Étude de méthodes précises d'approximation d'équations différentielles stochastiques ou d'équations aux dérivées partielles déterministes en Finance

par Lord Bienvenu Youmbi Tchuenkam

Thèse de doctorat en Mathématiques

Sous la direction de Stéphane Descombes et de Florian Pelgrin.

Soutenue le 12-12-2016

à Côte d'Azur , dans le cadre de École doctorale Sciences fondamentales et appliquées (Nice) , en partenariat avec Université de Nice (établissement de préparation) , Laboratoire J.-A. Dieudonné (Nice) (laboratoire) et de Laboratoire Jean Alexandre Dieudonné (laboratoire) .

Le président du jury était Jacques Blum.

Le jury était composé de Stéphane Descombes, Florian Pelgrin, Jacques Blum, Pauline Lafitte-Godillon, Michael Rockinger.

Les rapporteurs étaient Pauline Lafitte-Godillon, Michael Rockinger.


  • Résumé

    Les travaux exposés dans cette thèse sont consacrés à l’étude de méthodesprécises pour approcher des équations différentielles stochastiques ou deséquations aux dérivées partielles (EDP) déterministes. La première parties’inscrit dans le cadre du développement de méthodes visant à corriger le biaisdans les processus de diffusion paramétrique. Trois modèles sont étudiés enparticulier : Ornstein-Uhlenbeck, Auto-régressif et Moyenne mobile. A l’issuede ce travail, plusieurs approximations de biais ont été proposées suivant deuxapproches : la première consiste en un développement de Taylor del’estimateur obtenu alors que la seconde s'appuie sur une expansionstochastique de celui-ci.La deuxième partie de cette thèse porte sur l’approximation de l’équation de lachaleur obtenue après changement de variables à partir du modèle de Black etScholes. En général, on préfère utiliser des méthodes implicites pour résoudredes EDP paraboliques mais depuis quelques années, les méthodes dites deRunge-Kutta explicites stabilisées, sont de plus en plus utilisées. Nousmontrons que l’utilisation de ce type de méthodes explicites et notamment lesschémas ROCK donnent de très bons résultats même si les conditions initialessont peu régulières, ce qui est le cas dans les modèles financiers

  • Titre traduit

    Study of precise methods of approximation of stochastic differential equations or deterministic partial differential equations in Finance


  • Résumé

    The work presented in this thesis is devoted to the study of precise methods forapproximating stochastic differential equations (SDE) or deterministic partialdifferential equations (PDE). The first part is devoted to the development ofbias correction methods in parametric diffusion processes. Three models arestudied in particular : Ornstein-Uhlenbeck, auto-regressive and Movingaverage. At the end of this work, several approximations of bias have beenproposed following two approaches : the first consists in a Taylor developmentof the obtained estimator while the second one relies on a stochastic expansionof the latter.The second part of this thesis deals with the approximation of the heatequation obtained after changing variables from the Black-Scholes model. Likethe vast majority of PDE, this equation does not have an exact solution, sosolutions must be approached using explicit or implicit time schemes. Itis often customary to prefer the use of implicit methods to solve parabolic PDEsuch as the heat equation, but in the past few years, the stabilized explicitRunge-Kutta methods which have the largest possible domains of stabilityalong the negative real axis, are increasingly used. We show that the useof this type of explicit methods and in particular the ROCK (Runge-Orthogonal-Chebyshev-Kutta) schemes give very good results even if the initial conditionsare not very regular, which is the case in the financial models


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Nice Sophia Antipolis. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.