of u) to be the solution
of the elliptic problem

b (0w®, v) = (0g°,v)q, Yv € X(Q), (5.3)
with

0g° := A'u) —TI0£° + £°.
where I1Y is L?-orthognal projection on V;0.

Definition 5.1.2. (The reconstruction in time) The time reconstruction uy :
0, 7] x @ — R of {u,"}_, is defined by

n=0

ottt tr—t

t—t" (" —1)?
L (t— )" 1)

’ wl ! — k: O*uy, (5.4)

’U,N<t) .

fort € (t" 1 t"],n =1,...,N, with O*u} given in (2.25), noting that dul is
well defined in (2.25). We note that uy is a C' function in the time variable,
with un (t") = u} and Oyun(t") = Ou}} forn=0,1,...,N. We shall also use
the time-continuous reconstruction wy, defined by

t—¢nt m—t t—thH[r —t)?
wy(t) == ? w" + ’ w" ! — ( k:)( ) O*w", (5.5)

Noting that Ow" is well defined. By construction, this is also a C' function
in the time variable.
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5.2 Fully discrete error relation

Definition 5.2.1. We decompose the error as follows:

EN ‘= UN —U = PN — €N,

where €y = Wy —uy and py ‘= Wy — U.

Theorem 5.2.1. Under the notations introduced in definition 5.2.1, for t €
(" t",n=1,...,N, we have

2 _ n\ 92 n 2..n n
t - - 3 )
(Oren, v)a + b(py,v) = (I — II})0un, v)o + p" (1) (0 uy, I v)q

. A R (5.6)
+b('LUN—'LU ,U)+(f _f 7”)97
for all v € X (Q), with I being the identity mapping in L*(Q)¢, and
i — tn—l
p(t) == —6E" " (t — T)
Proof. Noting that,
Opun(t) = (14 p"(t)0up, (5.7)

for t € (t" 1, t"],n=1,...,N. For all v € X (), we have
(Ofen, v)a +b(pn, v) = (Fjun, v)o + b(wy,v) — (f,v)a

where we have used the splitting in definition 5.2.1, and the fact that w is
the solution of (2.3). Now using (5.7) and the properties of orthognal L?
projection II} on the space V" we get

(Oren,v)a + blpy,v) = (I = T})un, v)a + (Fhun, Iv)g
+b(wy,v) = (f,v)e,

= (I - II})07un, v)q + 1" (1) (0*up, Iv)g

—bp(uy, IIiw) + b(wy, v) + (I f" — f,v)a.

where we have used the fully discrete formulation given by (2.24). Now
observing

—n

Oy (uph, Iv) — (I " — 7, v)a = (A", Mv)o — AL f" — F7,v)q

= b(w",v).
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Vv € X (Q2), we then obtain
(atzte]\h U>Q + b<pN7 'U) = <(I - HZ>8t2tU’N7 v)Q + :un<t)(a2u27 HZU)Q
+b('lUN — ’I.Un,’U> + (Tn - f7'U)Q;
[

Remark 5.2.1. (Zero mean-value property) The particular form of the re-
mainder " (t) satisfies the vanishing-moment property

t’n
/ W (H)dt = 0, (5.8)
tn—1

This property is important for the derivation of the a posteriori error bound
for the term p"(t)(0*ul, Iiw)q in the above error relation. The proof of this
property is given in the Appendiz A.1

5.3 Abstract fully discrete a posteriori error
bounds

To derive the a posteriori error bounds. We first define the error indicators
that will form the error bounds in theorem 5.3.1.

Definition 5.3.1. (A posteriori error indicators) For some fized t*, assume
that t™=1 < t* < t™ for some integer m with 1 < m < N, we define

i) The mesh change indicator is given by Evc(t*) == Emo(t*) + Emc2(t7),

with
m—1 tJ
§Mc71(t*> = Z /‘1 H(I - H%)at’u,NH(),th
i=1 : (5.9)
[ = o,
i
and
mil . . .
Evica(t) = ) (1" = )| (T, = IE)duj [loo. (5.10)

1

J

ii) The evolution error indicator

t*
fuoll”) = / 1Gloadt, (5.11)
0
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where G : (0,t"] = R with G|y =67, j=1,...,N and

g%yzggﬁky_(W&?{fﬁgw>y¢_%, (5.12)

with g7 as given by (5.2) and ~v; == ;-1 + (k7/2)0g’ + (k}/12)0°g’,
i=1,....N with vy = 0;

ii) The data error indicators

1 m—1 ; 1/2
Sosc = % </ k3||f f||0 th)

7=1
t* 1/2
+(/‘ kol F —f%@&> . (5.13)
t

which can be viewed as an error estimator related to the time-oscillation
of the source term.

iv) The time reconstruction error indicators

1

L . 1/2
§u(t") = o </ k?||uj62ui||agdt>

7j=1
+* 1/2
([ Bleraagiga) . 61
t

Theorem 5.3.1. (Abstract fully discrete error bound) Let w is the exact weak
solution of (2.1), un and wy are reconstructed from the fully discrete solu-
tion {ul}N_| and their time-harmonic reconstruction {w"}\_, respectively,
as in (5.4) and (5.5). With the notation of indicators in definition 5.3.1, the

following a posteriori error estimate holds

len Lo r2()t) < [l€nlpoeo,ev;r2 )d)+\/§H€N(O)HO,Q
tN

+ 2/ |0sen[lo.odt + 2(Emc(t™) + Eovo(tY)
0

+ Cose (V) + &u(tY)) + V2|Jug —

— Oupllog
(5.15)

3

Proof. To derive this error bound, we proceed in the similar way as in semi-
discrete case. We will use a test function v = vy with vy is defined similarly
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as in (4.8) )
on(t,-) :/t py(s,)ds, t €[0,t"], (5.16)

assuming that ™! < ¢* < ¢™ for some integer m with 1 < m < N, and py
is defined as in (5.2.1), then vy € X () as py € X (), we observe that

on(t*,-) =0, and Qon(t,-) = —py(t,-) ae. in [0,tV].

Integration of the resulting equation with respect to ¢ between 0 and t*,
yields

t* ¥
/ (05en, On)odt + / b(pn,vy)dt = ZL(t*), (5.17)
0 0 -

+*

m—1 tJ
()= 3 [ (@~ TG oxladt+ [ (=T 0ux, ow)adt.
ti

jil —1 tm—1
m—1 tJ t*
Iz(t*) = / b(wN — w], ’UN)dt + / b(’LUN — wm, ’lA)N)dt,
j=1 ti—1 tm—1
m—1 tJ — t* .
j=1 t]*l t'mfl
m—1 tJ . ‘ ‘ +*
I(t") = / (0P, TH o )t + / J (P, T o Yot
j:1 tj—l tm—l

(5.18)

From Equation (5.17), using the splitting given in definition 5.2.1, we have

/t*lde 12 dt /t*ldb(ﬁ o )dt /t*(a% i) dt+§4:I(t*)
P —— N - a 1. N, UN - Ny UN)Q 7 )
0 2dt 0.0 o 2dt , po

(5.19)

Integration in time and use of the properties of vy yields

1 § 1 1. . t*
SIon ()0 = S1on (O 0 + 35(0x(0), 9x(0)) = / (Grew, p)adt
4

+(9,en(0), ox5(0))q + ZIZ-(t*).

(5.20)
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Now to bound the last term on the right hand side, we have the following
lemma.

Lemma 5.3.1. Under the notations inroduced in definition 5.3.1, we have the
following estimates:

T (t) < &uc(t?) Dax lon ()00
* < * .
Ir(t") < Eevolt )Ofg%XT||PN(t)HO,Qy 50
L5(t") < Eose(t”) max [lox(t) o
Zy(t") < &u(t) max ||pn(t)[o0;

0<t<T

The proof for the above lemma follows from the applications of integration
by parts, the commutation of orthogonal L2-projection with time differenti-
ation and time integration, and the zero averages of ™ and f — f™ on the
interval [t"~1 "]

In |GLM13] the results were presented for the analysis of wave equation, for
the sake of completeness, we present these proofs for Maxwell’s problem in
Appendix A.2.

Using the bounds stated in above lemma, we get

1 1 L
§HPN(75 Nea — §HPN(0)H3,Q + éb(vzv(o), oy (0))

< max IIPN(t)Ho,Q(/O [0v€llo.dt + Enc(t*) + Eevo(t*) (5.22)

— 0<t<T
) + &r(t*)) T 19ex(@)lloallx©)llos.

We select t* such that ||pn(t*)|l0.0 = maxg<,<,v ||pn(t)]l0,0- Then completely
analogous to the proof in the semi-discrete case, we arrive at

lexlzeov 2@y < llenllieorrz@ + V2(lluo — wpllog + ex(0) o)
tN

+ 2(/0 [0ienlo0 + Emc(tY) + Eevo(tY)

+ Eose(t™) + & (tY)) + 2T [lur — dupllo -
(5.23)

This completes the proof. H

5.4 Explicit fully discrete a posteriori estimates

To get a practical a posteriori error bound, for the fully discrete scheme
from theorem 5.3.1, we need to bound explicitely the terms [|€n|| Lo (0V;22(02)4),
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llen(0)]jo.q and ng |Oen|lo.- In this section, we will bound these quantities
in the lemma 5.5.2, 5.5.1 and 5.5.4. The estimates derived in these lemmas
enable us to prove the following error estimate, which is the main result of
this chapter.

Theorem 5.4.1. (Ezplicit fully discrete a posteriori error bound). With the
same hypotheses and notations as in theorem 4.4.1 and 5.3.1, we have the
bound

llen Lo v; 2 )2y < (Ssp + Em(tY) + &c), (5.24)

where &, represents the spatial error, &, deals the terms corresponding to
temporal error, &i¢ represents the error related to the initial conditions of the
problem, these quantities are defined as follows:

gsp = gsp,l + §Sp,2 + fsp,?n
Em(t) = 2(&uc(t™) + ontV) + et + &t)),  (5.29)
&io = V2||lug — up llog + 27 [[ur — uj o,
with Evc, Eevos Eoses Ete are defined in definition 5.3.1, and
gsp,l = \/E(gooa
4ky 0 0 0
§sp,2 = max Eé"(auh, 89 , T ),

(37 s ) oy (60 ConllP = )| 629

0<j<N
N N L
ps =2 (67 + )+ 2k Caan|0F — OF o,
j=1 j=1

with & = &(uw),, Awl — I, f7 + f7,F7), for all 0 < j < N, where & is
defined from (4.40). Here Cyyy is the stability constant of time-harmonic
Mazwell’s equations.

5.5 Proof of theorem 5.4.1

This section s devoted to the proof of theorem 5.4.1, We will state and
proof three lemmas to bound the terms ||€x||po(o~.r2()a), ||€n(0)]o and

fOtN lOcen o, and combining these results will lead to the proof of theo-
rem 5.4.1.
For the term ||ex(0)||oq , we clearly have the following bound.
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Lemma 5.5.1. The following estimate holds
V2[lex(0)]log < &pu, (5.27)
where & 1 15 introduced in theorem 5.4.1.
To bound the term ||€|| oo v.12(0)2) we have:

Lemma 5.5.2. The following estimate holds

||€NHL°°(O,tN;L2(Q)d) < &p2s
where & o 15 introduced in theorem 5.4.1.

Proof. From the construction of wy and wy in definition 5.1.1, for t €
(/=1 #7],5 = 1,..., N, we have the following expression

GN(t) = WN —UnN

t—t! th—1

) )
(= tj_zj(tj - t)Q(aij — ),
which yields
lev(®los
<o { (G 57 o, 72 ) g, o' = o 0w — dua .
(5.29)

noting that

N4 52 AR2
max (=) =t) =7,
te(ti—1,t9] k; 27

The explicit calculations are presented in Appendix A.1.

Now it remains to estimate the terms ||[w/ — u) oo, 0 < j < N and
[0w® — Ouflloq. To estimate the term ||w’ — wu)|loo: we will prove the
following result

Lemma 5.5.3. The following estimate holds for all 0 < j < N

Jw’ — ul]loq < & + Cuanl|F — Fllo, (5.30)

with &7 = cg’(ufl,AjufZ — Hifj + 7,79, for all 0 < j < N where & is
defined from (4.40).
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Proof. To prove the result in lemma 5.5.3, we proceed as follows: First, we
define w’ € X () to be the solution of the time-harmonic Maxwell’s equation,

b(w’,v) = (Ajufl — Hflfj + fv)q (5.31)

for y=0,1,...,N.

Note that due to the fact that TO = f° we have that w® = w". On the
other hand, we observe that ui is the DG solution in V{L of time harmonic
Maxwell’s problem (5.31), noting that to prove this we follow the same proof
as in remark 4.2.1. Applying theorem 4.5.1 implies that

lw’ — oo < CE(ul, Alul — T, f7 + f7, 77, (5.32)
for j=0,...,N.

Second, we need to estimate ||w’ —w?||oq. Observing that w’ — w? is the

solution of the time-harmonic Maxwell’s problem with the load Tj — f7
b(w’ —wl,v) = (F — f7,0)a,
we arrive at
lw’ —w'log < CuuslF’ = Flloq, for j=1,....N;  (5.33)

using the stability of time-harmonic Maxwell’s problem. The constant Clg.yp
is bounded by C 1 where C.o, is coercivity constant of the bilinear form b.

coer

Now using the trianglular inequality, we have
' — ]l < w0 — w7l + a2’ — 6 loe, (5.34)
along with the bounds (5.32), (5.33) imply lemma 5.5.3. O
Now to estimate ||0w” — Ou? oo, We use the similar argument,
) (Ou),v) = (A"(0u)), v)q) = (A°(0u)) — II) f° + £°,v)q, for all v € V2,

hence, comparing with the construction (5.43), du! is the DG solution of dw",
which yields
0w’ — Oul [lo.o < E(Ou), 0g°, T°). (5.35)
Thus the proof of lemma 5.5.2 is completed. O
Lemma 5.5.4.
tN

; / I9vexlloadt < &,
0

where & 3 is defined as in 5.4.1.
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Proof. From the construction of wy and wpy in definition 5.2.1 and
from (5.28), for t € (1, #],7=1,..., N, we have

Oren = 0w’ — Ouj + k; ' (H — ) (3t — 267" — ) (Pw’ — D*ul),

A simple calculation yields

tJ
/ K2 — )(3t — 2691 — $9)dt = 0, (5.36)
ti

L

refer to appendix A.1.2 for explicit calculation. Hence, we get

tJ
/_ kenloads < k0w’ — 0wl oo, (5.37)
tI—
Summing up for j =1,..., N, we arrive at
N N '
/0 |0senllondt < killow’ — 0w |lo- (5.38)
j=1

Now we need to estimate the terms [|0w’ — Oul[oq. We will use the
triangular inequality by combining the bounds for |w’ — du}|loq and
[Ow? — Ow?||pq, where dw’ € X (), j = 0,...,N is the solution of the
time-harmonic Maxwell’s boundary value problem

b(Ow, v) = (A7 (Ou)) — OTT), f7 + Of, v) (5.39)

Vv € X(Q).
From the definition (5.1.1) of w’,j = 1,, N, we have

b(Ow’ | v) = (AT (Ou]) — OTL, f7 + 0f7, v), (5.40)
Vv € X (Q).
Thus using (5.39) and (5.40), For j = 1,..., N, we have that Jw’ — dw’ is
the solution of the time-harmonic Maxwell’s problem

b(Ow’ — dw’,v) = (8fj — 0f7, vq),

Vo € X(Q)
then from the stability of time-harmonic Maxwell’s problem, we have

0w’ — dw? |loq < Cotan||OF — OF |0, for j =1,...,N. (5.41)

Now we derive a bound for ||dw’ — du}||o.q in the following lemma.
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Lemma 5.5.5. For j =1,..., N, let ow’ € X (Q) be the solution of prob-
lem (5.39) and Ou), is defined by backward Euler scheme (2.26), with wj, be
the fully discrete solution from (2.24). The following error bound holds

0w’ — du |0 < kN &+ 6771, (5.42)

with &7 = é”(ufl,Ajufl —H{lfj + 7,79, for all0 < 7 < N and & 1is defined
from (4.40)

Proof. We denote by w’ the solution in (5.31), for i = 0,1,..., N. By em-
ploying (5.32) and from the backward finite differences we obtain the bounds
as follows:

. , 1 . , - .
10w’ = 0w flo.o < —(lw’ —wjlloo + llw’™" — o) (5.43)
j
for j =1,..., N. This completes the proof for lemma 5.5.5. O
The proof of proposition 5.5.4 is completed. O

Remark 5.5.1. In case of stationary mesh (i.e. the same mesh is used be-
tween the initial time ty and the final ty, or T3 = 771 forallj=1,...,N),
we have an alternative result for lemma 5.5.5 as follows:

0w’ — 0ul|loq < &(Oul,, 0(Alu]) — OIL, ) + 0f7, T7), (5.44)
forall1 < j < N and & is defined from (4.40).

Proof. Tndeed, from the definitions of {w’}X; in (5.31), we deduce for all
7=1,..., N that:

b(ow',v) = (B(Auj) — O(TH,F7) + Of7,v)q, (5.45)

Vv € X (Q).

On the other hand, from the definitions of the discrete operators {Aj}évzo
in (5.1) and property of orthogonal L2-projection, we have that for all j =
1,...,N:

b, (0u)), v) = (0(A'u]),v)e, Vv € V] (5.46)
= (0(Alul) — O(IL, f) + 0f7, v)q, Vv € V), '
which implies that 811,% is the DG approximation in VfI of the boundary value
problem (5.45), so we obtain the error estimate (5.44). O
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5.6 Conclusion

In this chapter, we have carried out an a posteriori error analysis for the DG
method for the fully discretization of the time-dependent Maxwell’s problem.
The work is inspired from the method in [GLM13], which is used for wave
equation for conforming finite element method and we have extented it to our
problem for DG method. This method consists of using the special testing pro-
cedure introdcued by [BAT6], and a suitable space-time reconstruction. These
techniques allow us to derive the a posteriori error estimate for the time-
dependent problem from the error estimates of the auxiliary time-harmonic
problem. The numerical implementation of these computable a posteriori er-
ror bounds using adaptive algorithm strateqy will be the subject of our future
works.
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6.1 Introduction

In this chapter, we generalize our a posteriori error analysis to any partial
differential initial boundary value problem.

The main ingredient of our a posteriori error analysis is the time-harmonic
reconstruction which allows us to separate the time discretization analysis from
the spatial discretization analysis. If u denotes the exact solution to our partial
differential initial boundary value problem, and w;, denotes its approximate
solution obtained by a conforming or nonconforming numerical method. Then
the main idea behind the time-harmonic reconstruction technique is to define
an auzxiliary function w, which is called the time-harmonic reconstruction of
uy. This function w satisfy two properties,

1) an error relation which allows us to express the error e = u — w, =
(u —w) + (w —uy), in terms of the quantities involving only (w — up,)
and the given data of our problem.

2) wy, is Ritz-projection of w onto a given non-conforming finite element
space V.

6.2 Generalisation of a posteriori error esti-
mates

Let O be an open subset of R™, with boundary 00. We introduce the linear
differential operators P and Q;,1 < j <w, in O and on 0O, respectively. Let
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f and g;, 0 < j <w, be given in functional spaces F' and G; , F' being a space
on O and the G; are spaces on 0O. Then our model problem is as follows:
find w in a function space U satisfying

Pu(x,t) = fin O,

6.1
Qju = g; on 90,0 < j < w, (6.1)

Q; may be identically zero on part of 0O, so that the number of boundary
conditions may depend on the parts of 0O considered.

We consider O = Qx]0,T[C R"™, where Q is an open subset of R", with
boundary 0S2; the part of the boundary 0O on which boundary conditions
are given splits up into Q and ¥ := 90x]0,T[ . We specify the system of
operators {P,Q;} as follows:

a) we consider the case where P is given by

9
r-2 . x
ot T

where X is an elliptic operator. Then the problem corresponding to (6.1)
18

ou

e + Xu(xz,t) = fin O,
u(x,0) = ug in Q, (6.2)
Biu = g; on X,
where B; are suitable boundary operators.
b) The case where P is an operator given by
92
P=—+X.
o+
In this case the problem corresponding to (6.1) is
82
a—tg + Xu(x,t) = f in O,
u(x,0) = ug in €,
(,0) = uo (6.3)
a—u(az 0) =wuy in Q
ot ) 1 )
Biju=g; on X,

where B; are suitable boundary operators, ug,u; are given functions.
Let w be the exact solution of (6.1), and wy, be the solution obtained by discon-
tinuous Galerkin(DG) approzimation on a finite element space Vj,. Let I1;, be
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the L?-orthognal projection onto Vi,. We define w the solution of the following
time harmonic problem

Xw=r7rin O,

6.4

with r = Auy — I, f + f, where A : 'V}, — V}, is the discrete operator defined

by
(Azh,'v)Q = bh(zh,'v), Yv eV,

for each z, € Vj,. Here by, is bilinear form of corresponding DG formulation

of (6.1).
Let wy, be the DG approzimation of (6.4), then we have

bh(wh, ’U) = (A'u,h — Hh_f + f, ’U)Q = bh(uh,v).

Hence, wy, = wy,, which implies w is the exact solution of time-harmonic prob-
lem (6.4) whose DG approximation is wy, which is also DG approzimation of
(6.1).

We decompose the error e between the exact solution w and DG approximation
up of (6.1) ase=u—up, =u—w+w—u, = €— p where € := w —uy and
p=w—u.

Using the above property of time-harmonic reconstruction w, we conclude that
the error w — uy, is the error of the DG method in V}, for the time-harmonic
problem (6.4).

By using some suitable techniques, we show that the e satisfies an error re-
lation and wusing this error relation and the testing procedure introduced by
[BA16], the error estimation can be reduced to the estimation of the quantities
involving only the € = w — wuy, and the given data of the problem.

Hence, if the a posteriori error estimates for DG approximation already exist
for the corresponding time-harmonic or stationary problem (6.4) in L?*-norm,
the time-harmonic reconstruction technique allows us to get the a posteriori
error estimates of the DG approzimation for the corresponding time-dependent
problem (6.1). Furthermore a suitable space-time reconstruction allows us to
get the a posteriori error estimates for fully discere case. This technique can
be adopted to get the a posteriori error estimates of many problems for DG ap-
proximation. In our work we have used this technique for Mazwell’s problem.
We refer to the work of [LU14] for elasticity problem with DG approzima-
tion, [GLM13] for wave equation with finite element method, [GLV11] for the
parabolic problems with DG approximation.
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7.1 Model Problem

Let Q be a bounded polyhedron in R, with a Lipschitz boundary 0Q . We
further assume that € is simply connected and that 0S) is connected. We
consider the time-harmonic Mazwell equations in a heterogeneous insulating

medium
VX (p'Vxu)—Vp=j in Q
Vau=0 in €,
nxu=0 on 0f), (7.1)
p=20 on  0f.

Here, the unknowns are the electric field w which is a vector field, and the
Lagrange multiplier p which is a scalar field and is related to the divergence
free constraint. n is the outward unit normal vector to Q. p = u(x) is the
magnetic permeability of the medium, that we assume to be a real function in
L>(Q) and it satisfies

0 < pu < pl) < p* < oo,
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For simplicity, we assume that p 1s piecewise constant with respect to a
partition of the domain ). The right-hand side 3 € LQ(Q)3 15 an external
source field, which is divergence free that leads to p = 0.

Let V = Hy(curl, Q) N H(div,Q) and Q = H} ()

The variational formulation of model problem (7.1) reads:

find u €V and p € Q) such that

a(u,v) + b(v,p) = (4,v),
b(v,q) = 0.

V(v,q) €V xQ

The bilinear forms a and b are given by
a(u,v) = /(u‘lv xu) - (Vxv)dx; b(v,q) = —/ Vq - vdx; (7.3)
Q Q

The bilinear form a is continuous and coercive on kernal of b. The bilinear
form b is continuous, coercive and satisfies an inf-sup condition. Hence the
variational formulation (7.2) is well-posed. See for details [VD99],[BF91].

7.2 Discontinuous Galerkin(DG) Formulation

Let 9, h > 0, be a family of partitions of Q) into tetrahedra defined in section
1.1.2. For an element k of J,, we denote by P*(k) the space of polynomials
of total degree at most k,k > 0, on k. The generic hp-finite element space of
piecewise polynomials is given by

PH(F) = {u € LA(Q) :uy, € PF(k), Yk e T}

We use the finite element spaces, Vi, = PP(F,)3, Qn = PY(.F,). Where we
have considered the most general case in which different approximation orders
can be used for DG spaces Vi, and Qy,.

In this section, we derive the mized discontinuous Galerkin formulation to
(7.1), and we discuss the well-posedness of this formulation.

Let k € 9, fized and n, the unit normal vector to Ok. Multiplying the first
equation of (7.1) by vy, € V}, and integrate by parts on k using Green theorem,

vh~(u’1V/><\u><n,€)ds: /jmhdx.

/(u1V><u)-(V><vh)d:><+/N Vp'vhdx—/% :
(7.4)

K
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Multiplying the second equation of (7.1) by qn € Q) and integrate on k,
- /th cudx + / qn(u - m,;)ds = 0, (7.5)
K Ok

where V x w and @ are the numerical fluzes of V X w and u respectively. We
define these numerical fluzes in the following section.

7.2.1 The numerical fluxes

For any given vector function ¢ € H*( )3, with s > %, the numerical fluzes
$ are the elements of L*(F,)3, in particular, for any k € J,, the numerical
fluzes g/b: are the approximation of ¢ on the boundary of k. We say that the
numerical fluzes are conservative if they are single valued on 0. Similarly
we can define the numerical fluzes for scalar functions. If o € H*(Z,) is a
scalar function, the numerical fluzes 9 are in L*(%,).

We define the numerical fluxzes conservative and consistant in the sense of
Arnold [ABCMO02] in the following. For any k € F},

—

Vxu={Vxu} —afu]r on 0r\09Q,
u = {ul} —a,[p]y on 0r\0L,
p={p} — afu]r on Or\O2.

—

Vxu=VXxXu-—an, xXu on 0k NI,
U =u — aypn, on 0k N IS,
p=0 0k N.

We have the following two identities which hold true Yv,w € TR(F})?,
Vq € TR(Fh)

S [ omecwts == 3 [ wnocwis=— [ plrfupass |l

KET} KET, K
(7.6)
I;h /aﬁ(w-nﬁ)qu: Lg([[w]]N{q}—F[[Q]]N{w})ds—'_LE q(w.n,)ds. (7.7)

Summing the equations (7.4) and (7.5)over all the elements k € T}, using
the definitions of the numercal fluzes and the identities (7.6),(7.7) and the
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fact that (u,p) is the solution to (7.1), we get

Z (W 'V xu) - (V x vp)dx + Z Vp - vpdx

KET, k KET}, ®
- / [onlr 'V % whds — / [unle 'V x whds = 3 [ 5 oud,
y\h Lg’\h NE-_% K

(7.8)

_ Z /th-udx—k/yl[[qh]]]v{u}ds =0, (7.9)

KETp,

where we have introduced the term fa@h [un]r 'V x v}ds to the equation
(7.8) to get a symmetric formulation this term vanishes for exact solution.
Now we intoduce the following interior penalty stabilizing terms to the
equation (7.8), these terms vanish for the exact solution.

Ju(uh, ’Uh) = Cy Z /V . uhV . ’Uth -+ Z a[[uh]]T[[vh]]Tds

KE T r eEIy, €

+ > [ afup]n[va]vds. (7.10)

669}{ ¢

In the similar way, we introduce the following interior penalty stabilisation
terms to the equation (7.9).

Jp(ph, qh) = Cp Z /Vph . thdX + Z ap[[qh]]N[[ph]]Nds. (711)
k€T H ceFl 7°
Here ¢, > 0 and ¢, > 0 are constants independent of h. And a,a, are interior
penalty parameters defined by
a=ah™' € L*(F}) and a, = yh ™" € L*(F,), (7.12)

where o and v are positif real constants. The mized discontinuous Galerkin
finite element formulation to (7.1) is now defined as follows:

find (wp,ppn) € Vi X Qp such that

{ an(wn, vy) + by (v, pr) = Lu(vs), Yo, € V.

7.13
br(Wh, qn) — ch(Phsqn) = 0, Van € Q. (7.13)
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Where ay,, by, c,, and Ly, are defined by
ah(uh,vh) = Z /,ulvh X uh.Vh X ’Uth+ Cy Z Vh : uh.Vh . ’Uth
KET} r KETp, K

- Tunlrfu 'V x vy ds — [on] ' Vi x uy }ds
Tn

Fn

+/%L GﬂuhHTﬂvhHTdS+/1a[[uh]]N[[vh]]Nds; (7.14)

yh
br(vn,pn) = > | Vipn-ondx — [ [palv{on}ds; (7.15)
k€T VP Th
cn(pnyan) = > [ Vapn - Vagadx +/ ap[pr] nlan] nds; (7.16)
KET, k Fh

Li(ws) = / jondx.(7.17)
Q
where V}, denotes the elementwise NV operator.

Remark 7.2.1. If we compare our DG formulation to the one obtained in
[HPS05], in our DG formulation two additional terms appear which are

Cp Z /Vhph . thth + Cy Z Vh : uh.Vh . ’Uth, (718)

KET, K KET} K

these terms are required for stability of our DG formulation. Moreover these
terms allows us to consider the DG formulation with different approximation
order for Vi, and Q. In [HPS05] only equal order approzimation spaces were
considered. But if we consider the general case of different order approxima-
tion spaces for Vi, and Qp,, these terms can not be neglected.

Now we will discuss the stability and consistency of the DG formulation
(7.13). To this end, we define the DG norm as

(v, D) l5e = llolly;, + lallg, (7.19)

where

_1
lol[%, = l4™2Va x v[5 0 + cl Vavlgo + IValvlzl3 2, + [Valv]wl 5
(7.20)
lall, = IVralie + Ivaplan ., (7.21)

We have the following continuity and coercivity result.
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Proposition 7.2.1. 1)There ezists a constant Ceony > 0 such that
an(un, V) < Coont||wnl|v, || Vn]|v, (7.22)

Vuh,vh eV,
2) There exists a parameter o > 0 independent of mesh size and i, such that
for the stabilisation parameter a defined by (7.12) with o > «p we have that

ah('u'hauh) Z Ccoer”'ufh”%/ha V’U,h S Vha (723)
where Ceoer > 0 18 a constant independent of mesh size.

Proof. : To prove this propostion we follow the same steps as in Lemma 2.2.1.

7.2.2 Existence and uniqueness

Now we will show that the DG formulation (7.13) possesses a unique solution.

Proposition 7.2.2. For the stabilisation parameters a and a, defined by
(7.12), there exists a parameter o > 0, such that for o > g the mized DG
formulation (7.13) is uniquely solvable.

Proof. To proof the unicity of the solution, we will show that if j = 0in (7.13)
then we have (uy,vy) = (0,0).

Taking vy, = uy, and ¢|g, = py in (7.13) and subtracting the second equation
from first equation of (7.13) yeilds

ap(wp, vi) + cp(pr, pr) =0, (7.24)

by the definitions of a;, and ¢, we get

Z /(/flvh x up)dx + ¢, Z (Vi - uy)?dx

KET, U F KETR U

=2 [ [l s /¢ o [un]z)2ds+ A a(lw]x)dste, 3 / (Vapn)2dx

KET,

+/€ a,([pn]n)*ds = 0. (7.25)

For the third term on left hand side, we have by using the arithematic
inequality and Cauchy Schwarz inequality,

2 1
2 [[uh]]T{Vh X uh}ds < 26/ a[[uh]]QTds + —/ a|{,u_1vh X ’U,h}|2d8.
T Fn Fn,

Fn 5
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Now using the inverse inequality (1.10) and the definition of stabilisation
parameter a, we have

1 _1 9 O/ -1 2
—{u "V xu ds < — uw oV X u dx,
/ﬁh|\/a{ hX un - Q|{ X un |

hence, we have

2C
ah(uh, 'l)h) + ch(ph,ph) > (1 - —5) /(/flvh X ’u/h)de + Cu/(vh . uh)de
Q

Q Q

+(1—25C’)/ a([[uh]]T)zds+/ a[us]n)*ds

T, Fl
tep Y [ (Vipn)dx + / ap([pr]n)?ds = 0.

KET K Fn

(7.26)
Thus, we have
Vh X Uup = 0, Vh ~up =10 in Q, [[uh]]T =0 on y}” [[uh]]N =0on ﬂh. (727)

Vhph =0in Q, [[ph]]N on JOZ}L (7.28)
From (7.27), we have

uy, € Hy(curl0, Q) N Hy(div0, )

This implies that u;, = 0 in Q.
From (7.28), we conclude that p, € H}(Q) and

vPh = 07

and since p, = 0 on I', we get p, = 0 on ().

7.3 A posteriori error estimation

We establish an a posteriori estimator for the error measured in terms of the
energy norm ||.|[pg.

First we state a result which we will use in the derivation of the a posteriori
error.

Definition 7.3.1. Let us denote the tangential component of the numerical
fluz =V X u
or(u) =n, x (u'V x u) on Ok, (7.29)
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Now introducing the discrete numerical flux 3,(u) of o,(u), as follows

n, X ({u™'V x u} —afu]r) on 0x\09,

ne X (uV xu—an, xu) on 0kNOK. (7.30)

Yi(u) = {

we get the elementwise conservation property

/(% Ei(un) + /am\ma[[uh]]fv + /KVhph - aﬁﬂphﬂN - /Kj =0. (7.31)

for all k € F}, by setting vy, equal to characteristic function (v, =1 on k and
v, =0 on Q\k) of k in the first equation of (7.13). We will use this property
in derivation of the a posteriori error.

For simplicity we assume that @ =1 in the following.

Theorem 7.3.1. Let (u,p) be the solution of (7.1), we assume that j is
divergence free source field, so that p = 0. Let (up,pp) be the discontinuous
Galerkin approzimation obtained by (7.13). Then, there is a constant C' > 0
independent of mesh size h, such that

| (w—wun,p—pi)llpc < C(Z )t

KETp

where the element error indicator n, is given by

Me=h2 || 5 — Vi x (Vi X wp) + vhph”(%,fs +hETH] 8 (un) - Ut(uh)Hg,an
— 2 — 2 2
+ hnl ” [[uh]]T“O,@n + hnl || [[uh]]NHO,an\@Q +Cy || vh'uhHO,n

+ IVipnllg . + bt Tondwllg o - (7-32)

Proof. From the definition of the norm || .|| ,, the continuity of the tangential
trace of u at the inter-element boundaries, and the fact that p = 0, we have,

I (w—wn,p—pi)llpe = | Vi x (w—wp)l[gotcu | Viwnllgot| ﬁ[[“h]]TH;gh
+ || \/E[[Uh]]NH;% + | Vhphug,g -+ \/@[[Ph]]NH;%. (7.33)

We observe that in the above equation all the terms depend on the approxi-
mate solution of equation (7.13) except the first term on the right hand side.
Hence, we need to estimate the term >, . || Vi x (u — uh)||(2)ﬁ in order to
get an explicit a posteriori error bound. Let us denote e = u — uy,.

We follow the approach of [BHLO03| and we write L?-orthogonal decomposition



7.3. A posteriori error estimation 85

of elementwise flux V;, x e € L*(k)?,Vk € Z, as

Vixe=V¢o+V xx, (7.34)

with ¢ € H'(x) \ R and x € Hy(curl;x) NH(div0;x),Vk € F with
>orea | Xllowie £ C2res | VX xlly .- From the embedding property

Ho(curl; k) N H(div0;k) <  H%(k)):,Vk € 9, we have that
x € H*(k)* Vs € Z, and satisfies Yoweg I Xllsw € CXica | VX Xllg
Therefore, the following stability estimate of the decomposition (7.34) holds

DUVela+ D I xlZ, <C > [ Vixels,. (7.35)

KE.T, KET, KET

Using the above decomposition of e , we have that

ZH the||(2)’R:Z/Vh><e.V¢dx+Z VixeV xxdx=T+1II.

KE T, KET, k KET, K

(7.36)
We first deal with term I: using the definition of e, the smoothness of u and
¢, integration by parts and the fact that n x u = 0 on Ok, where n is unit
outward normal vector on dk, we have

> /vh x eVodx=— > [ n.xu,Veds, (7.37)

ke T ke, YO8

now if we fix v € Vj, N Hy(curl; 2) we observe that

Z / n, X v.Veods = 0.
0K

KET}

Hence, we have

> /vh x eVodx =) / n,. X (v — uy).Vods, (7.38)
K Ok

KET, KET,
< (D P Vllo00)? (D i [l m X (v = wn)l[§ 5,)7 (7.39)
KET, KETp

Using the inverse estimate (1.10), we have

> [ VuxeVotx < 301 Vol (30 1 | mex (0= w0

KETp, KETy KET,

(7.40)
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together with (7.35), we get

> [ TuxeVodx < 31 Vil (3 2 e x (o= w)l)

KET V1 KET}, KET,
(7.41)
Inverse estimate and the discrete trace inequality, yields
_ 2 - 2

Dkt e x (v — )50 < C D0 AP (v — w5 (7.42)

KET, KET
<O (2 @ =wn)lly + 1l Vi x (v —wi)l3,)- (7.43)

KET,

Using the result stated in lemma 4.5.3, we have

. — 2 2 — 2
mfml;m S (0 —wn)llg Al Vax (v —w)llg,) < C| R Plunlrl, 5, -

vEVRNHo( ne
T

(7.44)
As a consequence, we get

> [Vixevotx 20 Y | Vaxely, (X et el 5, )5

k€T KET, KET,
(7.45)
In order to deal with term I, we first write x;, to denote the Lo-projection
of x onto P°(.%,), so that

+ hl/? <Rl X, V5 € T (7.46)

Therefore, replacing x by x — x in term [/, integrating by parts and using
the fact that w satisfies (7.1) with p = 0, we obtain

/theVXde— Z/J—th(vhxuh))(x Xnr)dx

KETp, KETp (747)
_Z<Ut X>8K+Z<Ut €), Xn >on -
KE T, KETp

For the second term on right hand side of (7.47), using the continuity
properties of w and x, and the fact that the numerical fluxes ¥;(u;) are
continuous across the edges, we have

Z<O‘t JX k= Z<Etuh)x>aﬁ.

KET, KETp
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Hence, we have

Z < oy(e), X >ox= Z < Xi(up) — or(up), X >ox -

KET, KETp
For the third term on the right hand side of (7.47), we have
Z < oy(e), Xn >ox= Z < oy(u) — or(un), Xn >ox
KE T, KETp,
= ( Z < ov(w) = Si(un), xn >on ) + ( Z < Be(un) — or(wn), Xn >on )
KET KET,
= Z / a[[uh]]N{{XhB*dS+/VhphthX— [pon] v {xn Bds)
/4567 aH 8Q K 8/{

+( D < i(un) = or(wn), xn >on )
KET,

(7.48)

where in the last equality we have used the elementwise conservation property
(7.31) and the fact that from continuous problem, we have

/ or(u)xnds = /thdX-
Ok K
Hence, we get

Z/VhXGVXXdX_Z/]—th<vhxuh)+vhph) (X — xn)dx

KET} KE T
- Z < Et uh) - Ut(uh)ax — Xh ~ 0k
KETp
+ Z (/ alun]n{x — xnfds —/ [pnlnfx — xn}ds), (7.49)
KET, 8/4\89 Ok

where we also have added and subtracted Zne,ﬂh fn Vipn-xdx, integrated by
parts and used the fact that Vj,.x = 0. Finally using estimates (7.46) and
(7.34), we obtain the following bound:

Z/therxdx<C(ZhiSHj—th(thuh)+Vhph||3ﬁ

KETp KET
+ Y RETHIS (wn) — ou(wn) [
KET
s— 2 - 2 3
+ Z hi 1(” IIthNHO,@m + hnl H [[uh]]NHOﬁn\@Q))Q X Z ” Vh X eHO,H :
KETp, KETp,

(7.50)
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Subsituting (7.45) and (7.50) into (7.36), we get

D Ve xels, <CCY ] hZld— Vi x (Vi x wn) + Vapall§ .

KE T, KET,

+ ) e S wn) —or(wn) 5 00 D b (NIl 15 on i | [ualwlIG o 00)
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_ 1/2
+ 5 Tl el 00) 2 % D IV % ellos. (7.51)

KE T, KET

Now dividing throughout by »_ | Vi x ey, we conclude that

KETp

Z I Vi x ell,. <O Z he || 3 — Vi x (Vi x up) + Vhth?m

KE Ty KETh

+ 0 R Su(un) = ou(un)lle et D B2 ol ont P I Ten]wlIG oo 00)
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_ 1/2
+ Z hnl H [[uh]]T”g,an) . (752)
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CHAPTER 8

Conclusion and perspectives

8.1 Conclusion

In this thesis, we have studied discontinuous Galerkin method for the
Maxwell’s equations both in time harmonic and time dependent case. We
have developped the a priori and a posteriori error estimates.

In first part, we have considered the time dependent Maxwell’s equations

and we have established an interior penalty DG formulation and we have de-
rived a priori error estimates for this formulation. We carried out numerical
analysis to validate these estimates obtained theoratically. Then, we have de-
rived the a posteriori error bounds for semi-discrete and fully discrete formula-
tion using time-harmonic reconstruction technique. For fully discrete scheme,
we make use of the backward-Euler scheme and an appropriate space-time
reconstruction.
In the end, we consider the time-harmonic Maxwell operator with lagrange
multiplier and we developped mixed DG formulation for this problem. We
proved the well-posedness and existence of unique solution. We derive a pos-
teriori error estimates for our formulation using the technique of Helmoltz
decomposition.

8.2 Perspectives

For the a posteriori error bounds the efficiency bounds are not presented. We
will consider this in future work. Furthermore the a posteriori error bounds
should allow us to predict the error at each simulation in time and in each part
of the simulation domain (error localization), in order to adjust the calculation
parameters during the simulation to improve the accuracy (adaptivity). So
in the future, we will work out for an adaptive algorithm with numerical
implementation of the proposed bounds.
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Appendix A

A.1 Calculations

Firstly, we give the proof of property 5.8:

Proof.

t'll
/ P ()dt = k(=362 + (3" + 3t
t

Al
— k;l(_g(tn)Q o (tn71)2) + (3tn71 + ?)tn)/{?n) ( )
= 3"+t H 43"+ 3" = 0.
[
Lemma A.1.1. (Concerning the term €). The following formula holds
t7L
A= / (t" —t)(3t — 2t" ' —")dt = 0.
tn—1
Proof. Indeed,
tTL
A:/ (£ — £)(3 — 36 + 2(" — " 1))dt
tn—1
tn
:/ (=3( — )2 1 2(t" — £)k,)dt (A2)
tn—1
= (= "Vl = (= )k
=" =" (T = ")k, = K+ K =0,
[

Lemma A.1.2. (Concerning the term 0;e). The following formula holds

4k3
t—t"H(" — 1) = =2,
ey T =0 = o
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Proof. Set M = (t — t"~1)(¢t" — t)?, defined on [t"~! ¢"]. We have that
M'(t)=({t"—t)> +2(t —t")(t —t"") = (t —t")(3t —t" — 2t 1),

t42tn !
3

o1 o1\ 2
o= (S ) (e

(=t 2t — 2N AR
a 3 3 o2

A.2 Proof of lemma 5.3.1

this yields that M (t) obtains its maximum value at ¢ =

(A.3)

In this section we carry out the proofs of proposition 5.3.1 in order to prove
theorem 5.3.1. The proof is carried out for the wave equation in [GLM13], and
here we have slightly modified for Maxwell’s problem (vector valued function).

Proposition A.2.1. (Mesh change error estimate ). Under the assumptions
of theorem 5.5.1 and with the notation in (5.18), we have

T, (t") < &mc(th) Jax lon(t) o0

Proof. Observing that the projections H{l, 7 =1,..., N commute with the
time differentiation, we integrate by parts with respect to ¢, arriving at

Z/ (I —T5) 3tUN7PN)th+/ (I = IL")Oyun, py)odt
m—1

+ (I~ 50w, 6(+)a — (I~ T)0uf, 6(0))a

(A.4)
The first two term on the right hand side of (A.4) are bounded by

m—1 tJ t*
max || oy (t)]]o.0 (Z / (T - T dyu[lo.odt + / (I — ng@)atuNHO,th) .
j=1 ti—1 tm—1

0<t<T

' (A.5)
Recalling the definition of © and that of dyuy(#') = duj, j =0,1,..., N, we
can bound the last two terms on the right hand side of (A.4) by

m—1
fax [lpn(t)log (2@* — )| = T5)duj [lo.0 + t°[|(1 — H%WU%H&Q) :
j:

(A.6)
noting that (I —II9)0u) = 0 because du) € V9, we get the result. O
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Proposition A.2.2. (Evolution error bound). Under the assumptions of
theorem 5.3.1 and with the notation in (5.18), we have

Tr(t") < Eevo(t™) max || pn ()00

0<t<T

Proof. First we observe the identity
wy —w = —(t —t)ow’ + <k:j_1(tj — )3 — (¥ — t2)>62wj (A7)
on each (#71 #7], j =2,...,m. Hence from definition 5.1.1, we deduce
b@w—wAm:c4ﬂ—o@h+@fw—o%4ﬁ—#gy¢¢m.m&

The integral of the first component in the inner product on the right-hand side
of (A.8) with respect to ¢ between t/~! and #’ is then given by G7 in (5.12).
Hence integrate by parts on each interval (/=1 #/], j = 1,..., m, we obtain

Z/ (G7, p th+/m (G™, pn)edt, (A.9)

1

which now implies the result. Note that the choice of the constants ~; as in
(5.12) makes the family of G/ continuous on #/,5 = 1,, N, and we also have
G(0) = 0. O

Proposition A.2.3. (Data approximation error bound ). Under the assump-
tions of theorem 5.3.1 and with the notation 5.18, we have

I3(t") < Lose(t") max [|pn (t)lloq- (A.10)

0<t<T

Proof. We begin by observing the zero mean value of fj — f on [tF71 7] as
follows

i )
/(?—ﬁwzo (A11)
ti—1
forall j =1,...,m — 1. Hence we have

m—1

/ f fion)edt = Z/ (F — f.on —on )th (A.12)

Jj=1

where Ej() = k; 1ft] , On(t,-)dt. Using the Friedrich-Poincaré inequality
with respect to the variable £ we have

ti k‘2 tJ
| v —oladt < 5 [ loanliadr (a13)
ti—1
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and recalling that ;o5 = —py, we have

m—1 6o 1/2 4 o 1/2
Z / Foanadt< Y ( / F —f||3,mt) ( / ||ﬁN—ﬁN||3,th)
=1 j—1 ti—1
m—1 9 ] 1/2 tJ 1/2
—7J
([0 = siaac) ([ loslaa)
i— ti—

=1
1 1 4 , 1/2
%Z( [ SRadt) e o (O,
(A.14)

A
¥ =
Ngh

IN

For the remaining term in Z,., we first observe that

t* t* t*
/ ol adt < / - / lon | adsdt < k2, max [lon(s)|Pa: (A.15)
t 1 ’ tm—1 t ’ OSSST ’

m—

which implies

vt t* . 1/2
[ @ pooate < ([ RIF - fRadt) g low(ollos,
tm—1 tm—1
(A.16)
this gives the bound A.2.3.

]

Proposition A.2.4. (Time-reconstruction error bound ). Under the assump-
tions of theorem 5.3.1 and with the notation (5.18), we have

Zu(t") < &u(t") max {lpn (t)lo.0- (A-17)

0<t<T

Proof. Recalling the zero-mean value (5.8) and noting that éﬂufZ is piecewise
constant, and p/ has zero mean value on [/~ /], j =1,...,n, we have

Z/ 62uh, h’UN th Z/ 82uh,H1 (’UN ’UN ))th, (A18)

where EJ() =k [ 1’51\/( .)dt. The projections IT}, j = 1,..., N com-
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mute with the time integration, we obtain

IA
|

1 ¢ ¥ . . 1/2 tJ A 1/2
o ([ weruitian) ([ 8 Il
- ti— 3

IN

¢ ' 1/2
| B ulad)  max oy (Olos.
2m ti—1 ’

0<t<T

(A.19)

For the remaining term in Z,, upon using an argument similar to (A.15), we
have

t* t* 1/2
[ orerupmpoade < ([ Klireurizod ) e oo,
t t

m—1 m—1 0<t<
(A.20)
this completes the proof. O
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