Thèse soutenue

Understanding plasmodesmata membrane organization and the control of cell-to-cell connectivity in plants

FR  |  
EN
Auteur / Autrice : William Nicolas
Direction : Emmanuelle Bayer
Type : Thèse de doctorat
Discipline(s) : Biologie cellulaire et physiopathologie
Date : Soutenance le 09/12/2016
Etablissement(s) : Bordeaux
Ecole(s) doctorale(s) : École doctorale Sciences de la vie et de la santé (Bordeaux)
Partenaire(s) de recherche : Laboratoire : Laboratoire de biogénèse membranaire, UMR 5200 (Villenave-d'Ornon, Gironde)
Jury : Président / Présidente : Patrick Moreau
Examinateurs / Examinatrices : Daniel Lévy, Lysiane Brocard
Rapporteurs / Rapporteuses : Chris R. Hawes, Yvon Jaillais

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

La communication intercellulaire est essentielle pour le développement et la survie d'organismes multicellulaires. Dans le règne végétale, une des voies privilégiée pour la communication intercellulaire est la voie symplastique qui implique des canaux aux dimensions nanométriques connectant les cellules entre elles, leur permettant d'échanger directement photo-assimilats, miARN, protéines, oligoéléments etc. Observés pour la première fois en 1880 par le botaniste autrichien Eduard Tangl (Tangl 1880; Kohler & Carr 2006), ils ont longtemps été considérés comme de simples trous perméables permettant la diffusion de matériel cellulaire (Lee & Lu 2011; Oparka & Roberts 2001). Etant donné leurs taille nanoscopique, ce n'est que dans les années 1960, avec la démocratisation de la Microscopie Électronique en Transmission (MET) qui permet d'atteindre , que les premiers modèles ultrastructuraux sont établis (Lopez-Saez 1965; Robards 1970). Ils font état d'un canal d'environ 30 à 40 nm de diamètre avec un élément central cylindrique traversant le pore, appelé le desmotubule, connecté au Réticulum Endoplasmique des deux cellules (Figure 1 of our review Tilsner et al. 2016). Dans les années 1980 notre compréhension des plasmodesmes a quelque peu évolué et nous savons maintenant que ces structures ne sont pas de simples trous mais des structures membranaires très spécialisées et régulées (Lucas & Lee 2004; Faulkner & Maule 2011; Furuta et al. 2012). Le modèle ultrastructural actuel découle de la congrégation d'études ultrastructurale, physiologiques et pharmacologiques plus ou moins anciennes dépeignant une structure morphologiquement très souple et changeant de conformation au cours du développement. Les plasmodesmes peuvent réguler leur ouverture/fermeture par la constriction de leurs extrémités grâce à l'accumulation entre la membrane plasmique et la paroi végétale d'un polymère de sucre, la callose qui va pousser la membrane plasmique contre le desmotubule et en obstruer les entrées. Cette modulation permettrait majoritairement de réguler les flux intercellulaires qui impliquent les plasmodesmes. Cependant nos connaissances sur les remaniements membranaires prenant place durant le développement des plasmodesmes et sur la régulation de leur perméabilité sont encore imparfaites.La microscopie électronique en transmission, malgré l'ancienneté de la technique, est l'une des plus résolutive, largement utilisée en biologie. Avec l'amélioration des techniques de préservation d'échantillons, notamment les cryo- méthodes, elle permet d'atteindre à l'heure actuelle des résolutions inférieures à 5 nm en condition contrastée et inclus en résine et peut descendre en dessous du nanomètre pour la cryo-microscopie. Ce potentiel permet aisément l'étude des sous-compartiments cellulaires de l'ordre du µm tel que mitochondries, chloroplastes, noyaux etc. (Frey et al. 2002) mais permet également l'étude ultrastructurale précise de structures de l'ordre de la dizaine de nm (Beck et al. 2007; Al-Amoudi et al. 2007).En revanche, dans son utilisation classique, la microscopie électronique ne permet pas d'accéder à la troisième dimension de l'espace, rendant difficile l'interprétation de structure à l'architecture quelque peu compliquée. En effet, les images produites ne sont que des projections en deux dimensions d'objets en trois dimensions. Cela a mené au développement de la tomographie électronique en transmission (Crowther et al. 1970), méthode basée sur un concept mathématiques formulé par Johann Radon au XIXe siècle. Ce n'est que dans les années 2000 que la tomographie électronique a pris un essor significatif grâce au couplage avec des méthodes d'automatisation informatiques.