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Unité de recherche
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Résumé en français

Cette thèse est dédiée à l’optomécanique angulaire par l’interaction entre une

lumière structurée et une matière structuré. Dans le chapitre 1, nous présentons les

principaux éléments de notre étude. À savoir, dans la partie 1.1 nous introduisons

la notion de moment angulaire de la lumière qui a deux contributions distinctes

: une partie “spin” associée au degré de liberté de polarisation de la lumière, et

une partie “orbitale” associée à la distribution spatiale des degrés de liberté de

la lumière. Nous présentons également les conditions dans lesquelles ces deux

sortes de moments angulaires sont transférées à la matière. Dans la partie 1.2 nous

démontrons comment les moments angulaires orbital et de spin interagissent entre

eux lorsque la lumière se propage à l’intérieur d’un matériau aux propriétés optiques

anisotropes et non homogènes. Ces intéractions, dites “intéractions spin-orbite”

de la lumière, a des conséquences tant sur le champ lumineux lui même que sur

la matière. En particulier, nous discutons de la génération de vortex optique

piloté par l’intéraction spin-orbite avec des éléments biréfringent non homogène

azimutalement et revoyons les diverses approches de structurations possibles de

matériaux qui ont été élaborés au cours de la dernière décennie. D’autre part, dans

la partie 1.3 nous voyons les conséquences mécaniques possibles de l’interaction

spin-orbit optique. Tout ceci établit le contexte scientifique de ce travail dont les

motivations principales et le plan sont présentés dans la partie 1.4.

Dans le chapitre 2, nous présentons une manifestation mécanique expérimentale :

l’intéraction spin-orbite induit un couple optique dans le faisceau. Nous définissons

nos exigences pour l’observation de ce couple dans la partie 2.1, où nous discutons

du choix du milieu de couplage spin-orbite et de ses conditions d’observation. En

particulier, nous présentons les défauts de type ombilics présents dans les couches

de cristaux liquides nématiques, qui ont l’avantage de former spontanément un

milieu biréfringent dont l’axe optique présente une structuration azimutale. Dans la
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partie 2.2 nous présentons les principes de notre étude et proposons d’évaluer notre

analyse expérimentale grâce à la manipulation de la biréfringence du cristal liquide

par le champ électrique. Ensuite nous présentons le changement d’orientation

moléculaire du cristal liquide provoqué par l’interaction spin-orbite de la lumière,

soit une observation directe des effets optomécaniques de l’interaction spin-orbite.

Plus précisément nous étudions l’orientation moléculaire des défauts de cristaux

liquides de charge topologique m = ±1, en fonction de l’état de polarisation du

faisceau incident et de la pureté du vortex optique généré. Enfin dans la partie 2.3,

nous présentons nos tentatives en vue d’ouvrir nos recherches sur d’autres charges

topologiques, m ≠ ±1, en utilisant d’autres types de défauts de cristaux liquides

appelés disclinations.

Dans le chapitre 3 nous élargissons l’étude des propriétés optomécanique spin-

orbite aux défauts de charges topologiques ∣m∣ ≠ 1 en utilisant des lames de verre

structurées artificiellement par laser femtoseconde. De telles lames peuvent être

trouvées dans le commerce ou être conçues spécifiquement pour obtenir toute charge

topologique. Nous avons choisi de limiter notre étude aux charges topologiques m =
{1/2, 1, 3/2}, avec un retard de phase biréfringent homogène ∆ = π. En effet ce choix

nous permet d’aborder le couple optique inverse en passant d’une charge topologique

m = 1/2 à m = 3/2, à moment angulaire optique de spin incident fixé. Dans la

partie 3.1 nous introduisons le concept de couple optique “gauche” et établissons une

analogie avec les forces optiques dites “négatives”. Ensuite nous présentons les lames

de phase biréfringentes et notre approche expérimentale pour mettre en évidence le

couple gauche à partir d’un faisceau polarisé circulairement dans la partie 3.2. Puis,

dans la partie 3.3, nous présentons une démonstration expérimentale basée sur la

figure d’interférence entre deux faisceaux (un colinéaire l’autre non) et analysons le

couple quantitativement et sa dépendance à tous les paramètres concernés. Dans

la partie 3.4 nous présentons une approche expérimentale simplifiée avec un unique

faisceau polarisé linéairement. Enfin, nous généralisons le couple gauche aux valeurs

de retard de phase de biréfringence et états de polarisation incident arbitraires

dans la partie 3.5.

Dans le chapitre 4 nous présentons les essais expérimentaux d’observation du

couple optique gauche de façon directe. Dans la partie 4.1 nous discutons de

potentielles méthodes d’amélioration pour l’évaluation de la rotation des éléments
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optiques d’intéraction spin-orbite induite par le couple optique. Nous présentons

nos essais expérimentaux sur des échantillons de structuration azimutale de la

biréfringence à l’échelle millimétrique dans la partie 4.2, correspondant à une

miniaturisation des échantillons macroscopiques utilisés précédemment. Ensuite,

dans la partie 4.3, nous présentons le design, la fabrication et caractérisation de

la structuration de micro-structures métalliques qui pourraient être de nouveaux

candidats dans notre projet. Les performances optiques des échantillons fabriqués

sont expérimentalement évaluées et discutées pour une potentielle implémentation

optomécanique. Nous concluons ce chapitre par la partie 4.4, où nous ouvrons

une option d’échantillon purement diélectrique à échelle micrométrique qui serait

probablement celui qui permettrait une observation directe du couple optique inverse.

Nous faisons état de nos premières tentatives de fabrication et des difficultés à

prévoir en pratique auxquelles il faudra tenir compte afin d’atteindre l’objectif

initial.
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C H A P T E R 1

Light angular momenta and their

interaction

The thesis is dedicated to angular optomechanics in the presence of interplay

between structured light and structured (space-variant) matter. In this chapter, we

present the primary ingredients of our study. Namely, in section 1.1 we introduce

the angular momentum of light that has two distinct contributions: a “spin” part

associated with the polarization degree of freedom of light, and an “orbital” part

associated with the spatial degrees of freedom of light. We also introduce the

conditions under which these two kinds of angular momentum are transferred to

matter. In section 1.2 we demonstrate how the optical spin and orbital angular

momenta can interact as light propagates inside optically inhomogeneous and

anisotropic media. Such so-called “spin-orbit interaction” of light has consequences,

both on the light field itself and on matter. Particularly, we discuss the spin-

controlled generation of optical vortices using azimuthally varying birefringent

elements and review the various material structuring approaches that have been

developed during the last decade. On the other hand, in section 1.3 we overview

possible mechanical consequences of optical spin-orbit interaction. All this sets the

background of this work, whose main motivations and outlines are summarized in

section 1.4.

1.1 Light angular momenta and its transfer to

matter

A light field is described either as an electromagnetic wave or as quantized par-

ticles, the photons. It is characterized by speed of light c, wavelength λ, wavevector
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spectrum1 {k} and its associated amplitude, phase, and polarization distributions.

A plane wave, with wavevector k and angular frequency ω, propagating in free

space carries h̵ω energy and h̵k linear momentum per photon. This holds too for

light beams whose wavevector spectrum is not too broad, in other words in the

limit of the paraxial approximation. Paraxial approximation assumes that spatial

variations of the light field take place over distances that are large enough with

respect to wavelength λ = 2π/k, (see for example Ref. [1]). Mathematically it can

be expressed by inequalities

∂A

∂z
≪ kA

∂2A

∂z2
≪ k2A, (1.1)

where A is the field amplitude and z is spatial coordinate along the propagation

direction of the wave.

Besides energy and linear momentum, light may also carry angular momentum

that consists of two contributions: spin angular momentum related to the polar-

ization state and orbital angular momentum related to the spatial properties of

the light. Indeed, careful examination of the angular momentum reveals that there

are two types of rotations involved in light fields: one is linked to the vectorial

nature of the field (polarization) and the other is linked to the optical phase spatial

distribution. In particular, under the paraxial approximation, the spin and orbital

angular momentum can be formally separated i.e., the total angular momentum

can be expressed as the sum of spin and orbital angular momentum. In addition,

when light field interacts with matter it may transfer its angular momentum to it.

We discuss the above issues hereafter.

1.1.1 Spin angular momentum

Let us consider a fully polarized monochromatic plane wave with angular

frequency ω and wavevector k propagating in vacuum along the z axis, with

(x,y,z) the orthonormal Cartesian basis. The complex electric field lies in (x,y)

plane and is described by

E = E0e
−i(ωt−kz) e , (1.2)

1Referring to its plane waves content.
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Le�-handed (χ > 0) Right-handed (χ < 0) 

χ
ψ χ 2χ

2ψ

(a) (b) (c)y

x

y

x

s1

s2

s3

Poincaré unit sphere 

Figure 1.1: (a) Left- (χ > 0) and (b) right- (χ < 0) handed polarization ellipses. (c)
Geometrical representation of fully polarized light identified by ψ and χ angles on the
Poincaré unit sphere with the reduced Stokes parameters (s1, s2, s3) as axes.

where E0 is the amplitude and e is a unit vector that represents the polarization

state. In general, e is a complex vector that can be described as

e = (cosψ cosχ − i sinψ sinχ)x + (sinψ cosχ + i cosψ sinχ)y , (1.3)

where ψ and χ angles are linked to the so-called polarization ellipse. Polarization

ellipse refers to the curve described by the tip of the electric vector of electromagnetic

field as time goes by, at a given point in space. The polarization ellipse is defined by

two angles: (i) the azimuth angle ψ between its major axis and the x axis2, and (ii)

the ellipticity angle χ, tanχ being the signed ratio between minor and major axes

of polarization ellipse, as illustrated Fig. 1.1(a). We opt for the convention that

labels polarization state as left-handed (respectively right-handed) when the tip of

the electrical vector describes an ellipse that rotates counterclockwise (respectively

clockwise) when observer looks at the source; i.e. 0 < χ ≤ π/4 and −π/4 ≤ χ < 0,

respectively (see Fig. 1.1(a,b)). Such convention is consistent with helix handedness

that is formed with electrical vector and propagation direction at any given instant,

E(r, t0) (see Fig. 1.2).

2This implies that angles ψ and ψ + π are equivalent.
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(c) y

x

(d)

Le�-handed ( ) χ = + π/4 Right-handed ( ) χ = - π/4

z

(a) y

x

(b)

z

y

x

z
y

x

z

Spin angular momentum: s  = + h z s  = - h zSpin angular momentum:

Figure 1.2: (a) Illustration of counterclockwise rotation (observer looks at the source)
of the electric field vector tip in a plane transverse to the propagation direction given
by z axis and (b) snapshot of the electrical field vector left-handed helix corresponding
to left-handed circular polarization state. (c,d) Same as (a,b) for right-handed circular
polarization state.

A practical representation of the polarization state is given by the Stokes vector

S = (S0, S1, S2, S3) defined following (see Ref. [2])

S0 = ∣Ex∣2 + ∣Ey ∣2 ,

S1 = ∣Ex∣2 − ∣Ey ∣2 ,

S2 = 2Re(E∗

xEy) ,

S3 = 2Im(E∗

xEy) .

(1.4)

Then, introducing the reduced Stokes vector s = (S1, S2, S3)/S0, any polarization

state can be univocally associated with a point on the surface of the unit sphere,

in the frame (s1, s2, s3), called the Poincaré sphere. Indeed, the polarization state

coordinates on the Poincaré sphere are (Fig. 1.1 (c))

s1 = cos 2ψ cos 2χ ,

s2 = sin 2ψ cos 2χ ,

s3 = sin 2χ .

(1.5)

The equatorial line of the Poincaré sphere, χ = 0, represents linearly polarized light

with all possible azimuth angles, the “north” and “south” poles represent left and

right circular polarization states χ = ±π/4, and all other points refer to elliptical

polarization state.
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Another representation of the polarization state of light is the one of Jones. It

introduces unit vectors to describe an arbitrary polarization state. In the (x, y)

basis the Jones representation of a polarization state, defined by angles ψ and χ, is

expressed as

e =
⎛
⎝

cosψ cosχ − i sinψ sinχ

sinψ cosχ + i cosψ sinχ

⎞
⎠
. (1.6)

the Jones representation is particularly useful when analyzing polarization changes

as light passes through optical elements. Namely, the action of an optical element

on polarization can be described by 2 × 2 matrix.

Regardless of the polarization state representation when the electric vector

of light field rotates, polarized light carries well defined spin angular momentum,

which can be related to the polarization state, more precisely to the third Stokes

parameter. This was unveiled in 1909 by Poynting with the analogy of the wave

motion of rotating shaft [3]. Indeed, in general, spin angular momentum projection

on the field propagation direction is sz = s3h̵ per photon, h̵ = h/2π being the

reduced Plank’s constant. In particular sz = σh̵, σ = ±1, for circular polarization, as

illustrated in Fig. 1.2. Importantly, circular polarization states form an orthonormal

basis to describe polarization, and this is a prime choice in this work, where we

will refer to circular polarization Jones vectors as

eσ =
1√
2

⎛
⎝

1

iσ

⎞
⎠
. (1.7)

1.1.2 Orbital angular momentum

Besides the intrinsic spin contribution to angular momentum that is related

to the polarization, there is a contribution related to the spatial distribution of

phase and referred as orbital angular momentum. To describe it, plane wave is

no longer an appropriate tool. Instead, a beam (finite spatial extent) should be

considered. This can be done in a general manner in the framework of paraxial

approximation, by exploring a complete basis of solutions of the paraxial Helmholtz

equation. Different options are possible, and in order to discuss an orbital angular

momentum of an intrinsic nature [4], it is relevant to choose Laguerre-Gaussian basis.

Indeed, any polarized light beam that propagates along z axis can be described in
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z

x

y

l  = + h z l  = + 2h z(a) (b) (c)

(e)

l  = + 3h z

l  = - 2h z(d) l  = - h z l  = - 3h z(f)

Figure 1.3: Illustration of surfaces of constant phase (wavefronts) corresponding to
waves that carry on-axis phase singularities with topological charge ` = ±1 (a,d), ` = ±2
(b,e) and ` = ±3 (c,f) and associated orbital angular momentum projections along the
propagation direction, lz = `h̵ per photon.

Laguerre-Gaussian basis as

E = ∑
`,p,σ

E
(`,p)
0 u`,p(r, z)ei`ϕe−i(ωt−kz)eσ , (1.8)

where,

u`,p(r, z) =
w0

w(z)
[ r

w(z)
]
∣`∣

exp [− r2

w2(z)
] L∣`∣

p ( 2r2

w2(z)
)

exp [ ikr2z

2(z2 + z2
R)

] exp [−i(2p + ∣`∣ + 1)ζ(z)] ,
(1.9)

where, w(z) = w0

√
1 + (z/zR)2 is the beam radius at z, w0 being beam waist at z = 0,

zR = πw2
0/λ is the Rayleigh distance, λ being the wavelength, ζ(z)= arctan(z/zR)

is the Gouy phase for the Gaussian field, and L
∣`∣
p are the generalized Laguerre

polynomials with the radial index p and the azimuthal index is `.

The choice of beam description is justified by noting that3 Allen and coauthors [5]

unveiled that beams with amplitude proportional to exp (i`ϕ) carry `h̵ orbital

3Taking into account the convention adopted here for the complex representation of the electric
field.
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Figure 1.4: Normalized intensity and phase transverse distributions of fundamental
Laguerre-Gaussian profiles observed in the transverse plane at z = 0 for the values
` = {±1,±2,±3} and p = 0.

angular momentum per photon along the beam axis, where ` is an integer and

ϕ is the polar angle in the plane orthogonal to the beam propagation direction.

The exp(i`ϕ) factor indicates that the phase varies by 2π` along a closed circle

around the beam axis in a transverse plane. However, at r = 0 (the center of the

beam), the phase is undefined, referring to it as optical singularity of topological

charge `, which implies that the amplitude of the transverse field is null on axis

in order to preserve field well defined. In general, beams endowed with phase

singularities are called optical vortex beams. Such beams are widely explored in

the domain of so-called singular optics that encompass the study of singularities

of electromagnetic field [6]. Corresponding equiphase surfaces (wavefronts) are

helicoids that revolve clockwise or counterclockwise depending on the sign of the `

as illustrated in Fig. 1.3 for the ` = {±1,±2,±3}. Note that left-handed (respectively

right-handed) helicoid corresponds to the positive (respectively negative) values of

the `.

In our study we consider the Laguerre-Gaussian beams with zero radial index

number p = 0. The intensity and phase transverse distributions of Laguerre-

Gaussian beams are shown in Fig. 1.4 for p = 0 and ` = {±1,±2,±3}. Doughnut

shaped intensity transverse distributions result from on-axis phase singularity

are valid at any propagation distance and straightforward to observe in practice.

On the other hand singular phase structure is generally assessed experimentally
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Figure 1.5: `-arm spiraling (`-fork fringing) interference patterns revealing the presence
of on-axis optical phase singularity, obtained with on-axis (off-axis) coherent superposition
of vortex beam with reference Gaussian beam of equivalent beam diameter and power at
observation plane for the values of ` = {±1,±2,±3} and p = 0.

by indirect observations using interferometry. A practical example consists to

superpose a vortex beam with a collinear and coherent reference Gaussian beam.

This leads to spiraling pattern, as illustrated in first row of Fig. 1.5, whose number

of spiraling arms is equal to ∣`∣, while their handedness is associated with the sign

of `. Importantly, the handedness of spiraling arm for a given ` also depends

on the relative sign of wavefront curvature of superposed vortex and reference

Gaussian beams. Note that to form such pattern relative wavefront curvature

between two beams is required. Another example is non-collinear superposition

of vortex and reference Gaussian beam that leads to non-axisymmetric fringing

pattern formation referred as `-fork pattern, as illustrated in second row of Fig. 1.5.

The “fork” slits number is equal to the ∣`∣, while its direction is associated with the

sign of `. Importantly, the pattern handedness depends on the geometry of non

collinear superposition, and the straightness of fringes depends on plane-wave-like

profiles (smooth curvature) of the superposed beams.

1.1.3 Angular momentum transfer to matter

As said above, in the limit of the paraxial approximation, the total angular

momentum of light field along the propagation axis z, jz, may be formally divided

to the sum of two contributions [5], spin and orbital angular momentum parts. In
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Figure 1.6: Illustration of general light-matter interaction process involving angular
momentum exchanges, which results in torque exerted by light on matter.

the case of Laguerre-Gaussian beam with azimuthal axis index ` it can be expressed

by the following form

jz = sz + lz , (1.10)

where sz = sin(2χ)h̵ and lz = `h̵ are respectively optical spin and orbital angular

momentum per photon [7]. In what follows we focus on the mechanical consequences

of light-matter interaction in presence of angular momentum.

In general, light-matter interaction is associated with exchanges of energy, linear

momentum, and angular momentum between light and matter. In particular, angu-

lar momentum exchanges between light and matter is red by definition related to

the existence of optical torque. General picture of light-matter angular momentum

exchange process is outlined in Fig. 1.6. Recalling principles of mechanics, the total

angular momentum of an isolated system is, by definition, conserved, since there

is no external torque applied to the system. In other words, the torque exerted

by light on matter is exactly balanced by the torque exerted by matter on light.

Hence, the torque Γ exerted by light on the matter is evaluated by considering the

balance of the angular momentum of light before and after interaction with matter.

Namely,

Γ = −dJ
light

dt
. (1.11)

where Jlight is total angular momentum of light field. Next step is to distinguish

various processes that may lead to optical radiation torque. In fact these processes

can be classified into two categories, dissipative or non dissipative.

Dissipative processes. For simplicity, let us consider circularly polarized paraxial

beam propagating along z axis that carries σh̵ spin and `h̵, orbital angular mo-

mentum per photon, and is normally incident on homogeneous isotropic absorbing
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object4. Let us consider the balance of angular momentum per photon

Input field

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Pin ,

sin
z = σh̵ ,
linz = `h̵ ,

Output field

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Pout ≤ Pin ,

sout
z = σh̵ ,
lout
z = `h̵ .

For incident beam of power Pin noting that number of incident photon per unit

time is Pin/h̵ω, torque exerted by light beam equals

Γabs
z = Pin

h̵ω
(σ + `)h̵ − Pout

h̵ω
(σ + `)h̵ (1.12)

introducing parameter a = Pin−Pout

Pin
as fraction of absorbed photons

Γabs
z = aPin

ω
(σ + `) . (1.13)

The torque expression indicate additive behavior for the transfer of the spin and

orbital angular momentum. Figure 1.7 illustrates the torque dependence on σ + `
for the values of ` = {±1,±2,±3} and for different absorbtion rates corresponding

to a = {0,1/2,1}.

There are several reports on experimental observations of optical torques that

solely result from light absorption. For instance in Ref. [8] Friese et al. report on

spin angular momentum transfer to trapped micron scale absorbing particles that

rotate under elliptically polarized Gaussian beam. In Ref. [9] He et al. report on

orbital angular momentum transfer to trapped micron scale absorbing particles

under linearly polarized Laguerre-Gaussian beam. In Ref. [10] Friese et al. report

on the angular momentum transfer including both spin and orbital contributions

to trapped micron scale particles under circularly polarized Laguerre-Gaussian

beams. Importantly, the latter works demonstrate that spin and orbital angular

momentum of light contribute in an independent and additive manner. In addition,

such observations illustrate the mechanical equivalence of spin and orbital angular

momentum in dissipative process, which has also been addressed in Ref. [11].

Non dissipative processes. Let us consider the case of spin angular momentum

4It is assumed that object has transverse size much larger than the beam waist.
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Figure 1.7: Optical radiation torque dependence on σ + ` exerted on homogeneous
isotropic absorbing object by incident circularly polarized beam with on-axis phase
singularity. Different absorbtion rates a = {0,1/2,1} are considered.

transfer to birefringent media causing polarization changes in light field. Without

loss of generality we consider circularly polarized plane wave normally incident on

homogeneous and transparent uniaxial slab characterized with a uniform birefringent

phase retardation ∆5. The latter may be linked to the polarization ellipse angle

χ (see Eq.(29) section 1.4 [2]). The output field emerged from the slab can be

expressed in the circular basis in the following form6, up to unimportant phase

factor

Eout = E0 [cos(∆/2)eσ + i sin(∆/2)e−σ] . (1.14)

Considering angular momentum balance per photon: note that angular momentum

scales to square of the amplitude of the light field,

Input field

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Pin = P ,
sin
z = σh̵ ,
linz = 0 ,

Output field

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Pout = P ,
sout
z = cos2 (∆/2) σh̵ − sin2 (∆/2) σh̵ ,
lout
z = 0 .

5We assume object that is larger than the beam waist ensuring that object interacts with full
transverse section of beam.

6For more detailed analysis see section 1.2 for the more general case of inhomogeneous uniaxial
slab.
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Figure 1.8: Optical radiation torque dependence on birefringent phase retardation
0 ≤ ∆ ≤ 2π exerted on homogeneous uniaxial media by normally incident circularly
polarized field, for both left- and right-handed circular polarization states.

Balance of angular momentum gives

Γ
(∆)

z = P

h̵ω
σh̵ − P

h̵ω
[cos2 (∆/2) σh̵ − sin2 (∆/2) σh̵] , (1.15)

that is

Γ
(∆)

z = σP
ω

[1 − cos(∆)]. (1.16)

In Fig. 1.8 we illustrate the torque behavior over birefringent phase delay range

0 ≤ ∆ ≤ 2π, for both left- and right-handed input circular polarization states σ = ±1.

Interestingly, such dependence is true for whatever ` topological charge value of

incident field, since uniform slab does not perturb transverse spatial distribution of

phase.

There are several experimental reports on angular momentum transfer to matter

that involves birefringent media. A pioneering work dates to 1936, from Beth,

who measured spin angular momentum transfer to a torsional pendulum made of

centimetre-sized half-wave plate (∆ = π) via the detection of angular deflection

induced by circularly polarized light [12]. Latter, in Ref. [13] Santamato et al.

demonstrated spin angular momentum transfer to a nematic liquid crystal film that

acts as light-induced birefringent plate through a nonlinear orientational process. In
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turn, this leads to collective molecular precession of liquid crystal molecules around

the beam axis (above a threshold power). This was generalized in 1990 to elliptically

polarized light that leads to the appearance of precession-rotation regimes for the

liquid crystal orientational dynamics [14]. Interestingly, the microscopic version of

the original Beth’s experiment was reported in 1998 by transferring spin angular

momentum to birefringent calcite micro particles [15], via direct observation of

rotation of the particles.

The orbital angular momentum can also be transferred to transparent media

implying possibility of angular manipulation of transparent and isotropic objects.

This was first demonstrated by realignment of rod-like glass objects using Gaussian

beams with elliptical intensity profiles, as reported in Ref. [16]. On the other hand,

in Ref. [17], Piccrillo et al. report on the spin and orbital angular momentum

transfer to nematic liquid crystals also using Gaussian beam with elliptical intensity

distributions. The rotation of hollow spherical silica particles by orbital angular

momentum transfer using high order Bessel beams is reported in Ref. [18]. Also,

the spin and orbital angular momentum transfer induced rotation of birefringent

calcite particles was reported in Ref. [4] via optical trapping on- or off-axis of a

polarized Laguerre-Gaussian beam. In the latter work, the mechanical equivalence

between spin and orbital angular momentum transfer is also discussed.

1.2 Spin-orbit interaction of light

1.2.1 Principle: the case of space-variant birefringent slabs

Considering light propagation in free space, both spin angular momentum

and orbital angular momentum are independently conserved, in the framework of

paraxial approximation. This is no longer true in general when light propagates in

material system. Indeed, spin angular momentum and orbital angular momentum

can interact in presence of either optical anisotropy or optical inhomogeneity (or

both), hence light field rotational degree of freedom couples to its spatial degrees

of freedom.

Let us consider locally anisotropic transparent uniaxial slab with thickness L

whose orientation of the optical axis is defined by the angle ψ with respect to the
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Figure 1.9: (a) Azimuthally varying birefringent slab with thickness L, (b) illustration
of ψ and ϕ angles, and (c) examples of the optical axis azimuthal distribution of the form
ψ(ϕ) =mϕ + ϕ0, for m = {1/2,1,3/2}.

x axis as

ψ(ϕ) =mϕ + ϕ0 (1.17)

where ϕ is the azimuthal angle in the (x, y) plane, and m is the topological charge

associated with the singularity of the material optical axis located at r = 0, and ϕ0

is a constant. The m is half-integer which implies continuous azimuthal variation

since ψ↔ ψ + π. Let us consider a circularly polarized monochromatic plane wave

with angular frequency ω and wavevector k impinging at normal incidence. The

complex representation of such field is

Ein = E0 e
−i(ωt−kz) eσ . (1.18)

Assuming the input facet of the slab located at the plane z = 0, and neglecting

diffraction, the output light field at z = L is obtained in the laboratory frame using

the Jones calculus,

Eout = E0 e
−iωt R̂z(−ψ)

⎛
⎝
eikn∥L 0

0 eikn⊥L
⎞
⎠

R̂z(ψ)eσ , (1.19)
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where n∥ and n⊥ are the refractive indices along and perpendicular to the optical

axis, respectively. R̂z(ψ) is two dimensional rotation matrix that operates as

rotation around z axis by an angle ψ with respect to the x axis in the laboratory

frame.

R̂z(ψ) =
⎛
⎝

cosψ sinψ

− sinψ cosψ

⎞
⎠
. (1.20)

Introducing the total birefringent phase delay of the slab, ∆ = k(n∥ − n⊥)L and

expressing in the circular polarization basis for the output we find following

Eout = E0e
−iωteikn⊥Lei∆/2 [cos(∆/2)eσ + i sin(∆/2) ei2σmϕ e−σ] . (1.21)

Hence, the transmitted field is the sum of two orthogonal circularly polarized

components that depend essentially on the phase delay ∆. Importantly, the

component with circular polarization state orthogonal to that of the incident

one, (i.e. the term proportional to e−σ), carries an optical phase singularity with

topological charge ` = 2σm. That is to say an optical vortex has been generated

via spin-orbit interaction of light.

To characterize optical vortex generation process we introduce the quantity

η = ∣Eout ⋅ eσ ∣2
∣Eout∣2

= sin2(∆/2) , (1.22)

which refers to the relative weight of the circularly polarized output field component

carrying the optical vortex. By construction 0 ≤ η ≤ 1 and one may refer to this

quantity as the purity of optical vortex generation process. Importantly, pure

vortex state generation requires slab birefringence phase retardation ∆ = π [2π]

condition. In that case, optical vortex generation can be described in the circular

polarization basis (e+,e−), the output field up to the phase factor eikn⊥Lei∆/2 equals

Eout = J(m)Ein (1.23)

where by the Jones matrix is given as

J(m) =
⎛
⎝

0 e−2imϕ

e+2imϕ 0

⎞
⎠
. (1.24)
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Figure 1.10: Illustration of geometry of the subwavelength gratings and corresponding
generated optical vortex intensity transverse distributions for topological charges ` =
{1,2,3,4}. Adapted from Ref. [19].

In addition, we note that if the initial beam carries also orbital angular momentum,

the output field (1.21) will include additional factor exp(i`ϕ), which implies that

in the process orbital angular momentum per photon changes by an amount of

2σmh̵, considering half wave-plate condition of birefringence phase delay.

Next, we briefly overview development of fabrication of such space-variant

birefringent optical elements since the pioneering demonstration by Biener and

coauthors in 2002, in mid-infrared domain (wavelength 10.6µm) [19]. In that work

subwavelength gratings were used to achieve azimuthal structuring of the plane,

thereby generating optical vortices (see Fig. 1.10).

1.2.2 State of the art

As spin controlled generators of helical beams that carry well defined orbital

angular momentum, space-variant birefringent elements have become of major

interest since early demonstration by Biener et al. [19]. After that work, various

strategies have been developed to fabricate such optical elements and improve

their characteristics. In 2006, Marrucci and coauthors [21] reported on liquid

crystal slabs operating in the visible domain in the particular case m = 1 (see

Fig. 1.11). This was made possible by appropriate alignment technique of the liquid

crystal molecules [20], hence the optical axis, in the bulk of a liquid crystal slab.

Since then, many surface and bulk liquid crystal alignment techniques have been
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developed [22, 23, 24, 25, 26] that nowadays give access to arbitrary topological

charge m. Practically, such optical elements are now commercially available and

often referred as “q-plates”.

Quite naturally, the progresses of fabrication lead to the space miniaturization

of such elements from macroscopic to microscopic scale. In particular, first micro-

scopic spin-orbit optical vortex generators proposed by Brasselet and coauthors [27]

were based on natural, technology-free approach. Authors used liquid crystal

droplets that behave as a mono and polychromatic vortex generator endowed with

self-alignment and omnidirectional features (see Fig. 1.12). This development has

triggered the use of liquid crystal defect based systems as natural [28] or self-

engineered [29] spin-orbit couplers. Noticeably, the extreme sensitivity of liquid

crystals to the external fields also led to the realization of microscopic azimuthally

patterned birefringent structures based on electrical [30, 31], magnetic [32], opti-

cal [33, 34, 35, 36, 37], electro-optical [38, 39], and thermal [40] approaches.

Above we have focused on liquid crystal based approaches of the space-variant

birefringent spin-orbit scattering elements yet solid options have also been widely

developed during the last decade. In Ref. [41] Beresna et al. report on fabrication of

space-variant birefringent elements based on direct femtosecond laser writing tech-

nique. Indeed, self-assembled nanostructures are formed in the bulk of silica glass

with in-plane slow (fast) axis oriented perpendicular (parallel) to the nanograting

wavevector, which induces form birefringence to the structure [42]. Quite recently

surface approaches also have been proposed using electron (ion) beam lithography

techniques [43, 44], however limited with modest vortex generation efficiency values.

~1 cm

(a)
Liquid crystal

filling

(b) (c)

Figure 1.11: (a) Illustration of the liquid crystal cell, the concentric lines correspond
to the optical axis distribution of structure for m = 1. (b,c) Identification of the
generated optical vortex beam using interferometry, for left- and right-handed input
circular polarization states. (a) Adapted from Ref. [20], (b,c) adapted from Ref. [21]
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1-10 μm

Figure 1.12: (a) Illustration of optical vortex generation of from radial nematic
crystal droplet optically trapped in circularly polarized tweezers. Inset depicts the
tree dimensional radial distribution of the optical axis inside the liquid crystal droplet.
Adapted from Ref. [27]

1.3 Optical radiation torque driven by spin-orbit

interaction

Apart from polarization controlled optical vortex generation, spin-orbit inter-

action of light may also have consequences on matter itself. Let us refer to the

spin-orbit interaction in the case of space-variant birefringent element presented in

previous section and discuss the interaction considering angular momentum transfer

to matter.

We consider circularly polarized plane wave normally incident on space-variant

birefringent slab with the topological charge m and birefringent phase retardation

∆. Recalling Eq. (1.21), for the angular momentum balance we have

Input field

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Pin = P ,
sin
z = σh̵ ,
linz = 0,

Output field

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Pout = P ,
sout
z = [cos2 (∆/2) σ − sin2 (∆/2) σ]h̵ ,
lout
z = 2σm sin2(∆/2)h̵ .
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This leads to an optical torque

Γ
soi(σ)
z = 2

P

ω
σ(1 −m) sin2 (∆/2) . (1.25)

We note that Eq. (1.25) is independent of the orbital momentum that incident

light may carry. It is interesting to analyze the behavior of such torque depending

on material topology; illustrated in Fig. 1.13 for the pure vortex generation case

(∆ = π). Indeed, depending on the material topological charge m, the torque can

have reversed sign to that of incident spin angular momentum. This occurs when

m > 1. For of m = 1 the torque vanishes, which is a consequence of the rotational

invariance of the slab optical axis azimuthal distribution along z, and for m < 1 the

exerted torque has similar direction as incident spin angular momentum.

More generally, optical radiation torque expression in the case of an elliptically

polarized incident field is obtained from previous considerations for circular polar-

ization recalling that elliptically polarized light, characterized by ellipticity angle χ,

can be decomposed in circular polarization basis following

e = 1√
2
(cosχ + sinχ)e+ +

1√
2
(cosχ − sinχ)e− . (1.26)
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Figure 1.13: Optical radiation torque exerted by incident circularly polarized Gaussian
beam on azimuthally varying birefringent plate characterized by ∆ = π and −3 ≤m ≤ 3.
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Then, from Eq. (1.25) and (1.26) we obtain

Γsoi
z = 1

2
[(1 + sin 2χ)Γsoi(+)

z + (1 − sin 2χ)Γsoi(−)
z ] , (1.27)

hence,

Γsoi
z = 2

P

ω
sin(2χ)(1 −m) sin2 (∆/2) . (1.28)

As a result, the spin-orbit torque behavior versus material topology remains un-

altered (up to the factor sin 2χ) with respect to the case of circularly polarized

incident field.
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1.4 Motivation and outlook of the thesis

In contrast to the consequences of the optical spin-orbit interaction on the

light itself, which is now well developed in the context of the optical vortex

generation, its mechanical consequences on matter was experimentally unexplored

at the beginning of this thesis. In fact this was the main motivation of

our work: to address experimentally spin-orbit optomechanics. For this

purpose we restricted ourselves to the particular case of azimuthally varying

birefringent structures presented in the section 1.2. In turn, Eq. (1.28) is the key

equation of the manuscript.

In chapter 2, we discuss spin-orbit optomechanics using nematic liquid crystal

defects. Indeed, as mentioned in section 1.2, liquid crystal topological defects locally

behave as self-engineered, spin-orbit couplers. Importantly, liquid crystals are also

well known to be sensitive to external fields, including light. By construction liquid

crystal defects are therefore good candidates to observe mechanical consequences

of optical spin-orbit interaction on matter. We report on light induced distortions

of the director field that describes the spatial distribution of the local averaged

molecular orientation, in presence of spin-orbit interaction of light. In particular,

we have studied the role of the birefringent phase retardation and of topological

charge m of the liquid crystal defect (m = ±1).

In chapter 3, we report an attempt to extend the results regarding the topological

charge of material defect. This is done by using solid space-variant birefringent

macroscopic slabs. Such macroscopic spin-orbit optical elements are commercially

available and can be prepared to have arbitrary value of m. In particular, this

has allowed us to explore the case m > 1 that leads to optical torque reversal

with respect to the sign of the incident spin angular momentum carried by light.

However, those observations of the optical radiation torque reversal have been

restricted to indirect identification via the so called rotational Doppler effect.

In chapter 4, we report on experimental attempts and discuss our developments

towards direct observation of optical radiation torque reversal. The main idea

is to implement miniaturized versions of space-variant birefringent plates. The

later consisting of submicron-thick space variant birefringent nanostructured films,

metallic or dielectric that have been fabricated using nanofabrication tools. We
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present optical and material characterization of these structures and also the

first steps towards the realization of the planned direct spin-orbit optomechanical

experiment at the micron scale, which remains an open challenge at the present

day.



C H A P T E R 2

Optomechanics of liquid crystal

defects

In the first chapter we have presented light spin and orbital angular momenta,

their interaction, and pointed out some consequences of spin-orbit interaction on

both light and matter. In this chapter we report on experimental mechanical

manifestation of spin-orbit interaction driven optical radiation torque using nematic

liquid crystal defects. We define our requirements for spin-orbit interaction torque

observation in section 2.1, where we discuss our choice of spin-orbit coupling media

and conditions of torque observation. In particular, we present the umbilical

texture found in nematic liquid crystal films that offer spontaneously formed space-

variant birefringent structures. In section 2.2 we present principles of our study

and propose to benchmark our experimental analysis benefiting from electrically

tunable birefringence properties of liquid crystals. Then, we report on distortion of

molecular orientation of liquid crystal umbilical defects in presence of spin-orbit

interaction of light, namely the direct observation of spin-orbit optomechanics.

More precisely, we investigate the spin-orbit optomechanics of liquid crystal defects

with topological charge m = ±1, depending on incident beam polarization state and

on electrically tunable optical vortex generation purity. Finally, in the section 2.3

we report on an attempt to extend our investigations to other values of topological

charges, m ≠ ±1, by using other kind of liquid crystal defects known as disclinations.
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2.1 Towards optical torque observation

2.1.1 Why liquid crystal defects?

To observe spin-orbit interaction driven optical radiation torque manifestation

we must choose system that (i) couples light angular momenta and (ii) is sensitive to

optical torques. As we have discussed in the section 1.2, space-variant birefringent

structures are typical example of spin-orbit couplers, hence, the challenge is to

find azimuthally varying birefringent media that is optomechanically responsive. It

turns out that liquid crystal defects have all properties to do the “job”.

First, as reviewed in section 1.2, we recall that liquid crystal defects are widely

implemented as spin-orbit couplers. Starting with the study reported in Ref. [27]

our team has been involved in the developments of liquid crystal-defects-based

optical vortex generators using different techniques. For instance, in Refs. [30, 31]

the liquid crystal defects are generated using external electric field, which provides

a self-engineering system that is realizable in practice without additional fabrication

and serves as efficient spin-orbit coupler. Later, in Ref. [29] a natural strategy

to create spin-orbit couplers has been reported based on liquid crystal defects

that occur in nematic films with planar anchoring (“director” is parallel to the

film plane). Second, these birefringent structures are transparent over optical

wavelengths and are sensitive to external fields, including light. In turn, different

phenomena driven by optical radiation torque can be observed in liquid crystals.

An example is optically induced molecular reorientation, which occurs in nematic

cells and is referred as optical Fréedericksz transition [45]. In addition, liquid crystal

defects may be generated by optical torque itself as reported in Refs. [46, 34]. Quite

naturally, considering promising characteristics of liquid crystals for spin-orbit

interaction torque manifestation and expertise of our team, we choose the liquid

crystal defects as spin-orbit couplers for optomechanical observations.

In general, liquid crystals are characterized by the absence of long range po-

sitional order, which is typical to liquids, and by the presence of long range

orientational order, which is typical to solids. In particular, in nematic liquid

crystals, which generally consists of elongated molecules, molecules tend to be

locally parallel to each other though without positional order. We describe material
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Figure 2.1: (a,b) Illustration of side view of nematic liquid crystal (εa < 0) film
of thickness L with homeotropic anchoring below (a) and above (b) the Fréedericksz
threshold voltage. (c,d) Illustration of optical axis transverse profile in the plane of the
film corresponding umbilical defects with topological charges m = ±1, respectively.

orientational structure with the unit vector n referred as director that represents

mean local orientation of molecules, with the equivalence n ↔ −n [47]. In ad-

dition, liquid crystals are known to exhibit different kinds of topological defects

depending on the considered mesophase, bulk and surface environment. In practice,

topological defects can be singular or non-singular. In the former case, the liquid

crystal order parameter [48] (which quantifies how aligned is liquid crystal) drops to

zero over very small spatial scale (typically few nanometers, see [48]): the director

is undefined (i.e. singular) at such places. Away from singular defect the order

parameter grows until it reaches its value that corresponds to the uniform nematic

phase and director gradients emerge around the defect that is characterized by its

topology, which indicates the director field organisation in the vicinity of the defect.

On the other hand, non-singular defects preserve the orientational order parameter

and the director field is defined everywhere, even at the location of the defect. This

is made possible by relaxing the elastic gradients associated with a given defect

topology owing to an escape of the director field in to the third dimension [48]. A

basic example of non-singular defects is the one we propose to use, which are called

umbilical defects and that we describe in what follows.
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2.1.2 Umbilical defects: orientational structure

Umbilical defects (in short, umbilics) are non-singular topological defects that

spontaneously appear in nematic liquid crystals with negative dielectric anisotropy

at low frequencies (typically 1-10kHz) in homeotropic films (director at rest is

orthogonal to the film plane n = ∣z∣ see Fig. 2.1(a)) under applied electric field

along normal to the film. Since dielectric anisotropy is negative the liquid crystal

orientational configuration at rest is stable below a threshold voltage UF that is of the

order of a few volts in practice. Above UF , the director field is reoriented in the plane

of the film owing to an electric torque (Fig. 2.1(b)). Since the reorientation plane

is azimuthally degenerate, such reorientation leads to the spontaneous formation of

defects of opposite topological charges m = ±1 (see Fig. 2.1(c,d)). These structures

were reported in [49, 50] and mathematically described in [51]. Following the

notations introduced in Ref. [31] we experimentally describe the director field of the

umbilical defects using Cartesian coordinate system related with the basis (x,y,z)

by the following form

n = (sinϑ cosψ, sinϑ sinψ, cosϑ) (2.1)

(a) (b)

Figure 2.2: (a) Calculated reduced amplitude a of the tilt angle θ in the vicinity of
defect (r = 0). (b) Calculated reduced core radius rc/L dependence over reduced voltage
U/UF . Adapted from Ref. [31].
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where ψ is the director orientation angle with respect to x axis, ϑ is director tilt

angle with the z axis. These angles are defined as

ψ =mϕ + ϕ0 , (2.2)

ϑ(r, z) = θ∞a(r) sin(π z
L
) , (2.3)

where ϕ is the azimuthal angle, ϕ0 is constant, and m = ±1 is topological charge of

the defect, while r is the radial coordinate (r =
√
x2 + y2) and L is the thickness of

the film, 0 ≤ a(r) ≤ 1 is the reduced tilt amplitude and θ∞ is the asymptotic value

of θ corresponding to large values of r. The latter is defined as [31]

θ∞ = [2(Ũ2 − 1)/(K1/K3 − Ũ2εΩa /εΩ∥ ]1/2 (2.4)

where Ũ = U/UF is the reduced voltage and K1 (K3) is Frank’s elastic constant

associated with the splay (respectively bend) deformation [47] and εΩa = εΩ
∥
− εΩ
⊥

is

the dielectric anisotropy related with the εΩ
∥,⊥ dielectric permittivities along and

perpendicular to the director n at the frequency Ω of the applied voltage. Finally,

the reduced tilt amplitude a(r) satisfies a second order differential equation (see

Eq.(5) Ref. [31]), whose numerical solution is presented in Fig. 2.2(a) versus the

reduced radius r/rc. The parameter rc is the defect core radius that is expressed as

rc =
L

π
( K
K3

)
1
2

(Ũ2 − 1)− 1
2 , (2.5)

where, K is the effective elastic constant that depends on the Frank’s elastic

constants, defect topological charge m and constant angle ϕ0. The dependence

of the rc over reduced voltage U/UF is shown in Fig. 2.2(b). The total phase

retardation related to the birefringence of the defects is expressed by the following

form

∆(r) = 2π

λ ∫
L

0
[ne(r, z) − n⊥]dz, (2.6)
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where the n⊥ is the refractive index of the ordinary wave and ne(r, z) is the refractive

index of extraordinary wave given by form

ne(r, z) =
n∥n⊥

[n2
∥

cos2 ϑ(r, z) + n2
⊥ sin2 ϑ(r, z)]

1
2

. (2.7)

With the knowledge of both the director field topology m = ±1 and the spatial

distribution of birefringent phase delay ∆(r) we are thus formally equipped to

address spin-orbit interaction of light and its mechanical consequences. Before

doing so, hereafter we present practical observations of umbilics and their actual

ability to operate as spin-orbit optical elements.

2.1.3 Umbilical defects: experimental identification

In practice, umbilical defects are easily identified by observations between

crossed linear polarizers as shown in Fig. 2.3(a), where we observe assembly of both

m = ±1 defects represented as dark cross pattern. The centers of crosses correspond

to the defect locations while dark lines correspond to locations where the projection

of the director in the film plane is oriented parallel to the direction of one of the two

crossed polarizers. However, as such, this does not allow to distinguish topological

charges of the defects. There are several methods available for the identification of

topological charge of defects. A simple one consists to rotate the pair of polarizers.

The relative sense of rotation of the dark cross with respect to that of the polarizers

identifies topological charge of defect. A clockwise rotation of the dark cross pattern,

while polarizers are rotated clockwise, corresponds to defect of topological charge

m = +1, Fig. 2.3(b). On the other hand, counterclockwise rotation of the dark cross

pattern, while polarizers are rotated clockwise, corresponds to defect of topological

charge m = −1, Fig. 2.3(c).
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10 μm

m = 1

m = -1

50 μm

(a) (b)

(c)

Figure 2.3: (a) Image of umbilical defects assembly of topological charge m = ±1
observed between crossed linear polarizers using incoherent illumination. (b,c) Images of
isolated umbilical defects of topological charge m = ±1 between crossed linear polarizers;
dashed lines correspond to director orientation in the plane of the film, arrows to polarizers
orientation. L = 10 µm homeotropic cell filled with MLC-2079 liquid crystal.
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2.1.4 Umbilics as spin-orbit vortex generators

In practice we have used L = 10 µm thick liquid crystal commercial cell with with

ITO electrode and homeotropic alignment. The cell was filled with MLC-2079 liquid

crystal, which is characterized by the negative dielectric anisotropy εΩa = εΩ
∥
−εΩ
⊥
= −6.1

with the εΩ
∥
= 4.1 and εΩ

⊥
= 10.2 at frequency Ω = 1 kHz and Fréedericksz threshold

voltage UF = 1.83 Vrms defined by UF = π[K3/(ε0∣εΩa )]1/2, where the ε0 is the vacuum

dielectric permittivity. In practice, we found UF ≃ 1.90 Vrms at working frequency

Ω = 2 kHz. We obtain isolated umbilical defects by first, applying high voltage

U ≃ 10UF that causes a dense generation of umbilical defects of topological charge

m = ±1, and then the sample is left for relaxation for a few hours while maintaining

applied voltage U ≥ UF . During that time, annihilation dynamics of opposite sign

topological defects occur [52]. Finally, we are left with a few umbilical defects at

fixed locations in the film area.
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Figure 2.4: Scheme of experimental setup, P1 and P2 linear polarizers, DM dichroic
mirror with reflection band 330-550nm and transmission band 584-700 nm, F longpass
filter which blocks light with wavelength shorter than the cut-off wavelength 590 nm, M
mirror, FM mirror on flip mount, PBS polarizing beam splitter and QWP quarter-wave
plate, CP is circular polarizer. A moderately focused circularly polarized Gaussian
beam is normally incident on a homeotropic NLC cell and a collimated white light is
used to image the defects. Upper inset corresponds to defect cross pattern twist angle
configuration for the case m = −1 and incident light circular polarization state σ = 1,
lower insets observation of output vortex and its interference with Gaussian reference
beam.
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Figure 2.5: (a,d) Optical vortex intensity transverse profiles corresponding to the
umbilical defects of topological charge m = ±1, (b,c) and (e,f) interference patterns
revealing on-axis phase singularities of vortex beams obtained by collinear and coherent
superposition of output vortices with co-circularly polarized Gaussian field, corresponding
to the umbilical defects of topological charge m = ±1 and incident light field circular
polarization σ = ±1.

Following the experimental setup shown in Fig. 2.4, we are able to observe

umbilics between crossed linear polarizers while illuminating them on-demand using

a Gaussian laser beam at 532 nm. In particular, observation of optical vortex

generation is made following the framework presented in section 1.2. Namely, we set

the polarization of the incident Gaussian beam on the liquid crystal film to circular

(eσ) and we place a circular polarizer at the output of the liquid crystal film, which

selects orthogonal (e−σ) circularly polarized component of the output beam. Then,

we tuned the applied voltage to achieve maximum efficiency for the optical vortex

generation. Indeed, following equations presented in previous section, birefringence

phase retardation associated with defects depends on the applied voltage and the

distance the defect location, namely ∆ = ∆(r,U). In particular, if the laser beam

waist w0 on the sample is larger enough than the core radius rc the beam “sees”

almost a uniform birefringence, ∆ = ∆(U). In that case, appropriate tuning of the

applied voltage allows reaching the half-wave plate condition ∆ = π [2π] that gives

optimal vortex generation, η = 1 (see Eq (2.8)). In practice, we set w0 ≃ 30 µm and
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we obtain maximal optical vortex generation efficiency at U = 2.18 Vrms, which gives

rc ≃ 3.3 µm (see Eq. (2.5)), with purity parameter equal to η(U)max ≃ 87 % for

all defects. Obtained purity corresponds to a practical trade-off between the need

for w0 >> rc and the finite distance (≈ 150 µm) between two defects that prevents

for using arbitrarily large values of w0. However, this is not a serious drawback

since it merely reduces the expected spin-orbit torque by the multiplying factor

0.87 (Eq (2.8)).

The transverse intensity distributions of optical vortices are presented in

Fig. 2.5(a,d), which correspond to defect topological charges m = ±1. One can note

that the intensity distributions are not axisymmetric as the Rapini’s [51] description

would suggest. This can be explained partly by non ideal centering of the incident

beam on the defect, but this argument is not enough to explain observed four-fold

rotational symmetry of the contracircular intensity pattern for m = −1 (Fig. 2.5(d)).

The latter is explained by recalling that umbilics with m = −1 involve both splay

and twist elastic distortion of the director (see Fig. 2.3(c)). This is not accounted

by Rapini’s approach, however, recent theoretical studies provide with detailed

discussion of such axisymmetry breaking [53].

Experimentally, the singular phase pattern underlying doughnut-shape intensity

patterns shown in Fig. 2.5(a,d) are revealed by interferometry. This is done by

introducing a reference arm with the same circular polarization state and superposed

with the output beam (collinear superposition). As introduced in section 1.1, we

observe spiralling patterns that correspond to an optical phase singularity of

topological charge 2σm, with 2m-arm spirals twisting clockwise or counterclockwise

consistent with the sign of product σm, as illustrated in Fig. 2.5 (b,c) and (e,f)

respectively for both m = ±1 defects and σ = ±1 incident beam circular polarization

states.

2.2 Principle of the optomechanical study

2.2.1 General statements

In principle, once spin-orbit interaction is at play, we expect to observe an

optical torque driven reorientation of the liquid crystal molecules, which should
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correspondingly lead to the deformation of the dark cross pattern observed between

crossed linear polarizers that are associated with orientational transverse profile

of liquid crystal defects. For this purpose, we introduce the dark cross (in short,

the cross) tilt angle α that corresponds to azimuthal angle with respect to the

x direction as illustrated in Fig. 2.4. Recalling the expression of the spin-orbit

interaction driven torque (see section 1.3)

Γ
soi(σ)
z = 2

P

ω
σ(1 −m) sin2 (∆

2
) = 2

P

ω
σ(1 −m)η . (2.8)

where η is the optical vortex generation purity parameter, we will analyze the

dynamics of cross pattern for both defects m = ±1 over the range of the incident

light beam power P considering both σ = ±1 incident circular polarization states.

As a first step we propose to benchmark our study by analyzing dynamics of

cross for the case of ∆ ≃ 2π. Indeed, this corresponds to zero torque configura-

tion independently of the material topology or incident beam polarization state.

Therefore this will provide us with a “reference” experiment for which the result

is qualitatively expected from angular momentum balance. Then, the case ∆ ≃ π,

which corresponds to maximal torque configuration, can be addressed in a com-

parative manner with respect to the reference experiment. We further refer to the

above mentioned configurations as minimal ηmin and maximal ηmax optical vortex

generation cases.

2.2.2 Spin-orbit optomechanics reference experiment

The experimental protocol consists selecting an umbilical defect of topological

charge m = ±1 and illuminating it with left/right-handed (σ = ±1) circularly

polarized Gaussian beam. Then, as the incident beam power P is increased, the

dark cross images of illuminated defect are collected in situ. Importantly, we note

that the initial voltage ensuring η = ηmin at P = 0 no longer provides η = ηmin when

P ≠ 0. This is due to the fact that the electric field of the laser beam, which lies

in the plane of film (recalling moderate focusing is used), tends to reorient the

director in the plane of the film since the dielectric anisotropy is positive at optical

frequencies. Consequently, ∆ is changed optically, which de-tunes the defect from
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Figure 2.6: External electrical voltage dependence versus incident light beam power
while maintaining the minimal optical vortex generation, i.e. η = ηmin. These results do
not depend on the umbilical defect topological charge m = ±1.

expected operation mode characterized by η = ηmin. Still, this can be compensated

by reducing the applied voltage as the beam power increases. This is done for every

P and the results, which are independent on topological charge m, are shown in

Fig. 2.6.

Finally, the obtained sequences of images corresponding to the defects m = ±1

as a function of the incident beam power over the range 0 − 150 mW for both left-

and right-handed circular polarization states are shown in Fig. 2.7. Qualitatively,

from mere visual inspection of the latter figure we conclude to no visible effect

whatever the incident power, the incident helicity and considered defect. These

demonstrations are consistent with the expected zero net optical torque when η = 0

(see Eq. (2.8)), hence no orientational transverse profile modifications.

Still, we have addressed the phenomenon quantitatively, by reproducing the

experiments with several defects (four pairs of defects with m = ±1) and measuring

the angle α via image processing. This angle is evaluated using the correlation

coefficient C(α) between cross pattern images at zero power and power P , an

example is presented in the Fig. 2.8(b,c). We present the results in Fig. 2.8(a)

where markers are experimental values, solid lines are linear fitting lines and bars
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Figure 2.7: Dark cross patterns under crossed linear polarizers versus beam power for
normally incident circularly polarized Gaussian beam, in the case of the minimal optical
vortex generation purity ηmin ≃ 0, for both m = ±1 topological charges and σ = ±1 incident
polarization states. Arrows correspond to the crossed linear polarizer orientations.



36 Chap 2 - Optomechanics of liquid crystal defects

-30

30

0

20

10

-10

-20

α
 (

d
eg

)

σ = 1 

σ = −1   
σ = 1  

σ  = −1  

m = −1 

m = −1 
m = 1 

m = 1 

P (mW)
0 40 80 120 160

-0.6

1

C

0-45 45
α (deg)

-0.6
-45 450

α (deg)

C

1
m = 1 
σ = 1 

m = −1 
σ = 1 

αexp

(a) (b)

(c)

P = 167 mW

P = 167 mW

αexp

Figure 2.8: (a) Cross pattern tilt angle α versus beam power with the illustration of
the standard deviation (four pairs of defects m = ±1) and linear fitting that correspond
to minimal vortex generation ηmin ≃ 0, for both m = ±1 topological charges and two
orthogonal incident circular polarization states σ = ±1. (b,c) Example of α evaluation with
correlation coefficient C(α) between cross images at P = 0 and P = 167 mW corresponding
to left-handed (σ = 1) input polarization for both m = ±1, respectively.

correspond to standard deviation of data. The magnitude of α does not exceed

few degrees, ∣α∣ ≤ 3○ over the explored range of optical power, independently of

the defect topological charge and incident light polarization state. Such residual

tilt of the cross may be linked to inhomogeneous distribution of birefringent phase

retardation ∆(r) associated with defects or the fact that 2π configuration is not

preserved rigourously. It could also be attributed to the fact that expected zero net

torque is however associated with non zero optical angular momentum deposition

along the beam propagation direction as the light passes through the sample.

Indeed, qualitatively, when ∆ = 2π, the first half of the sample (along z direction)

experiences a torque Γ
soi(σ)
z,1 = 2Pωσ(1−m) while the second part experiences a torque

with same magnitude and opposite sign Γ
soi(σ)
z,1 = −Γ

soi(σ)
z,2 . Consequently, we could

expect a twist of director field along the z axis that affects the propagation of light,

hence crossed-polarizers imaging. Practically, thus we consider observed effects as

experimental “baseline” when probing spin-orbit optomechanical response.
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Figure 2.9: External electrical voltage dependence versus incident light beam power
while maintaining the maximal optical vortex generation, i.e. η = ηmax. These results do
not depend on the umbilical defect topological charge m = ±1.

2.2.3 Optimal spin-orbit optomechanics

Once the reference experiment is done, we can consider maximal optical vortex

generation purity case, by setting applied voltage to obtain ideally birefringence

phase retardation condition ∆(U) = π that gives η = ηmax. Similarly to the case

η = ηmin, we need to decrease the applied voltage as the beam power increases,

to maintain the condition η = ηmax, which is summarized in Fig. 2.9. Likewise

to the previous analysis we have selected isolated umbilical defects topological

charge m = ±1 and performed power study for both, σ = ±1, incident circularly

polarized cases, collecting the cross images of defects observed between crossed

linear polarizers. Figure 2.10 summarizes the observations. Strikingly, the latter

figure indicates slight changes for m = 1 while drastic modifications are observed

for m = −1, where cross is significantly tilted as beam power increases.

Qualitatively, from Eq. (2.8), the modest effect for m = 1 can be explained from

the fact that net optical torque is zero in that case. On the other hand one expects

non-zero net optical torque proportional to power for the m = −1. To assess the

effect quantitatively we have measured the tilt angle α by reproducing experiments

with several pairs of defects m = ±1. Figure 2.11 summarizes the results, where

markers correspond to the experimental data, solid lines to linear fitting lines, and



38 Chap 2 - Optomechanics of liquid crystal defects

y

x

σ
 =

 -
1

σ
 =

 1
σ

 =
 -

1
σ

 =
 1

P = 0 mW P = 50 mW P = 100 mW P = 150 mW

(a)

(b)

P = 0 mW P = 50 mW P = 100 mW P = 150 mW

y

x 10 μm

m
 =

 1
m

 =
 -

1

Figure 2.10: Dark cross patterns under crossed linear polarizers versus beam power for
normally incident circularly polarized Gaussian beam, in the case of the maximal optical
vortex generation purity ηmax ≃ 87 %, for both m = ±1 topological charges and σ = ±1
polarization states. Arrows correspond to the crossed linear polarizer orientations.
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m = 1 m = −1

σ = 1 σ = −1 σ = 1 σ = −1

dα
dP ∣ηmax -0.02 0.02 0.15 -0.16
dα
dP ∣ηmin

-0.002 0.002 0.009 -0.009

Table 2.1: Table of the slope values of cross tilt angle α dependence incident field power
increment corresponding executions presented in Fig. 2.8 and Fig. 2.11

bars to standard deviation. Indeed, we have measured maximal tilt in ∣α∣ ≃ 5○

for the defects with topological charge m = 1 and ∣α∣ ≃ 25○ for the defects with

topological charge m = −1 independently of the incident circular polarization state.

Since we are dealing with a power study, these results can be summarized by the

slope values dα/dP , see Tab. 2.1. In contrast to the case η = ηmin, both magnitude

and sign of α exhibit meaningful relationship with the defect topological charge m,

incident polarization state σ and power P , when η = ηmax.

In fact, in all cases we observe a linear dependence of α with respect to beam

power P , which matches with the expected behavior assuming that spin-orbit torque

Γ
soi(σ)
z given by Eq. (2.8) is at work. Moreover, the sign of α is helicity-dependent,

as expected from Eq. (2.8). However, surprisingly, the expected dependence

Γ
soi(σ)
z ∝ (1 −m) is not clearly observed experimentally.

Indeed, a non-zero “non-noisy” helicity behavior as the power increases is found

for m = 1, which can not be simply explained by the simple balance of optical

angular momentum in axially symmetric birefringent structures as shown in Ref. [54]

where it is demonstrated theoretically that the moment of radiation force density

(orbital angular momentum contribution) balances locally the torque arising from

spin angular momentum transfer. This would suggest no mechanical effect induced

by light in the liquid crystal film. Still it should be noted that the two latter

contributions of identical magnitude and opposite sign for m = ±1 do not act on

the same degrees of freedom of the liquid crystal. In fact, spin angular momentum

deposition acts on the orientational degree of freedom of the material, hence leading

in our case to azimuthally symmetric angular deviation of director field in the

plane of the film. On the other hand, orbital angular momentum deposition acts
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Figure 2.11: Cross pattern tilt angle α versus beam power with the illustration of
the standard deviation (four pairs of defects m = ±1) and linear fitting that correspond
to the maximal vortex generation ηmax ≃ 87 %, for both m = ±1 topological charges
and both orthogonal incident circular polarization states σ = ±1. (b,c) Example of α
evaluation with correlation coefficient C(α) between cross images at P = 0 and P = 167
mW corresponding to left-handed (σ = 1) input polarization for both m = ±1.
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Figure 2.12: Illustration of α tilt handedness with association to the incident (spin)
angular momentum handedness for both m = 1 (a,b,c) and m = −1 (d,e,f) and polarization
states σ = 1 (b,e) and σ = −1 (c,f). Straight arrows correspond to the orientations of
crossed polarizers, circular arrows to the incident beam circular polarization handedness,
and darkened lines correspond to cross. Insets correspond to molecular orientation
streamlines sketch.

on positional degree of freedom, hence leading to liquid crystal azimuthal flow.

The consequence is that elastic distortion and flow can take place before the liquid

crystal reaches its steady state. This has already been reported experimentally

in Refs. [55, 56, 27] with case of radially oriented nematic droplets that can be

viewed as the three dimensional analog of umbilic with m = 1. All this offers an

explanation of helicity-dependent spin-orbit optical torque even though Eq. (2.8)

predicts zero torque for that case. In addition, we emphasize that the observed

dependence α ∝ −σP for m = 1 is consistent with above statements noting that spin

angular momentum driven torque is expected to generate local in-plane director

reorientation of form δΨ ∝ −σP , as illustrated in Fig. 2.12.

The case of umbilics with m = −1 is easer to explain since in this case the

dependence Γ
soi(σ)
z ∝ σ(1 −m)P implies that spin angular momentum and orbital

angular momentum contributions are of the same sign. Moreover, the observed

dependence α ∝ σP is consistent with spin angular momentum driven in plane

director reorientation of the form Ψ ∝ σP , as illustrated in Fig. 2.12. Also the
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much larger effect observed for m = −1 is consistent with the fact that both spin

and orbital contributions works “in the same direction”, hence adding up their

effects.

Summarizing, the above results bring a first experimental attempt to observe

directly optomechanical manifestation of the spin-orbit interaction driven optical

torque.

2.3 Topological charge diversity

The above results obtained using liquid crystal defects with topological charge

m = ±1 brought experimental demonstration of optical radiation torque driven by

spin-orbit interaction of light. However, the use of umbilics reduces de facto our

investigations to a limited number of situations. Importantly we miss the case of

m > 1 that is expected to lead to an optical radiation torque having opposite sign to

that of the (spin) angular momentum of incident polarized Gaussian beam. To test

it one needs to repeat the above experiments with liquid crystal defects of another

kind. To this aim, Schlieren defects (disclinations) are promising candidates at

first sight. Disclinations are singular topological defects that spontaneously form

in nematic liquid crystal films having planar (see Fig. 2.13) degenerate surface

orientational boundary conditions [57]. They correspond to director distribution in

the plane of the film that satisfy local orientational distribution of the form ψ =mϕ
with m half-integer. In practice, only −1 ≤m ≤ +1 defects are stable and observed,

see Fig. 2.14. However, under specific circumstances, topological charges m > 1 may

be observed. Indeed, by doping usual nematic liquid crystals with non-mesogenic

dopants, it has been shown that disclinations with m > 1 appear [58]. In the context

(a) (b)

U < UF

z = L

z = 0

~ ~ U > UF

Figure 2.13: (a,b) Illustration of side view of nematic liquid crystal (εa > 0) film of
thickness L with planar anchoring below (a) and above (b) the Fréedericksz threshold
voltage. The thick dark line corresponds to the center of disclination.
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m = -1/2 m = -1 m = 1/2 m = 1

10 μm

y

x

Figure 2.14: Dynamics of dark cross pattern corresponding to the Schlieren textures of
topological charge m = {±1/2,±1} observed between crossed linear polarizers: disclination
at rest. Dashed lines correspond to director orientation in the plane of the film, arrows
to polarizers orientation

of spin-orbit interaction of light such higher order defects have recently been shown

capable of optical vortex generation with fairly good quality [29], thereby offering

a chance to address spin-orbit optomechanics with m > 1.

Therefore we implemented the use of Schlieren defects following the approach

discussed above for umbilics, starting with the simplest case of non-doped nematics,

hence restricting ourselves to −1 ≤m ≤ 1 for preliminary investigations. The samples

are prepared by using bare glass substrates to form the liquid crystal film made of the

mixture MLC-7023 (εa > 0) 13 µm cell that has ITO electrodes. Using similar polar-

ized microscopy procedure as for identification of umbilic topological charges (2.1.3)

we collected four distinct defects characterized by m = {−1,−1/2,1/2,1}. Then,

following the protocol to optimize spin-orbit optical torque magnitude, we apply a

voltage in order to realign the director along the normal to the film (recall that

εa > 0 here) until half-wave plate condition is obtained. The images of prepared

defects observed between crossed linear polarizers are shown in Fig. 2.14 where

there is no laser beam (P = 0). Finally, laser is turned on. As shown in Fig. 2.15

no director field distortion is detectable up to P = 150 mW, in stark distinction

to the case of umbilics. We thus conclude that even if there is non-zero spin orbit

torque, its mechanical manifestation is null.

To explain these observations we note an important difference between umbilics

and disclinations, even for a given topological charge m. Indeed, surface boundary

conditions are perpendicular for umbilics while they are parallel for disclinations. In
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Figure 2.15: Dynamics of dark cross pattern corresponding to the Schlieren textures
of topological charge m = {±1/2,±1} observed between crossed linear polarizers under
illumination of 150 mW for both incident helicities σ = ±1.

turn, the liquid crystal orientational structure at the glass interface is azimuthally

degenerate at every point for umbilics, which is not the case for disclinations. The

consequence is that the umbilics are much more prone to support twisted director

field in the bulk than the disclinations. In fact, it is known from earlier studies on

optical reorientation of liquid crystals that it is much more demanding to reorient

optically a planar film than a homeotropic film. For instance, for linearly polarized

beam at normal incidence on a uniform film, director reorientation occurs above

a threshold which is several orders of magnitude higher for planar films than for

homeotropic films [59]. In the present case, although our samples have space

variant azimuthal director orientation, above considerations give a solid argument

to understand the observed “rigidity” of disclinations.

As a matter of fact, if we aim at exploring the situation with m > 1, another

option should be put in place. This is the purpose of the next chapter.
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Optical torque reversal: indirect

observations

In the preceding chapter we have explored mechanical consequences of spin-

orbit interaction of light using nematic liquid crystal defects as inhomogeneous and

birefringent media. Namely, we have reported on the manifestation of an optical

torque driven by spin-orbit interaction by analyzing light induced distortions of

the liquid crystal molecular orientation. Nevertheless, such study was restricted

to defects having topological charges m = ±1. In this chapter we extend spin-

orbit optomechanics of defects to topological charge ∣m∣ ≠ 1, by using artificially

structured glass slabs fabricated via femtosecond direct laser writing. Such plates

are commercially available and can be designed to have arbitrary topological charge.

We purposely focus our study to topological charges m = {1/2,1,3/2}, which are

associated with homogeneous birefringent phase retardation ∆ = π. Indeed, this

choice allows addressing of optical torque reversal while passing from topological

charge m = 1/2 to m = 3/2, under fixed incident optical spin angular momentum.

In section 3.1 we introduce the concept of the “left-handed” optical torque and

discuss its analogy with so called “negative” optical forces. Next, we present

birefringent phase plates and our experimental approach to determine left-handed

torque using circularly polarized beam in section 3.2. Then, in section 3.3 we

present experimental demonstration with two-beam (collinear and non-collinear)

interferometric approaches and analyze the torque quantitatively as well study

its dependence over all involved parameters. In section 3.4 we present simplified

experimental approach with a linearly polarized single beam. Finally, we generalize

left-handed torque to arbitrary values of birefringent phase retardation and incident

polarization state in section 3.5.
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3.1 Left-handed optical radiation torque

Before introducing our concept of “left-handed” optical torque, it is relevant to

present the following optomechanical context. In fact, left-handed torque echoes

the concept of “negative” optical forces that have been introduced recently [60, 61].

Contrary to the conventional Keplerian intuition that objects should be pushed

downstream an incident light beam, negative forces attract objects towards the

source of illumination. The concept is outlined in Fig. 3.1, where the object

is illuminated along the positive z direction and is pulled towards negative z

direction. In general, such forces result from net forward scattering of optical linear

momentum. As reviewed in Ref. [62], this is achieved by tailoring properties of the

electromagnetic field, the object, and/or the environment.

The angular analog of such counterintuitive optical force corresponds to optical

torque that has direction reversed to that of incident light (spin) angular momentum,

and we refer to such torque as “left-handed” implying its counter-intuitive nature.

Accordingly, we refer to the torque produced in common situations as “right-handed”

torque. Both configurations are outlined in Fig. 3.2, considering light field carrying

sz spin angular momentum and exerting a torque Γz on the illuminated object.

Usually, the optical torque has the sign of sz, whatever sz, that is szΓz > 0. Examples

are the cases of absorbing objects or transparent wave-plates, as previously discussed

in chapter 1. Such situation is shown in Fig. 3.2(a). In contrast, left-handed torque

manifests as the torque direction opposes the direction of the incident (spin) angular

momentum, that is szΓz < 0, whatever sz. As a result, the illuminated object tends

to rotate with reversed handedness to that of the incident angular momentum.

F  < 0z

z
Propaga�on direc�on

poutpin

Figure 3.1: Concept of optical negative force, which implies pulling of the object towards
the illumination source. Negative forces occur when there is a net forward scattering of
the linear momentum, which may be written formally as Fz ∝ (pin − pout)z < 0.
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Figure 3.2: Schematic illustrations of the conventional (a) and non-conventional (b)
manifestations of optical torques Γz exerted on matter by interaction with incident
Gaussian beam, which carries sz spin optical angular momentum per photon along its
prorogation direction z. (a) Right-handed torque configuration, which corresponds to
szΓz > 0 for any sz. (b) Left-handed torque configuration, which corresponds to szΓz < 0
for any sz.

Left-handed situation is shown in Fig. 3.2(b). Intriguingly, a few years ago, it has

been predicted that a tightly focused circularly polarized Gaussian beam could

exert a torque directed oppositely to that of the incident angular momentum on

wavelength-sized oblate particles made of transparent isotropic media [63], whereas

the first experimental identification actually corresponds to present chapter.

To reverse torque sign with respect to incident light angular momentum there

should be a net forward scattering of angular momentum, mimicking the situation

with the negative forces and linear momentum. Within present framework of

azimuthally varying optical elements, it is impossible to achieve angular momentum

negative balance whatever sz based only on spin angular momentum light-matter

exchanges. Indeed, let us assume m = 0 (hence no orbital angular momentum

light-matter exchanges). In that case linz = lout
z and left-handed torque implies

sin
z Γz = 1 − sin

z s
out
z < 0. However, since −1 ≤ sin

z s
out
z ≤ 1, the latter inequality cannot

be satisfied. In contrast, for m ≠ 0, the total angular momentum balance may be

dominated by orbital contribution, hence optical torque reversal becomes possible.

More precisely, recalling the optical radiation torque expression involved in spin-

orbit interaction of light, introduced earlier for the case of space-variant birefringent
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slab (see section 1.3),

Γsoi
z = 2

P

ω
sin(2χ)(1 −m) sin2 (∆/2) , (3.1)

and analyzing its behavior over topological charge m, we realize that the sign of

the torque flips while passing from m < 1 to m > 1. We note that the latter case

corresponds to torque that has opposite sign with respect to incident (spin) angular

momentum of light given by sz = sin(2χ)h̵ angular momentum per photon, hence

left-handed torque manifests. Thus, to achieve left-handed optical radiation torque

our idea is to exploit spin-orbit interaction of light involving m > 1 topological

charge defects.

3.2 Experimental approach

3.2.1 Samples: solid state q-plates

Towards experimental demonstration of optomechanical manifestation of left-

handed torque, we have used space-variant birefringent glass slabs commonly

referred as “q-plates”, see chapter 1, which are commercially available, and can be

designed to have arbitrary m topological charge value. We have purposely selected

a set of plates with azimuthal optical axis distribution ψ =mϕ that corresponds to

three different topological charges m = {1/2,1,3/2}, as shown in Fig. 3.3(a). The

plates have been fabricated by Altechna R & D company using femtosecond direct

laser writing of self-assembled nanostructures in the bulk of silica glass [64]. In fact,

depending on parameters of focused writing laser beam self-organized stripelike

structures appear with width of ∼ 20 nm forming a grating wit period of 140 − 320

nm depending of the power and irradiation rate of writing laser (Fig. 3.4). Such

subwavelength structuring induces form birefringence, the slow axis being oriented

perpendicular to the nanograting wavevector (see Fig. 3.4), whereas fast axis is

oriented parallel to the nanograting wavevector [41]. In addition, our samples are

designed to have uniform birefringent phase retardation ∆ = π that corresponds

to the half-wave plate configuration for the wavelength 532 nm, that is a purity

parameter η = 100%.



3.2 Experimental approach 49
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Figure 3.3: Design and optical characterization of azimuthally varying form birefringent
glass samples that correspond to the topological charges {m = 1/2,1,3/2}. For each
topological charge, first column (a) corresponds to slow axis in-plane spatial distribution,
where segments imply local orientation. Second, third, and fourth columns correspond
to polarimetric analysis performed by spatially incoherent illumination of a wavelength
532 nm, which illustrates images of the retarders placed between, crossed linear (b),
parallel circular (c), and crossed circular (d) polarizers showing optical axis profile and
birefringent retardation uniformity. Fifth column (e) displays output beam intensity
transverse profiles that correspond to optical vortices of topological charges ` = ±2m,
considering incident circularly polarized Gaussian beam, sign depending on polarization
handedness.



50 Chap 3 - Optical torque reversal: indirect observations

 30000x 

 K 200nm

Figure 3.4: Scanning electron microscope image of silica glass surface showing light
induced nano-grating formed by focused femtosecond laser beam irradiations. Arrow
illustrates the direction of the nano-grating wavevector that is parallel to incident beam
polarization direction. Adapted from Ref. [42].

First, we have characterized samples implementing polarimetric analysis with

incoherent light source at considered wavelength 532 nm. The orientational profile of

optical axis is experimentally observed by placing the samples between crossed linear

polarizers. Resulting images are shown in Fig. 3.3(b), where dark lines correspond

to places where optical axis is parallel to one of the two crossed linear polarizers.

On the other hand, birefringent phase retardation uniformity is experimentally

assessed by placing the samples between parallel and crossed circular polarizers -

Figs. 3.3(c) and 3.3(d).

Then, we have validated the action of such plates on light experimentally,

considering on-axis incident circularly polarized field, which is transformed into

orthogonally polarized field carrying on axis optical phase singularity ` = 2σm. In

practice, we have illuminated the plates with circularly polarized, paraxial Gaussian

beam of wavelength 532 nm and waist radius w ≃ 1 mm. The output doughnut

intensity transverse distribution snapshots are shown in Fig. 3.3(e). Note that

the doughnut diameter increases over topological charge, while preserving similar

incident beam diameter, as expected from the fact that Laguerre-Gaussian beam

amplitude scales to [r/w(z)]∣`∣ exp(−r2/w(z)) (see Eq. (1.9)).
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(ω)eσ

P QWP (ω+2σΩ(m-1))e-σ

Ω

Figure 3.5: Scheme of the rotational Doppler frequency shift experiment: A circularly
polarized Gaussian field is normally incident into birefringent retarder that rotates with
constant angular velocity Ω, which is controlled by external DC motor. Optical elements
are abbreviated as follows: P is linear polarizer, QWP is quarter-wave plate.

3.2.2 Detection technique: Rotational Doppler frequency

shift

To detect left-handed optical torque, a univocal experimental approach consists

of direct observation of light induced rotation of the sample. This would allow

retrieving with ease optical torque reversal from the visual observation of the sample

rotation depending on incident light polarization handedness. However, a simple

estimate of the expected effect shows that the situation is challenging in practice.

Indeed, let us consider an optical torque produced via a transfer of h̵ angular

momentum per photon to the sample, under 1 W visible light illumination. This

gives Γ = P /ω ∼ 10−16 Nm. On the other hand, assuming the sample is immersed in

an inviscid medium and free to rotate, we find a rotation frequency ν that depends

on illumination time T as ν(T ) = ΓT /(πMR2), where M is mass of the sample

and R is radius. Taking into account that considered birefringent structures are

embedded in slabs of radius R = 12.7 mm and thickness H = 3 mm with mass

density ρ = 2.5 × 103 kg m−3, we obtain ν ∼ 1 mHz after three months illumination

at P = 1 W. Clearly, with considered samples the direct experimental detection of

left-handed optical radiation torque is impractical.

Still, we propose to circumvent such technical difficulty by considering indirect

observations that consists to probe the mechanical consequence of the spin–orbit

scattering process on light itself instead of probing mechanical effects on the

sample. This is achieved by implementing a rotational Doppler frequency shift

experiment [65, 66]. In practice, the sample is externally rotated (using a computer-

controlled rotating stage) at controlled angular velocity Ω around incident beam

propagation direction, as illustrated in Fig. 3.5. In such experiment, non-zero

optical torque exerted by light on the slab causes a rotational Doppler frequency
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shift δω for the output light. The shift is independent of the incident light field

frequency and is proportional the angular velocity of the rotating plate, in contrast

to linear Doppler frequency shift [66]. Without loss of generality, we consider

circularly polarized collimated Gaussian beam with the waist radius w ≃ 1 mm (the

structured area corresponds to Rs = 2 mm centered on slab) normally incident on

the birefringent samples. As introduced in section 1.3, this gives an optical torque

Γ
soi(σ)
z = 2Pωσ(1 −m).

To access to the rotational Doppler frequency shift, we analyze energy conserva-

tion considering light-matter as isolated system. Its total energy is thus conserved,

which allows writing the following power balance

ΓzΩ + δω
ω
P = 0 , (3.2)

where ω′ = ω + δω is the angular frequency of the transmitted light. Accordingly,

we have a direct relationship between the torque and rotational Doppler frequency

shift:

Γz = −
P

ω

δω

Ω
, (3.3)

which allows us to stress that the rotational Doppler shift measurement is indeed

reminiscent of the existence of an optical torque in our experiment.

Substituting the optical torque expression into Eq. (3.3) we obtain the rotational

Doppler frequency shift

δω = 2σ(m − 1)Ω . (3.4)

To determine δω, hence Γz, our experimental approach consists of interferomet-

ric analysis, enabling time varying phase monitoring via time varying intensity

measurements, which is purpose of the following section.
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3.3 Two-beam experimental demonstration and

parametric study

3.3.1 On-axis two-beam experimental demonstration

First, we have implemented a two-beam approach as outlined in Fig. 3.6, where

we consider a circularly polarized Gaussian beam impinging on a rotating slab with

topological charge m. The reference arm of the interferometer consists of circularly

polarized Gaussian beam with orthogonal polarization state to that of input beam,

which ensures appearance of intensity fringes as a result of interference between

superposed beams. We consider on-axis (collinear) superposition of the reference

and output beams that leads to formation of 2∣m∣-arm spiraling interference patterns,

as introduced in section 1.1.2 and shown in present case in lower insets of Fig. 3.7.

For the sake of demonstration, the sample is rotated at angular velocity Ω ≃ 0.40

rad s−1 and the spiraling interference patterns are recorded over period of two

minutes (T = 120 s). Resulting spatiotemporal interference patterns are presented

in Fig. 3.7(a,b,c). The patterns revolve or not depending on topological charge.

Indeed, patterns rotate for m = 1/2 and m = 3/2, while the case of m = 1 corresponds

to a static situation. Note that the sense of rotation differs for m = 1/2 and m = 3/2.

Another visual representation of spatiotemporal dynamics consist of correlation

coefficients C(t) between the static patterns at time t = 0 and t, see Fig. 3.8.

Sinusoidal behavior is observed for m = 1/2 and m = 3/2, whereas it shows non-

(ω)eσ

P HWP PBS QWP

M M
QWP

(ω+2σΩ(m-1))e-σ

NPBS

(ω)e-σ

CDD

Ω

Figure 3.6: Scheme of rotational Doppler frequency shift experimental set-up that
consists of collinear Mach–Zehnder interferometer, which we use to record interference
patterns between output beam with frequency (ω+δω) and reference beam with frequency
(ω). The reference beam polarization state handedness is the same as that of the output
beam. The optical elements are abbreviated as follows: P is linear polarizer, HWP is
half-wave plate, QWP is quarter-wave plate, M is mirror, PBS is polarizing beam splitter,
NPBS is non-polarizing beam splitter, CCD is imaging device.
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Figure 3.7: The interference patterns and their time evolutions resulting from collinear
interferometer corresponding birefringent plates m = 1/2 (a) m = 1 (b) and m = 3/2 (c).
Upper inset represent spatiotemporal evolutions of the interference patterns corresponding
to the time duration of T = 120 s, whereas lower insets are static snapshots of patterns at
t = 0 that are formed in the (x, y) plane.
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Figure 3.8: Time dependence of the correlation coefficient C(t) between intensity
patterns formed at t = 0 and t, where the solid lines for the m = 1/2 and 3/2 refer to fit
by sinusoidal function.

oscillating behavior that corresponds to case of the sample with topological charge

m = 1. Data fitting these sinusoidal curves using trial function C(t) = a+b sin(ΩCt+
c) gives ΩC = 0.36 rad s−1 when m = 1/2 and ΩC = 0.40 rad s−1 when m = 3/2. In

fact ΩC can be identified as the Doppler frequency shift δω. Indeed, let us consider

interference between two co-polarized plane waves with angular frequencies ω and

ω+δω and identical intensity. One gets for the intensity pattern I = 2I0[1+cos δωt],
which demonstrates that ΩC = δω. These results are consistent with Eq. (3.4). In

particular, δω reverses its sign as m passes from m = 1/2 to m = 3/2, which is the

signature of the optical radiation torque reversal from right-handed to left-handed.

Nevertheless, this approach does not give access to sign of the rotational Doppler

frequency shift, which we address in the next section.
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Figure 3.9: Scheme of the rotational Doppler frequency shift experimental set-up that
corresponds to the non-collinear interference between output beam frequency (ω + δω)
and reference beam with frequency (ω) that has e with similar circular polarization state
e−σ.

3.3.2 Off-axis two-beam experiment and parametric study

Towards univocal determination of both sign and magnitude the rotational

Doppler frequency shift, we have implemented rotational Doppler frequency shift

experiment using non-collinear interference between transmitted and reference arms,

as outlined in Fig. 3.9.

The resulting intensity distributions, in the (x, y) plane of the observation,

correspond to 2∣m∣-fork interference patterns, which are reminiscent of optical

vortices carrying phase singularity 2mσ. Such static patterns are illustrated in

Fig. 3.10(a,b,c). As the sample rotates we observe the dynamics of the 2∣m∣-fork

patterns that behave differently depending on the parameters m,Ω and σ. This

is illustrated by analyzing the dynamics of the oscillating intensity modulation

at x = x0, I(x = x0, y) as shown in Fig. 3.10(d,e,f) for the case of σΩ > 0. The

interest of such patterns is that they allow direct identification of the sign of the

frequency shift. Indeed, in present situation, the sign of the slope of patterns shown

in Fig. 3.10(d,e,f) is that of δω.

In order to explain the frequency shift sign identification from the visual

inspection of the fringing spatiotemporal patterns I(x0, y, t), let us analyze the

wavevector’s configuration that corresponds to interfering beams as outlined in

Fig. 3.11. We refer as ksω′ to the wavevector of the output “signal” beam with

the angular frequency ω′ = ω + δω and krω to the wavevector of the reference

beam with the angular frequency ω. The relative angle between them, denoted

as α, is positive in our experiment, see Fig. 3.11. Without loss of generality, let

us assume that both output and reference fields are plane waves with similar

values of amplitudes E0 and polarization state along the x axis. The complex



56 Chap 3 - Optical torque reversal: indirect observations

x

y

x = x0

t = t0

y

350 s

t 

m = 1/2 m = 1 m = 3/2

(a)

(d)

(b) (c)

(e) (f)δω < 0 δω = 0 δω > 0

Figure 3.10: (a,b,c) Interference patterns formed between output beam emerged
from the plates m = {1/2,1,3/2} and off-axis reference beam with the similar circular
polarization states e−σ. (d,e,f) Spatiotemporal patterns constructed from the interference
patterns at x = x0, I(x0, y, t) corresponding to the situation σΩ > 0. The drift direction
implies determination of rotational Doppler frequency shift’s sign, δω > 0, δω = 0 and
δω < 0, respectively for the plates m = {1/2,1,3/2}.

representations of such fields correspond to Eω′
s = E0 exp[−i(ω′t − ksz)]eσ for the

signal field and Eω
r = E0 exp[−i(ωt − kr cosαz + kr sinαy)]eσ for the reference field.

The intensity pattern resulting from coherent superposition of such fields in the

plane of observation can be written as

I(x, y, t) = ∣Eω′

s +Eω
r ∣2. (3.5)

Inserting field expressions in Eq. (3.5) we get

I(x, y, t) = 2I0[1 + cos(kr sinαy − δωt + φ0)] , (3.6)

where the φ0 is constant phase factor that depends on the observation plane,

note that eσe∗σ = 1, whereas eσe∗−σ = 0. The bright lines in the pattern I(x, y, t)
that correspond to spatiotemporal fringe in the (t, y) plane are given by following
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Figure 3.11: Scheme of the superposition of output beam emerged from the birefringent
plate and tilted reference field in the (y, z) plane. Considered experimental arrangement
corresponds to the α > 0 situation where α is the angle between wave vectors of the
output “signal” field kω

′

s and reference arm field kωr . Such superposition results in 2m-fork
interference patterns at the plane of observation as illustrated in Figure 3.10.

condition, kr sinαy − δωt + φ0 = 2πn, where n is integer. Rewriting this condition

with the following form,

y = Y0 +
δω

kr sinα
t , (3.7)

where Y0 is constant, allows us to confirm that the negative drift (towards y < 0)

of the spatiotemporal fringes correspond to the negative frequency shift (δω < 0),

whereas the positive drift (towards y > 0) of the spatiotemporal fringes correspond

to the positive frequency shift (δω > 0), as illustrated in second row (d,e,f) of

Fig. 3.10. No drift corresponds to the null frequency shift (δω = 0) in the case

of the plate with topological charge m = 1. Notably, magnitude of the rotational
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Figure 3.12: (a) Time-oscillating behavior of intensity signal Ī defined from interference
patterns shown in Fig. 3.10. (b) Fast Fourier Transform (FFT) spectrum of the Ī that
peaks at frequency ∣δω∣/2π. The angular velocity of the plate equals to Ω = 0.37 rad s−1.
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Figure 3.13: Rotational Doppler frequency shift dependence on the samples angular
velocity Ω for m = 1/2 and 3/2 and both circularly polarization handedness of the
incident beam (a,b); solid lines correspond to the theoretical values given by the equation
δω = 2σ(m − 1)Ω, markers correspond to experimental data.

Doppler shift also can be accessed from the spatiotemporal fringing patterns, by

retrieving it from the slopes of Eq. (3.7), which however requires precise knowledge

of the kr sinα.

Instead, in order to determine magnitude of rotational Doppler shift we introduce

the quantity

∣Ī(t)∣ = ∫ I(x0, y, t)dy − ⟨∫ I(x0, y, t)dy⟩
t

, (3.8)

where ⟨.⟩t stands for time averaging. Corresponding intensity signal I(x0, y, t),
when x0 is large enough, can be represented by the following form,

I(x0, y, t)∝ [1 + V (y) cos(ay + δωt)]f(y) , (3.9)

where 0 ≤ V (y) ≤ 1 is the space-variant visibility of the fringes, a is a real constant

with spatial periodicity of the fringing pattern, and f(y) > 0 is a real envelope

function that depends on the reference beam intensity distribution in (x, y) plane.

In the considered experiment, the value of x0 corresponds to the beam waist value

of the output field, as it can be qualitatively retrieved from the visual inspection of

the patterns in first row (a,b,c) of Fig. 3.10. By inserting Eq. (3.9) in Eq. (3.8), we
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get

Ī(t) ∝ ∫ cos(ay + δωt)V (y)f(y)dy ,

∝ Re [eiδωt∫ eiayV (y)f(y)dy] , (3.10)

∝ cos(δωt + argC) ,

where C = ∫ eiayV (y)f(y)dy is constant. Hence, the Fast Fourier Transform (FFT)

of the signal the Ī peaks at δω/2π, as shown in Fig. 3.12.

Implementing the above considered data analysis, we have performed a para-

metric study of the rotational Doppler frequency shift over the range corresponding

to ∣δω∣/ω ≈ 10−17 − 10−16 for m = {1/2,3/2}. In addition, we have considered both

handedness of incident circularly polarization, σ = ±1. The results are summarized

in Fig. 3.13 that represents the rotational Doppler frequency shift (δω) dependence

on angular velocity of the plate (Ω). The solid lines refer to theoretical results given

by Eq. (3.4), whereas markers refer to the experimental results, from which we can

imply a proper agreement between experimental data and theoretical predictions.

This concludes the precise experimental determination of rotational Doppler shift,

which implies the quantitative identification of left-handed optical radiation torque

when m > 1.

3.4 Single beam experiment

We have also explored left-handed radiation torque demonstration using a single

beam (reference-free) rotational Doppler experiment. The experimental setup is

outlined in Fig. 3.14 and consists of linearly polarized (along x axis in practice)

Gaussian field that is normally incident to the rotating sample with topological

charge m = {1/2,1,3/2}. Such field can be described as a coherent superposition

of two orthogonal circularly polarized Gaussian beams with identical amplitudes.

This decomposition implies that each orthogonal circularly polarized component

exerts torques on the sample of equal magnitudes but opposite signs. Although

the total torque exerted by linearly polarized field is zero, we will see that, the

optomechanical contributions produced by independent circularly components can
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Figure 3.14: Scheme of the experimental set-up that corresponds to reference-free
rotational Doppler frequency shift experiment used to record interference patterns between
frequency shifted circularly polarized components of the output beam (common path
interferometer). We consider normal incidence of linearly polarized (along x axis) Gaussian
beam, with waist radius w ≃ 1 mm, on the rotating slab of topological charge m. The
interference pattern results from the projection of output field along the y direction by
using linear polarizer.

be assessed.

First, let us describe the output field after the sample at rest Ω = 0

E
(m,Ω=0)
out = J(m)(1/

√
2,1/

√
2)T = cos(2mϕ)x + sin(2mϕ)y, (3.11)

where (1/
√

2,1/
√

2)T is the Jones vector of the incident linearly polarized field in

circular basis (e+,e−) and J(m) is the Jones matrix associated with the sample,

as introduced in section 1.2. Such a field represents the coherent superposition

of two contra-circularly polarized vortex beams with opposite topological charges

±2m, which form a field with an azimuthally varying linear polarization state.

Corresponding beams are known as a vector beams; see for example Ref. [67]. Then,

the idea is to place a linear polarizer aligned along the y axis after the rotating

sample, as outlined in Fig. 3.14. The interference between the two orthogonal

circularly polarized components from sample thus lead to intensity modulation.

Indeed, a 4∣m∣-fold interference pattern is obtained in the (x, y) plane as shown

in lower insets of Fig. 3.15(a,b,c), which correspond to the patterns at rest. In

fact, projection on y axis leads to modulation of intensity profile after polarizer

that is proportional to I ≈ sin2(2mϕ) (see Eq. (3.11)). Once the sample is rotated

at constant angular velocity Ω, the intensity patterns express distinct dynamical

behavior as shown in Fig. 3.15(a,b,c), where time evolutions of patterns correspond

to two full rotations of the slabs (T ≃ 30 s). Similarly to the two-beam experiment,

we observe handedness reversal between m = 1/2 to m = 3/2, and static situation

for m = 1.
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Figure 3.15: The spatiotemporal interference patterns and their time evolutions that
correspond to twice full rotations (T = 30s) of the samples following to the experimental
set-up outlined in Fig. 3.14. The lower insets represent interference patterns between two
orthogonal circularly polarized components of the output beam formed in (x, y) plane.
The first column corresponds to sample with topological charge m = 1/2 (a, d), second
column to m = 1 (b, e), and third column to m = 3/2 (c, f); patterns in upper row are
experimental data whereas patterns in lower row are model simulations.
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In fact, such spatiotemporal behavior of the patterns can be described by

introducing the Jones dynamical matrix that corresponds to the sample rotating

with constant angular velocity Ω along z axis,

J(m) =
⎛
⎝

0 e−2i[mϕ+(1−m)Ωt]

e+2i[mϕ+(1−m)Ωt] 0

⎞
⎠
, (3.12)

similarly to the static Jones matrix introduced for such media in the section 1.2.

The output field dynamical behavior is then obtained by applying previous the

Jones matrix to the incident linear polarization Jones vector in circular basis,

E
(m,Ω)

out = J(m)(1/
√

2,1/
√

2)T ,

E
(m,Ω)

out = cos(2[mϕ + (1 −m)Ωt])x + sin(2[mϕ + (1 −m)Ωt])y . (3.13)

Assuming that radial dependence of the output beam is characterized by the form

of Laguerre-Gaussian beam, with azimuthal index l = 2m and radial index p = 0,

the resulting intensity patterns are described as

I(r, t) = (r/2)4∣m∣ exp(−2r2/w2) sin2(2[mϕ + (1 −m)Ωt]) (3.14)

where w is the beam waist radius. We summarize analysis in Fig. 3.15(d,e,f) as in

experiment, where the lower insets correspond to the static intensity distributions

while upper insets correspond to time evolutions of such intensity distributions. A

fair agreement with the experimental data is obtained.

3.5 Generalization of the study

3.5.1 Influence of the birefringent phase delay

In this section we address to the question whether left-handed torque manifests

in the case of the birefringent phase retardation other than half-wave plate condition

discussed in previous sections, namely ∆ ≠ π. In fact, as discussed in section 1.3,
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Figure 3.16: Scheme of the rotational Doppler frequency shift experimental set-up
corresponding non-collinear interferometer with de-tuned birefringent phase delay config-
uration, ∆ = 0.84π. Output field is elliptically polarized and consists of superposition
of two orthogonal fields with opposite circularly polarization states σ = ±1. Inserting a
circular polarizer after output field selects one or other component to interfere with the
non-collinear reference arm.

the torque expression in that case is

Γ
soi(σ)
z = 2

P

ω
σ(1 −m) sin2 (∆

2
) . (3.15)

The factor η = sin2(∆/2) in the above equation represents the fraction of photons

that transferred angular momentum to the sample. In other words, these photons

are those doing work on the slab. Thus, the energy conservation for arbitrary

birefringent phase delay case must be written per “working” photons, replacing P

by ηP in Eq. (3.2) that gives

Γsoi
z Ω + ηP

ω
δω = 0 . (3.16)

Then, by combining Eq. (3.15) and (3.16) one gets a rotational Doppler frequency

shift expression that is unchanged with respect to the half-wave plate situation,

this is Eq. (3.4).

We have explored such a situation experimentally with the same samples as

used in the previous sections, by using incident wavelength 632.8 nm instead of 532

nm, thus obtaining ∆ = (532/632.8)π = 0.84π. We have implemented a rotational

Doppler frequency shift experiment that consists of a non-collinear interferometer

as outlined outlined in Fig. 3.16, where we consider the coherent superposition

of the output vortex beam and reference Gaussian beam. To determine the

rotational Doppler shift we have used a similar analysis as the one presented
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Figure 3.17: Spatiotemporal fringing patterns retrieved from the prerecorded interfer-
ence patterns using experimental setup outlined in Fig. 3.16. First row represents σσref > 0
configuration of the input and reference arm circular polarization state corresponding
to the samples m = 1/2 (a), m = 1 (b) and m = 3/2 (c), second row represents σσref < 0
configuration of the input and reference arm circular polarization state corresponding to
the samples m = 1/2 (a), m = 1 (b) and m = 3/2 (c)

in section 3.3.2 independently for both output orthogonal circular polarization

states ±σ by placing circular polarizer after the sample that selects one or another

polarization component. As we superpose the output component with the reference

arm of same polarization handedness (σref = ±σ) we obtain fringing patterns, as

described in that section.

The results are shown in Fig. 3.17 for the samples of topological charge m =
{1/2,1,3/2} and two situations corresponding to the input and reference arm

polarization handedness, σσref > 0 in the first row, and σσref < 0 in the second row.

Indeed, photons that did not flipped their spin angular momentum, hence did not

participate to spin-orbit interaction, which implies no drift of the spatiotemporal

fringing pattern. In contrast, in the case of the photons that have flipped their

spin, coupling with their orbital momentum, we observe positive, negative, or zero

drift of the spatiotemporal fringes depending on the m, σ and Ω, as discussed in

the previous section.
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We have also determined δω implementing the same analysis as discussed in

section 3.3.2 and quantitatively validated that the rotational frequency shift is un-

changed from the preceding case. Qualitatively this can be validated from comparing

the spatiotemporal patterns in Fig. 3.17(d,e,f) and patterns in Fig. 3.10(d,e,f).

All the above considerations generalize the proposed concept of left-handed

optical radiation torque to arbitrary values of the birefringent phase retardation

associated with the medium.

3.5.2 Influence of the incident polarization state

Considering more general arbitrary elliptical polarized beam, the above results

remain valid. Indeed, as we have introduced in chapter 1, any polarization can

be presented as a superposition of left- and right-handed circular polarization

basis, with such approach we have obtained the optical radiation torque expression

involved in spin-orbit interaction of light for any superposition of left- and right-

handed circular polarization states as

Γsoi
z = 2

P

ω
sin(2χ)(1 −m) sin2 (∆/2) . (3.17)

We recall that spin angular momentum per photon equals sz = sin(2χ)h̵, where χ is

ellipticity angle (see section 1.2), the sign of the incident spin angular momentum

is either positive or negative depending the handedness prescribed by the rotation

of electrical vector of light field, which corresponds to 0 < χ ≤ π/4 and −π/4 ≤ χ < 0,

respectively. Hence, the optical torque considerations discussed in the preceding

sections remain qualitatively valid up to the multiplying factor sin(2χ), and szΓsoi
z <

0, when m > 1 for whatever sz. Thus, left-handed torque manifests for arbitrary

incident polarization state, and in the special case of the linear polarization when

net torque is zero still the torque reversal can be revealed (see section 3.4).
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C H A P T E R 4

Optical torque reversal: towards

direct observations

In the preceding chapter we introduced the concept of left-handed optical torque

and experimentally scrutinized its manifestation by performing series of rotational

Doppler frequency shift experiments. Nevertheless, the latter approach consists in

indirect optomechanical observations, performed by probing consequences of an

optical torque on light itself instead of matter due to impractical optomechanics of

centimeter-sized macroscopic samples. In this chapter we report on experimental

attempts to observe left-handed optical radiation torque in a direct manner. In

section 4.1 we discuss possible experimental routes of optimization by evaluating

the optical torque induced rotation of spin-orbit optical elements. We present our

experimental attempts with millimeter-scale azimuthally varying birefringent glass

samples in section 4.2, which correspond to miniaturized and high-order versions of

previously used macroscopic samples. Then, in section 4.3, we report on design,

fabrication and structural characterization of metallic micro-structures that are

another type of candidate in our quest. Optical performances of fabricated samples

are experimentally evaluated and discussed as part of possible optomechanical

implementation. The chapter is concluded by section 4.4, where we address to a

purely dielectric option at the microscale that is likely to be the one allowing the

sought direct observation of torque reversal. We report on our first fabrication

attempts and expected practical challenges that one has to take on in order to

complete the initial goal.
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4.1 General considerations and analysis

The main motivation of our investigations reported in this chapter is to observe

left-handed optical radiation torque “in action”, in other words our objective is

to observe the light induced rotation of the spin-orbit coupler that satisfies the

σf < 0 condition, f = Ω/2π being the signed rotating frequency of the element

under circularly polarized incident field with helicity σ. To achieve this, in what

follows we analyze possible optimizations of azimuthally varying birefringent optical

elements. This is done in the general framework accounting not only for the

material birefringence (as done so far in previous chapters) but also for absorption

effects, which includes possible linear dichroism. Indeed, as seen in section 1.1.3,

absorption itself always leads to right-handed torque (see Fig. 1.7), while dichroism

(polarization dependent absorbtion) is known to affect on spin-orbit interaction of

light in the framework of space-variant birefringent plates, as reported in [68].

Quantitative analysis is made by considering circularly polarized plane wave

Ein = E0e−i(ωt−kz)eσ that propagates through azimuthally varying birefringent plate,

with thickness L whose input facet is located at z = 0. Introducing complex

refractive index ñ∥,⊥ = n∥,⊥ + in′∥,⊥ the output field at z = L can be obtained in the

laboratory frame using the Jones formalism as done in chapter 1 but using the

complex refractive indices. Namely,

Eout = E0 e
−iωt R̂z(−ψ)

⎛
⎝
eikñ∥L 0

0 eikñ⊥L
⎞
⎠

R̂z(ψ)eσ . (4.1)

Then we express the output field in the circular polarization basis,

Eout = (Eout ⋅ e∗σ)eσ + (Eout ⋅ e∗−σ)e−σ , (4.2)

where asterisk refers to complex conjugation. After calculation, one gets, up to the

unimportant pure phase factor e−iωt+ikn⊥L+i
∆
2 , a field at z = L

Eout = E0τ [cos(∆̃

2
) eσ + i sin(∆̃

2
) ei2σmϕ e−σ] . (4.3)

where τ = e−k(n
′

∥
+n′
⊥
)L/2, and ∆̃ = ∆ + i∆′, with ∆′ = k(n′

∥
− n′

⊥
)L. Noticeably above
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formula allows to quantify the role of absorption in the generation of optical orbital

angular momentum. Indeed vortex generation purity parameter, as defined in

chapter. 1 (see Eq. (1.22)), expresses here as

η = 1

2
[1 − cos ∆

cosh ∆′
] . (4.4)

The above expression thus points out that the purity is decreased in the presence

of dichroism (∆′ ≠ 0) whereas the half-wave plate condition (∆ = π modulo 2π)

remains desirable to optimize it. Also, this indicates that average absorption (τ ≠ 1)

is not at play in purity, but only plays a role in the efficiency of the process by

lowering the magnitude of the contra-circularly polarized output component e−σ of

Eq. (4.3).

That said, the optical torque along the beam propagation direction can be

evaluated from Eq. (4.3) by writing down the angular momentum balance between

input and scattered field. For the sake of generality, here we are also considering the

possible presence of reflected field, which leads us to introduce the reflectance R,

the transmittance T , and the absorbance A, noting the relationship R + T +A = 1.

The next step is to evaluate the relevant quantities (Pj, s
j
z, l

j
z) with j = (i, t, r) where

i, t and r refer to incident, transmitted and reflected fields, and to apply the angular

momentum balance. For the incident field one straightforwardly gets

Input field

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Pi = P ,
si
z = σh̵ ,
liz = 0 .

For the reflected field, neglecting the corrections associated with mismatch between

the amplitude reflection coefficients along and perpendicular to the local optical

axis of the spin-orbit element, one can consider that the incident spin angular

momentum projection along the z axis is preserved at reflection, as is the case for

a usual mirror at normal incidence. This gives

Reflected field

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Pr =RP ,
sr
z = σh̵ ,
lrz = 0 .
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The case of the transmitted field is then treated by noting that, from Eq. (4.3),

st
z =

∣cos ∆̃
2 ∣

2
− ∣sin ∆̃

2 ∣
2

∣cos ∆̃
2 ∣

2
+ ∣sin ∆̃

2 ∣
2 σh̵ (4.5)

and that, on the other hand,

ltz =
∣sin ∆̃

2 ∣
2

∣cos ∆̃
2 ∣

2
+ ∣sin ∆̃

2 ∣
2 2σmh̵ . (4.6)

This gives after calculations the following parameters for the transmitted field:

Transmitted field

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Pt = T P ,
st
z = (1 − 2η)σh̵ ,
ltz = 2mσηh̵ .

Optical torque expression is thus obtained from

Γz =
Pi

h̵ω
(si
z + liz) −

Pr

h̵ω
(sr
z + lrz) −

Pt

h̵ω
(st
z + ltz) (4.7)

that eventually gives, making use of R +A + T = 1:

Γz =
P

ω
σ [A + 2T η(1 −m)] . (4.8)

The above expression clearly emphasizes the detrimental role of absorbance towards

the observation of torque reversal since the term A actually corresponds to a purely

“right-handed” torque contribution. In addition, low transmittance elements are

not favorable while the condition m > 1 remains the basic requirement for torque

reversal. Dichroism is also detrimental since it reduces the magnitude of purity

parameter η following Eq. (4.4).

To evaluate the mechanical consequences of the above presented torque we

assume that the sample is immersed in a fluid (e.g. water) and is free to rotate,

which represents a typical experimental scheme to observe a direct optomechanical

effect. The light induced rotation angular velocity is thus obtained at steady state
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from the balance between (i) the optical radiation torque Γz driven by spin-orbit

interaction of light and (ii) the viscous torque Γvisc
z , exerted by the fluid surrounding

the rotating sample, namely, Γz +Γvisc
z = 0. Considering infinitely thin disk in the

framework of hydrodynamic Stokes approximation limit (i.e. inertial effects are

discarded) the viscous torque expression is [69]:

Γvisc
z = −32

3
µR3Ωez (4.9)

where µ is the dynamic viscosity of the fluid (µ ≃ 1 mPa s for water at room

temperature), R is the radius of sample, and Ω its angular frequency. Combining

Eq. (4.8) and Eq.(4.9) the spinning disk rotation frequency f = Ω/2π is

f = 3Pσ

64πωµR3
[A + 2T η(1 −m)] . (4.10)

With the aim at exploring experimentally accessible situations for observing

optical torque reversal, next we perform a few simulations of the dependence of the

product σf , recalling that we search maximal value for ∣σf ∣ while having σf < 0.

For a start, we consider incident power P = 1 W, no absorption (A = 0, hence
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Figure 4.1: Dependence of σf on the radius R of the space-variant birefringent element
corresponding to the range of (a) millimeter and (b) tens of micrometer for material
topological charges m = {3/2,100} and m = {3/2,5}. Simulations are done under P = 1
W, assuming A = 0 and, T = 1, ∆ = π and ∆′ = 0.
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Figure 4.2: Dependence of σf/f0 on (a) absorption parameter A with ∆′ = 0 and
∆ = π, (b) dichroism parameter ∆′ with A = 0.5 and ∆ = π, and (c) birefringence phase
retardation ∆ with A = 0.5 and ∆′ = 0. Darkened areas correspond to right-handed
configuration, σf/f0 > 0. R = 0 is assumed in all cases.

∆′ = 0), fully transmissive element (T = 1), and optimal half-wave plate condition

(∆ = π, hence η = 1 since ∆′ = 0). Figure 4.1 displays the dependence of σf on the

sample radius R considering miniaturization of the samples used in chapter 3 in the

sub-centimeter domain (Fig. 4.1(a)) and in the sub-millimeter domain (Fig. 4.1(b)),

for the smallest topological charge m that could lead to torque reversal (m = 3/2)

and also for high-value (up to m = 100). In the millimeter scale, the practical

observation of sample rotation is likely only for high topological charges, for example

with m = 100 spinning frequency of the order of mHz is expected. On the other

hand, comfortable observation of light induced rotation is expected for samples

with tens of micrometer size, where f frequencies of higher than Hz are readily

accessible with moderate m values. Noteworthy, above choice for m values in the

macro (Fig. 4.1(a)) and micro (Fig. 4.1(b)) cases is not made arbitrarily. Indeed,

as shown in the next sections, this corresponds to accessible material structuring

in practice.

Further investigation is performed by looking at the reduced frequency

σf/f0 = A + 2T (1 −m) (4.11)

where f0 = 3P /(64πωµR3). By doing so, we can focus on the role of the key

parameter A, ∆′ and ∆, assuming R = 0. This is summarized in Fig. 4.2 for a set

of representative parameters for m = 3/2 and m = 5. The take-home message of
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this analysis is the following :

� Absorption (A) is always detrimental to optical torque reversal since ab-

sorbed incident optical spin angular momentum has a purely “right-handed”

contribution to the total torque. This is illustrated in Fig. 4.2(a).

� Dichroism (∆′) is always detrimental to optical torque reversal since it lowers

the amount of scattered light carrying orbital angular momentum. This is

illustrated in Fig. 4.2(b).

� Birefringent phase retardation (∆) should be set as close as possible to the

half-wave condition whatever the situation. This is illustrated in Fig. 4.2(c).

To conclude, smaller is better and transparency should be privileged. Fabrication

technologies allowing easy tuning of retardance will be favored, however, of course,

practical restrictions may generally lead to trade-off. In the next sections, two

options are considered, first at millimeter scale, then at micrometer scale.

4.2 Dielectric approach at the millimeter scale

4.2.1 Samples: high-order nanostructured glass q-plates

After the first indirect demonstration of optical torque reversal using centimeter-

size nanostructured glass q-plates, our choice was to consider a miniaturization

strategy combined with the use of high order topological charge m. This was

done in collaboration with Altechna R & D company and spin-orbit elements

with m = {10,25,50,75,100} were fabricated by direct femtosecond laser writing

technique in the bulk of silica glass. Each sample consists of a disk of radius R = 2.5

mm and height H = 1 mm. The structured part correspond to a volume defined by

R1 < r < R2 with R1 = 250 µm and R2 = 2.25 µm, over a height h = 74 µm (which

ensures ∆ = π), buried roughly 100 µm below the surface, as sketched in Fig. 4.3.

The choice of R1 ≠ 0 and R2 < R allows preventing sample damage as a result

of post fabrication stresses. An example with m = 10 is shown in Fig. 4.3(c,d,e),

where azimuthal structuring of the element is validated by observations between

crossed linear polarizers. Overview of a full set of sample is shown in Fig. 4.4.
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(c) (d) (e)

(a)

Top view
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Structured area

 2R  1

 2R  2

Side view
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Hh

(b)
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Figure 4.3: Illustration of the fabricated sample with diameter 2R = 5 mm showing top
view (a) and side view (b) structured regions. Not to scale. (c) Example of observation
between crossed linear polarizers for m = 10, (d) zoomed central part, and (e) inner circle
tensions distribution unveiled by adjusting the incident polarization angle and the camera
exposure.

m = 10 m = 25 m = 50 m = 75 m = 100

1 mm

Figure 4.4: Image of millimeter scale spin-orbit glass elements set with topological
charges m = {10,25,50,75,100} and diameter 2R = 5mm.



4.2 Dielectric approach at the millimeter scale 75

Further miniaturization of such glass samples is practically challenging since bulk

structuring of sample implies minimal thickness to achieve optimal form birefringent

phase retardation condition ∆ = π without fabrication-induced surface damages.

4.2.2 Experimental approach

Recalling that observation of spinning disks ideally implies samples to be free

to rotate, one needs to conceive an experimental approach that gets rid of nearby

solid surface. Since it is unrealistic to consider a stable long-term experiment

where buoyancy is strictly compensated using a single surrounding fluid (i.e. bulk

approach), instead we propose a surface approach. The idea is to place the samples

on surface of a high surface tension liquid that could hold it and in practice water is

a very good candidate owing to its large surface tension and low dynamic viscosity.

Another practical restriction is to hold sample at fixed position to prevent

active adjustment of the laser beam illumination and ease the spinning detection

protocol. This is done by implementing a self-centered strategy, holding the sample

at the bottom part of a droplet suspended upside-down on a glass substrate, as

shown in Fig. 4.6(a). Indeed, gravity thus acts as an efficient way to reach perfect

and stable centering. In practice, this is done by putting a droplet of water on

a glass coverslip. Then the hanged droplet is put in contact (from top) with the

sample sitting on an arbitrary non-sticky substrate. By doing so, “capillary tweezers”

is achieved (see Fig. 4.5), and we obtained the situation sketched and shown in

practice in Fig. 4.6(a,c) where the system is isolated from external air flows by a

Sample suspended 
by water droplet

substrate

water

sample

Figure 4.5: Image of the millimeter scale q-plate suspended by water droplet.
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z
g

dodecane
sample

waterwater

air sample

substrate (a) substrate (b)

Sample in tank 
surrounded by dodecane

Sample in tank 
surrounded by air

(c) (d)

Figure 4.6: Illustration of experimental configuration corresponding self-centered sample
suspension using water droplet due to the gravitational force (g). (a) A tank is used to
avoid air flows. (b) A tank is filled with second fluid (dodecane) to avoid air circulations.
(c,d) Images of practical implementation of (a,b).

surrounding tank. Once this is set, we illuminate the sample with a circularly

polarized Gaussian beam and image the sample with a white light source. However,

laser assisted evaporation of the droplet prevents from stable long-term observation.

We have eliminated evaporation issues by filling the tank with a liquid that is

immiscible with water and has roughly similar dynamic viscosity (e.g. dodecane

µ ≃ 1.24 mPa s), see Fig. 4.6(b,d). Optomechanical experiment is then performed

with the latter option.

Before discussing experimental results, let us estimate the frequency of the

rotation associated with considered approach assuming P = 1 W illumination, non

dissipative light-matter interaction (A = 0), and considering maximal optical vortex

generation efficiency (∆ = π) one gets from Eq. (4.10) f = 0.05 mHz for m = 100,

hence ≈ 65○ rotation within one hour of steady state illumination. However, in

practice, no rotation of sample was observed, see Fig. 4.7. This might be expected

by uncontrolled effects associated with the contact line between the two liquids

and sample at its periphery. We were unable to properly understand and solve this

issue, which led us to consider further miniaturization of samples, as discussed in

next section.
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50 μm

(a) (b)

1mm

T = 0 T = 1 h 

(c) (d)

Figure 4.7: Images of the sample (m = 100) suspended by the water droplet, between
almost crossed linear polarizers using (a,b) low magnification to observe full sample and
(b,c) higher magnification to observe local angular displacement of the sample, since
relatively modest rotation is expected. Panels (a,c) correspond to initial illumination
time while panels (b,d) refer to the situation after on hour illumination (P = 1 W). As
we can judge by itself, no displacement is observed.
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4.3 Metallic approach at the micrometer scale

4.3.1 Design and fabrication of samples

To obtain micrometer scale spin-orbit couplers we have followed approach

introduced in reference [19] based on material surface subwavelength structuring

for mid-infrared light, by implementing it for visible light, which implies using

nanofabrication tools. We opted for discrete structuring instead of continuous

design to ease the practical implementation and thin gold layer (few hundreds of

nm) was chosen as the material to be structured. Indeed, it has been shown that

such system could provide with half-wave retardance [70], as desired in our case.

In practice, we have followed numerical analysis reported in Ref. [70], where

authors studied radial and azimuthal polarization convertors and demonstrated

m
 =

 -
1

/2
m

 =
 -

5

20 μm 2 μm

20 μm

200 μm

200 μm

D

d

αm

W

Λ

5 μm

(a) (b) (c)

(d) (f)(e)

Figure 4.8: Scanning electron microscopy images of the metallic birefringent plates
corresponding to the fundamental topological charge m = −1/2 (a,b,c) and high order
m = −5 (d,e,f). The plates are fabricated over D = 100 µm diameter with H = 300 µm
thickness, and 500 µm grating period with W = 160 nm slit width. Each structure is
made of 16∣m∣ sectors with angular width αm = π/(8∣m∣) and π/8 angular step for the
slit orientation between adjacent sectors, see panels (b) and (e). To preserve proper
azimuthal resolution of high order plates, the central part is unstructured over a diameter
d = 10 µm.
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their operation with linear to radial polarization conversion at wavelength 633 nm.

We have designed D = 100 µm diameter structures to operate at wavelength 532

nm, which correspond to the choice of gold layer thickness H = 300 nm, grating

period Λ = 500 nm, and slit width W = 160 nm, expecting ∆ = π and ∆′ = 0 as

reported in [70]. For plates azimuthal structuring, we choose the αm = π/(8∣m∣)
as sector angular width and π/8 as orientation step angle between neighboring

sectors. Structuring is achieved by direct ion beam lithography considering set

of fundamental and high-order topological charges ∣m∣ = {1/2,5}, using 500 µm

thick BK7 glass as a substrate for metal deposition. The protocol of fabrication

consists of a few steps. First, the substrate are sonicated in an acetone and a

methanol bath, which removes contamination and enhances adhesion for metal

deposition. Then, 5 nm thick layer of chromium is deposited on substrates by

electron beam evaporation, which serves as adhesion layer. Next, substrates are

magnetron sputtered with 300 nm thick gold layer using physical vapor deposition

system (K.J. Lesker, AXXIS) without changing vacuum level. Finally, the coated

substrates are patterned by ion beam lithography system (Raith, IonLiNE), using

focused Ga+ ions to mill designed structures.

The resulting structures that correspond to topological charges m = −1/2 and

m = −5 are shown in Fig. 4.8 obtained by scanning electron microscopy observations.

This allows confirming accurate fabrication regarding planned geometrical design.

4.3.2 Structural characterization

To assess the optical axis space-variant distribution of fabricated structures

experimentally, we have implemented an optical characterization technique using

Stokes parameters. Introduced in section 1.1, Stokes parameters allow retrieving

the output beam polarization ellipse azimuth angle Φ(x, y) experimentally, hence

the optical axis distribution of the structures. Indeed, Φ(x, y) differs from the

local optical axis orientation angle ψ by ±45○ angle, the sign depends on the value

of the birefringent phase delay and on the incident polarization handedness. In

practice, following Ref. [27], we have measured Stokes parameters by placing a

linear polarizer at the output of the sample and recording the output intensity

profile for four orientations of the polarizer, with 45○ step. The map of the output
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beam polarization ellipse azimuth angle Φ(x, y) is then evaluated from the maps of

Stokes parameters S1 and S2, following the expression tan(2Φ) = S2/S1. The results

are depicted in Fig. 4.9 for the structures with topological charges m = −1/2 (a) and

m = −5 (b). Panels in Fig. 4.9 correspond to the optical axis dependence on the

polar angle ϕ noting that by construction we have Φ(ϕ)−Φ(0) = ψ(ϕ)−ψ(0), while

insets correspond to in-plane spatial distribution of optical axes. Experimental

data is compared to expectations in panels of Fig. 4.9 where red curves correspond

to ideal design behavior.
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Figure 4.9: Experimental retrieval of segmented metallic q-plates optical axis in-plane
distributions for m = −1/2 (a) and m = −5 (b). Panels show local optical axis orientation
angle dependence on azimuthal angle ϕ, insets correspond to the optical axis orientation
profiles in the plane of the samples.
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4.3.3 Optical Performance

We have explored the optical performances of the fabricated spin-orbit couplers

using a focused circularly polarized (with helicity σ) Gaussian laser beam at 532

nm wavelength normally incident on the structures. In order to ensure that all the

incident beam is processed by the structure, we choose a beam waist radius w ≃ 25

µm and place the sample at the focal plane of the used lens. Such a configuration

is associated with a beam divergence angle θ ≃ 0.4○, which implies that our paraxial

description remains valid.

The generated vortex is experimentally selected by placing after the sample a

quarter-wave plate followed by a linear polarizer oriented at −σ45○ from the quarter-

wave pate slow axis (circular polarizer). By doing so, we select the contra-circularly

polarized component of the output field, which is the one carrying the optical

vortex. Indeed, doughnut shape intensity transverse profile is observed for both

(a) (b) (c)

(d) (f)(e)

m
 =

 1
/2

m
 =

 5

σ = 1 σ = -1

σ = 1 σ = -1

Figure 4.10: (a,d) Optical vortex intensity transverse distributions for metallic plates
with topological charge m = 1/2 and m = 5 illuminated by normally incident circularly
polarized Gaussian beam with wavelength 532 nm. (b,c,e,f) Interference patterns that
result from the coherent superposition of output vortex beam and collinear reference
Gaussian beam. Observed right- and left-handed 2m-arm spiraling patterns correspond
to optical phase singularity with topological charge ` = 2σm. Panels (b,e) and (c,f)
correspond to the two orthogonal circular polarization states for the input beam, for
m = 1/2 (b,c) and m = 5 (e,f).
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m = 1/2 (Fig. 4.10(a)), and m = 5 (Fig. 4.10(d)). Note that the on-axis hot spot

observed for m = 5 (Fig. 4.10(d)), is associated with the unstructured central part

in the case of high-order structuring, as shown in Fig. 4.8 (e). Figure 4.10(b,c,e,f)

displays transverse interference distributions that correspond to coherent on-axis

superposition of the output beam and reference Gaussian beam with parallel circular

polarization to that of output beam, for both σ = ±1 incident helicity. This allows

confirming the proper generation of optical vortices with 2σm topological charge,

as expected.

Then, the performance of optical vortex generation process is evaluated following

the definition of purity that can be expressed as

η = P−σ
P+σ + P−σ

. (4.12)

where, P±σ stand for powers of ±σ-polarized output beam components, which are

selected placing quarter-wave plate and following polarizer respectively oriented at

±σ45○ from quarter-wave plate slow axis. We measure η ≃ 78 % for all fabricated

structures, independently from m. Such values is a bit less than expected η = 1

value in absence of dichroism (∆′ = 0), assuming ∆ = π. To clarify it, we recall

that purity η actually depends on both ∆ and ∆′ (see Eq. (4.4)) and we decided to

measure ∆′ directly. To do so, we have fabricated a 100 × 100 µm2 square shaped

area of straight grating structure with identical thickness, grating period, and slit

width as the spin-orbit elements. Considered structure allows to determine dichroic

parameter ∆′ by measuring P∥,⊥ powers of the output beam after placing linear

polarizer with parallel and perpendicular orientation to the grating wavevector,

namely, ∆′ = − log [(P∥/P⊥)1/2]). Then, from the knowledge of η and ∆′ Eq. (4.4)

gives access to the birefringent phase retardation ∆. We find ∆′ ≃ 0.05, which

implies ∆ ≃ 0.7π or 1.3π. This indicates that fabricated spin-orbit couplers are

associated with 30 % difference from expectations, which is probably related with

non-uniformity of the slit width due to the thermal drifting associated with long

fabrication time (few hours for each structure).

In addition, we have explored the optical vortex generation performances of

fabricated structures in the visible domain, using a halogen lamp as a polychromatic

source of illumination. To this aim, in practice we have prepared secondary white
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λ = 532 nm λ = 488 nmλ = 633 nmWhite light

(a) (b) (c) (d)

m
 =

 1
/2

Figure 4.11: Polychromatic optical vortex intensity transverse distribution generated
using halogen lamp, and its three, red, green, and blue, spectral components selected
using bandpass filters with 3 nm half-maximum transmission spectrum; for the structure
with the topological charge m = 1/2.

light source by using 100 µm diameter pinhole that allows increasing the spatial

coherence of the source, which ensures better formation of the characteristic

doughnut intensity pattern of vortex beam. Resulting white light vortex beam

intensity transverse distribution is shown in Fig.4.11(a) for m = 1/2. Using a set of

bandpass filters with 3 nm full-width half-maximum transmission spectrum, the

underlying spectral vortex content can be also revealed, see Fig.4.11(b,c,d). We

note that yellowish color of polychromatic vortex in Fig.4.11(a) implies dispersive

character of the gold metallic structure, which suggests wavelength-dependent

optical vortex generation process. In order to evaluate the wavelength dependence

of the spin-orbit coupling, we have measured the purity η of the process in the

visible domain, by using a set of nine bandpass filters. The filters have 10 nm

full-width half-maximum transmission spectrum and their central wavelength values

are separated by 50 nm. In addition, we have measured purity with using 532

nm wavelength interference filter of 3 nm full-width half maximum transmission

spectrum, which gives a purity value η ≃ 70 % that is a bit lower than the one

measured with 532 nm laser illumination. The results for m = 1/2 are presented

in Fig. 4.12, which demonstrates a rather broadband behavior of the fabricated

structures.

In order to appreciate the obtained experimental results, we have reviewed

discussions in literature related to use of metallic plates as spin-orbital couplers in the

visible domain. First, referring again to Ref. [70], whose numerical developments we

have used to design our structures, a quantitative comparison is not straightforward,
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Figure 4.12: Optical vortex purity η dependence on wavelength in the visible domain
for the structure with topological charge m = 1/2.

since there is lack of precise information in this reference. Next, apart from using

space-variant gratings, there are several studies on spin-orbit induced optical beam

tailoring with use of plasmonic nano-antennas of various shapes [71, 72, 73]. In

particular, in Ref. [43], the authors report on L-shape nanoantennas using metallic

structures in the near infrared range 760 − 790 nm. Initially, they have reported on

purity experimental value η ≃ 10 %, and recently they reported on improvement up

to 35 % in Ref. [44]. In this context, our experimental attempts to fabricate optical

vortex generators in visible domain thus appear fairly good. From the theoretical

point of view, we also note a recent study that deals with optical vortex generation

using metallic nanowires at 1.5 µm wavelength. Indeed, authors of Ref. [74] report

on purity of 90 % for topological charge ` = 1 and 97 % for topological charge ` = 2.

4.3.4 Towards optomechanics experiment

With the aim at using fabricated metallic samples in an optomechanical experi-

ment, let us first evaluate their expected rotation frequency. Recalling the general

analysis reported in section 4.1, steady state rotation frequency and input beam

helicity product of spin-orbit element immersed in liquid equals

σf = f0 [A + 2T η(1 −m)] , (4.13)
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Figure 4.13: Practical illustration of possible femtosecond laser milling of glass layers.
(a) Sketch of laser cut in glass film using focused laser beam. (b) Image of laser straight
cut line. (c) Glass film after removal of glass region.

with f0 = 3P
64πωµR3 . Considering gold average reflectance equal R ≃ 80 % (neglecting

difference between parallel and perpendicular components) at operating wavelength

532 nm and experimentally measured transmission T = 2 %, we obtain σf ≃ 7 mHz

for sample m = 1/2 and σf = 2 mHz for sample m = 5, under P = 1 W illumination.

Although the magnitude of latter frequencies corresponds to a few revolutions of

samples within one hour of experimental time, σf > 0 corresponds to the “right-

handed” situation. Metallic microstructures are therefore not obvious candidates

towards direct observation of optical torque reversal. An option could be to increase

the topological charge m, indeed similar sample fabricated with topological charge

with m = 10 would be associated with σf = −4 mHz, hence being a “left-handed”

situation. Nevertheless, the release of the sample from substrate is another technical

difficulty that can not be ignored within the metallic approach. Indeed, recalling

that gold layer is in practice coated on 100 µm-thick glass substrate, which is equal

to the diameter of the samples, and assuming that “structure + substrate” can be

cut and released, one would obtain a bulky cylinder, instead of disk shape. This

will cause serious mechanical stability issues for optical manipulation. To handle

such technical difficulties an approach could be to consider thinner substrates such

as 1 − 10 µm thick commercially available glass films. This would allow to obtain

disk like samples, that could be cut through glass film using femtosecond laser

milling. An example of such process using 10 µm glass film is illustrated in Fig. 4.13.

However, in view of the anticipated technical difficulties, we decided to move to a

purely dielectric option discussed this in the next section.
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4.4 Dielectric approach at the micrometer scale

In contrast to metallic samples, dielectric samples are associated with sub-

stantially higher transmittance and can be fabricated using ultra thin substrates,

which allows to design smaller structures with disk shape geometry. In practice

we used silicon nitride membranes that are commercially available with various

thicknesses in the typical range of 100 − 1000 nm. To design spin-orbit dielectric

structures, we have used the same approach as for metallic structures, namely

space-variant optical axis structuring from subwavelength gratings, using discrete

azimuthal orientation of the optical axis. We opted for 500 nm thick membranes,

which results from a trade-off between fabrication time and vortex generation purity.

Indeed, thicker structures are preferable to reach optimal half-wave plate phase

retardation condition while this is at expense of fabrication time and reproducibility.

Practically, the slit dept is limited to 350 nm height in order to preserve mechanical

integrity of the structures. Subwavelength grating period is Λ = 500 nm and slit

width is W = 250 nm. Figure 4.14 shows scanning electron microscopy image of

fabricated structure with topological charge m = −5, and radius R = 15 µm.

Expected product σf accessible with the latter design, preserving our assump-

tions of incident circularly polarized plane wave, dielectric structure immersed in

500 nm5 μm

m = -5

Figure 4.14: Scanning electron microscopy images of fabricated dielectric space-variant
birefringent plate with topological charge m = −5 red fabricated using ion-beam lithogra-
phy.



4.4 Dielectric approach at the micrometer scale 87

Membrane sample

Release layer
Substrate

(b)

sampleRelease layer

(c)
Release layer

Substrate

Substrate

water

(d)Substrate

water

sample

(a)

Figure 4.15: Illustration of the release protocol of dielectric structures. (a) Membrane
(red) deposited on the top of a water-releasable layer (blue) is milled through (white slits)
thus leaving spin-orbit element to fall on the release layer. (b) Top view of sample after
milling leaving membrane. (c) Once release layer is in contact with water, water droplet
forms on the sample substrate and releases the spinner. (c) Side view of final stage that
leads to self-centered microstructure suspended by water droplet.

water, and assuming ideal transmission T = 1, hence R = 0 and A = 0, expresses as

σf = 2f0η(1 −m) . (4.14)

The remaining parameter in order to determine the gauge light-induced rotation

rate is thus the purity η, which requires the knowledge of the form birefringence.

The latter is estimated from Ref. [2] that gives for our design W /Λ = 1/2

n∥ − n⊥ =
(n1 + n2)(n2 − n1)2

2(n2
1 + n2

2)
(4.15)

where n1 and n2 are refractive indices of the nanomembrane and surrounding

medium (here water). Thus, using n1 = 2 for silicon nitride and n2 = 1.3 for water

Eq. (4.15) gives a form birefringence n∥−n⊥ = 0.4, hence η = sin2 [π
λ(n∥ − n⊥)L] = 0.5

taking λ = 532 nm and L = 350 nm, n1 + n2 = n⊥ + n∥. With such parameters, we

obtain for m = ∣5∣ σf = −18 mHz for incident power P = 100 mW. Observation of

optical torque reversal thus seems accessible in practice.

To perform the optomechanical experiment the last step is to consider release

of structure in water. For this purpose, the implementation of dielectric structures
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allows using the following protocol. First, the membrane is coated with polyvinyl

alcohol polymer that acts as water-releasable layer, which dries after a few minutes

forming a solid layer. Then, the structure is milled through from the membrane

that is deposited on the top of the latter layer, and subsequently fall and stick

on after full cut. Finally, once release layer is brought with contact with water it

dissolves leaving structure to fall by gravity. The process is sketched in Fig 4.15.

By doing so, one thus obtain self-centered spin-orbit micro-element free to rotate

and the aimed optomechanical experiment can be performed. Indeed, such actions

are under continued development at present day.



Conclusion

In this work we focused our attention on the mechanical consequences of the fact

that light may carry spin and orbital angular momentum. Namely, the appearance

of an optical torque enabling angular displacement or rotation of objects; in practice,

micro-objects. In chapter 1, we reported on different kinds of situations involving

optical spin or/and orbital angular momentum that could be partly or totally

transferred to matter. In particular, we have addressed the situation when spin

and angular momentum contributions are coupled as light interacts with matter,

which is the so called spin-orbit interaction of light. Such spin-orbit optomechanics,

which has not been experimentally addressed so far, is actually the main point

of this work that encompass the prediction of counterintuitive optomechanical

phenomenon, the optical torque reversal, and experimental realizations of it as

explored in chapters 2, 3 and 4 from various point of view.

In chapter 2, we proposed and reported on the first direct observation of optical

spin-orbit radiation torque using liquid crystal topological defects as optical spin-

orbit couplers. Polarimetric analysis of light induced liquid crystal molecular

ordering allows us to unambiguously identify the predicted effects whatever the

helicity of the driving light field and the topological charges ±1 of the chosen liquid

crystal defects (umbilics) [75]. However, since the observations were limited to unit

charge material topological defects, the most striking of our predictions that is the

existing of optical torque reversal was not accessible to our experiments. An attempt

was made using another kind of defects whose charge could be possibly higher

enough to ensure observation of optical torque reversal. However, fundamental

limitations have been unveiled and further investigations were carried out by

changing the material system.

This has been explored in chapter 3 with the introduction of solid state space-

variant birefringent nanostructured glass slabs. Actually, we succeeded to demon-
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strate experimentally the mechanical manifestation of optical torque reversal with

such media. The difficulty associated with the use of macroscopic samples was

circumvented by looking at the effect of matter on light instead of detecting the

effect of light on matter. Experimentally this has been achieved by introducing

rotational Doppler frequency shift experiments relying on one- or two-beam, on-axis

or off-axis interferometric approaches to measure frequency shift. A quantitative

thorough study firmly confirmed all our predictions [76, 77]. Nevertheless, such

indirect approach left open the challenge that consists of the direct observation of

optical torque reversal.

The challenge has been taken on in chapter 4, where analysis of required realistic

experimental conditions is performed. This led us to consider miniaturized spin-

orbit elements with possibly high topological charge values. From this knowledge,

fabrication and characterization of millimeter and micrometer scale spin-orbit

optical elements has been performed [78, 79]. As this thesis work ends, we can say

that the suitable candidate has been eventually defined and it is likely that the

direct observation of optical torque reversal will be reported soon, in the framework

of an ongoing thesis work.
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