Thèse soutenue

Dosimétrie pour des applications de radiothérapie en utilisant les processeurs graphiques

FR  |  
EN
Auteur / Autrice : Yannick Lemaréchal
Direction : Mathieu Hatt
Type : Thèse de doctorat
Discipline(s) : Biologie-Santé
Date : Soutenance le 22/06/2016
Etablissement(s) : Brest
Ecole(s) doctorale(s) : École doctorale Santé, information-communication et mathématiques, matière (Brest, Finistère)
Partenaire(s) de recherche : Laboratoire : Laboratoire de traitement de l’information médicale (Brest, Finistère)
Jury : Président / Présidente : Dimitris Visvikis
Examinateurs / Examinatrices : Mathieu Hatt, Dimitris Visvikis, Philippe Després, Sébastien Jan, Olivier Pradier
Rapporteurs / Rapporteuses : Philippe Després, Sébastien Jan

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Le cancer de la prostate est le cancer le plus fréquemment diagnostiqué en France chaque année. Il est responsable d’environ 10 % des morts liées au cancer. Les principaux traitements sont la chirurgie et la radiothérapie. Cette dernière concerne environ 60 % à 70 % des patients pris en charge en oncologie. La radiothérapie consiste à délivrer la dose la plus élevée possible à une cible tumorale, via des rayonnements ionisants, tout en limitant au maximum la dose délivrée aux tissus sains et organes à risque (OAR) environnants. Cette pratique requiert un contrôle sans faille de la dose délivrée au patient car une déviation de la prescription médicale peut réduire l’efficacité du traitement des volumes tumoraux. Elle peut également avoir des conséquences graves sur le patient dues à l’irradiation excessive des tissus sains. Un moyen pour évaluer de façon précise la dose délivrée est de simuler l’interaction rayonnement matière à l’intérieur du patient par simulation Monte-Carlo (SMC). Ceci exige une capacité de calcul importante notamment pour simuler les milliards de particules nécessaires à l’évaluation de la dosimétrie. Le temps nécessaire pour obtenir un résultat satisfaisant peut varier de quelques heures à plusieurs jours. Dans ce contexte, le moteur de simulation Monte-Carlo GGEMS (GPU GEant4-based Monte-Carlo Simulation), basé sur l’utilisation de cartes graphiques (GPUs), a pu être développé. Les effets physiques modélisés se basent sur le code Monte-Carlo générique Geant4 réputé et validé. Ce logiciel tient compte de différents types de simulations comme la radiothérapie externe ou les techniques de curiethérapie bas débit et haut débit de dose. Ces exemples ont nécessité la modélisation précise et l’utilisation de plusieurs types de géométries comme des volumes voxélisés, analytiques ou maillés. Concernant la radiothérapie, il n'existait pas de code Monte-Carlo utilisant les architectures GPUs prenant en considération l'ensemble de l'appareil de traitement. Dans ce contexte, nous avons développé un modèle de source paramétrée reproduisant scrupuleusement le faisceau d'émission et permettant une utilisation sur GPU. Nous avons modélisé analytiquement les géométries des mâchoires. Le collimateur multi-lames est quant à lui formé par un ensemble de triangles (maillage). La navigation des électrons dans un volume voxélisé a également été développée. Nous avons utilisé comme exemple l'accélérateur Novalis TrueBeam® Stx. Nous pouvons ainsi effectuer des simulations Monte-Carlo reproduisant fidèlement cet accélérateur linéaire. L’ensemble de l’appareil a été validé à l’aide de comparaisons avec des mesures expérimentales ou avec des simulations Monte-Carlo de référence. Finalement, nous avons développé une plateforme de simulation Monte-Carlo utilisant les architectures GPUs pour des applications de curiethérapie et de radiothérapie externe. Cette plateforme comprend la navigation des photons et des électrons. Elle gère également les volumes voxélisés, analytiques (cylindre, pavé) et maillés. Les sources d'émission des particules sont modélisées pour reproduire fidèlement leur modèle de référence. Les facteurs d'accélération par rapport à Geant4 sont compris entre 40 et 568 selon l'application. Des applications de GGEMS dans des conditions cliniques, notamment en curiethérapie, sont la prochaine étape du développement.